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Abstract

New inequalities are investigated for real entire functions in the Laguerre-Polya
class. These are generalizations of the classical Turan and Laguerre inequali-
ties. They provide necessary conditions for certain real entire functions to have
only real zeros.
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Definition 1.1. A real entire functionp(z) := Y., %" is said to be in the
Laguerre-Pdlya class, writtep(x) € L-P, if ¢(x) can be expressed in the form

w

1.1 —ame T (1+ 2 ) e m, 0<w<
(1.1) o(x) = cae H(+xk)€ K, <w < o0,

k=1

wherec, 3, 2, € R, o > 0, n is @ nonnegative integer ang,- , 1/z3 < oco. If Iterated %aguerrl_e_and Turén
w = 0, then, by convention, the product is defined to be 1. (LS

Thomas Craven and

The significance of the Laguerre-Polya class in the theory of entire functions George Csordas
stems from the fact that functions in this claaed only theseare the uniform
limits, on compact subsets &f, of polynomials with only real zeros. For var-

ious properties and algebraic and transcendental characterizations of functions Title Page

in this class we refer the reader to P6lya and Schuy p. 100], [L7] or [9, Contents

Kapitel I1]. <« Y
If p(2) =Y o, %a* € L-P, then theTuran inequalities); — ve_1 741 >

0 and theLaguerre inequalities® ()2 — o (x)F~Dp*+D (1) > 0 are known to < 4

hold forallk = 1,2,... and for all realr (see P’] and the references contained S0 Bl

therein). In this paper we consider generalizations of both of these inequalities.

For some of these generalizations to hold, we must restrict our investigation to Slost

the following subclass of-P. Quit

Definition 1.2. A real entire functionp(z) := >~ %" in £-P is said to be Page 3 of 34

in L-P* if ., > 0 for all k. In particular, this means that all the zeros pflie
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Now if p(x) € L-PT, theny can be expressed in the form

(1.2) o(x) = ca"eP? H (1 + i) , 0<w < o0,
k=1 Tk

wherec, 3 > 0, z;, > 0, n is a nonnegative integer ar)d,_ i < oo [9,
Section 9]. Ifp(z) = > "7, %a* € L-P, then, following the usual convention,
we call the sequence of coefficien{sy } 2 ,, amultiplier sequence

In Section2, the Laguerre inequality’(z)? — ¢(z)¢”(x) > 0 is general- Iterated Laguerre and Turan
ized to a system of inequalitigs, (p(z)) > 0 foralln = 0,1,2,... and for VIS
all z € R, whereL,(p(x)) = ¢'(2)* — ¢(z)¢"(x) andp(x) € L-P (cf. [10, Thomas Craven and

George Csordas

Theorem 1]). This system of inequalities characterizes functiodsin(The-

orem2.2). We show that the (nonlinear) operatdrssatisfy a simple recursive
relation (Theoren?.1) and use this fact to give a different proof of a result of Title Page
Patrick [LO, Theorem 1]. This, together with the converse of Patrick’'s theorem

(cf. [5, Theorem 2.9]), yields a necessary and sufficient condition for a real Contents

entire function (with appropriate restrictions on the order and type of the entire 44 >

function) to belong to the Laguerre-Pdlya class (Theokein < >
In Section3, we consider a different collection of inequalities based on the

Laguerre inequality, namely an iterated form of them. Our original proof of the Go Back

second iterated inequalities for functionsdrP* [2, Theorem 2.13] was based Close

on the study of certain polynomial invariants. In Sectipwe give a shorter and Quit

a conceptually simpler proof of these inequalities (Proposgidmand Theorem
3.2). Moreover, the proof of Propositioh 1 leads to new necessary conditions Page 4 of 34
for entire functions to belong t6-P* (Corollary3.3). Evaluating these at =

0 yields the classical Turan inequalities and iterated forms of them, considered 2 inea. pure and Appl. math. 3(3) Art. 39, 2002
http://jipam.vu.edu.au
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in Section4. In Section4, we show that for multiplier sequences which decay
sufficiently rapidlyall the higher iterated Turan inequalities hold (Theork ).

Our main result (Theorerd.4) asserts that the third iterated Turan inequalities
are valid for all functions of the formp(z) = 2%y(x), wherey(z) € L-P*. An
examination of the proof of Theoref4 (see also Lemma.3) shows that the
restriction thatp(z) has a double zero at the origin is merely a ploy to render
the, otherwise very lengthy and involved, computations tractable.

Iterated Laguerre and Turan
Inequalities

Thomas Craven and
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Let o(z) denote a real entire function; that is, an entire function with only real
Taylor coefficients. Following Patrick'[], we define implicitly the action of
the (nonlinear) operatofs.,, }>° ,, takingp(z) to L, (¢(z)), by the equation

o0

(2.2) lp(z +iy)|* = oz +iy)p(e —iy) = Y La(p(2)y™, (z,y €R). ,
Iterated Laguerre and Turan

n=0 Inequalities
In the sequel, it will become clear that,(¢(x)) is also a real entire function Thomas Craven and
(cf. Remark2.1). In[10], Patrick shows that ip(z) € £L-P, thenL, (¢(x)) >0 Gzt T
foralln = 0,1,2,... and for allx € R. The novel aspect of our approach to
these inequalities is based on the remarkable fact that the opefatsedisfy Title Page
a simple recursive relation (Theorelrl). By virtue of this recursion relation, o

ontents

we obtain a short proof of Patrick’s theorem. This, when combined with the
known converse resul] Theorem 2.9], yields a complete characterization of <« >
functions inZ-P (Theorem2.2).

We remark that generalizations of the operators defined. i &re given by
Dilcher and Stolarsky inf]. These authors study the distribution of zeros of Go Back
L%m)(gp(x)) for their generalized operatofs,™ and certain functiong(x).

< 4

Close
Theorem 2.1. Let ¢(x) be any real entire function. Then the operatdrs Quit
satisfy the following:
Page 6 of 34

(1) Lu((z + a)p(@)) = (z + a)?Ly(0(x)) + Lai(p(x)), for a € R and
n = 17 2, e , J. Ineq. Pure and Appl. Math. 3(3) Art. 39, 2002
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(2) Lo(y) = ¢*
L,(c) = 0 for any constant andn > 1.

Proof. Parts(2) and(3) are clear from the definition. To che¢k), we compute
as follows:

|(z + a+iy)p(x + iy)|”
— (o + ) f;wm»y%
Sy i Lalela® + 3 Ll
" i Lol + i La ()
) + Z x + a)?

from which (1) follows. O

= (z+a)*Lo(p (2)) + Ln-1(o(x))]y™",

Using the recursion of Theoreinl, we obtain the following characterization
of functions inL-P.

Theorem 2.2. Let p(z) # 0 be a real entire function of the forar*** ¢, (),
wherea > 0 and ¢;(z) has genus 0 or 1. Thep(z) € L£-P if and only if
L.(¢) >0foralln=0,1,2,....

Iterated Laguerre and Turan
Inequalities

Thomas Craven and
George Csordas

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 7 of 34

J. Ineq. Pure and Appl. Math. 3(3) Art. 39, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:tom@math.hawaii.edu
mailto:
mailto:
mailto:george@math.hawaii.edu
http://jipam.vu.edu.au/

Proof. First assume that all,,(¢) > 0. If ¢ ¢ L-P, theny has a nonreal zero
zo = xo + 1y With 3y # 0. Hence

0= l(20)]” =) Ln((x0))5" -

Since all terms in the sum are nonnegative gng 0, we must have.,, (¢(z¢)) =
0 for all n. But this gives|p(x + iy)|* = > o7, Lu(p(zo))y* = 0 for any

choice ofy € R, whencey itself must be identically zero. lterated Laguerre and Turan
Conversely, assume thate £-P. Sincep can be uniformly approximated Inequalities
on compact sets by polynomials with only real zeros, it will suffice to prove Thomas Craven and
that Z,,(¢) > 0 for polynomialsy. For this we use induction on the degree of (CE I
. From Theoren?.1(2) and (3), we see thal,(¢) > 0 for anyn if ¢ has
degree0. If the degree ofp is greater than zero, we can wrigr) = (z + Title Page
a)g(x), wherea € R andg(z) is a polynomial. By the induction hypothesis, Content
L,(g(x)) > 0foralln > 0and allz € R. Hence, Theorer.1(1) gives the Onten's
desired conclusion fop. O <« 33
Next we show that the explicit form of,,(¢) given in [L0] can also be < >
obtained from Theorerf. 1 Go Back
Theorem 2.3. For anyy € L-P, operatorsL, () satisfying the recursion and Close
initial conditions of Theorerd.1 are uniquely determined and are given by Quit
ul
2n ;
—1)7t" (2n , - Page 8 of 34
(2.2) La(p(z) = ( (271), ( ; )w(”(fv)w(? ).

—0
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Proof. As before, it will suffice to prove the result for polynomials frP.

It is clear that the recursion formula of Theoréni, together with the initial
conditions given there, uniquely determine the valué.pon any polynomial
with only real zeros. Thus it will suffice to show that the formula givenZr2y
satisfies the conditions of Theoreinl. We do a double induction, beginning
with an induction om.

If n = 0, thenLy(¢) = ¢ by Theorem2.1 and this agrees with2(2).
Assume that > 0 and that 2.2) holds forL,,_;. Now we begin an induction
on the degree op.

If ¢ is a constant, theh,,(¢) = 0 by Theoren?.1, which agrees withZ.2).
Assume the formula holds for polynomials of degree less than. Then we
can writep(x) = (x+a)g(x), wherea € RandL,_,(g) andL,(g) are given by
(2.2). The conclusion now follows from a computation using Theofefil).
Indeed,

= (z+a)*Lu(9(x)) + Lu-1(g(x))

SCRTD Dece ol ) VRIBVESE

W2~y fop — 2\ . 2n—2—j
2 g (7))

Iterated Laguerre and Turan
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Also, using Leibniz’s formula for higher derivatives of a product,

2_” % (2;7) oV ()" (x)
) 2n ﬂ(%

= (@) \J

+ (x +a)(2n — >g(3)g(2”*1*j) + (z + a>2g(j)g(2nfj)]

= (z+a)? Z =1 (2”’) g9 (2)g? D (z)

2n)! \j

(1) 20— 2
() (2n—2—-j)
* X G (7)),

because the coefficient of + a) is shown to be zero by

2n ;
(_1)j+n 2n - (j— n—j n—

(2n)! \ j
)

2n—1
+Z ( )2n J)g(j)g@"“’]

. > [7(2n = 7)g" Vg9 4 (z + a) gV g

Iterated Laguerre and Turan
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2n—1

(=1)" - 2\, NP
— _ —1y 1) gV g2n—3-1)

2n—1 2n

2 <—1>j( . ) (2n - j>g<f>g<2n-f-1>]
3=0 J
=0
H 2n . _(2n .

smce(jﬂ) (j + 1) - (j )(2n - j)' O Iterated Laguerre and Turan

Inequalities

The main emphasis here has been that the result of Thebradepends
only on the recursive condition of Theoréiri, and this seems to be the easiest T*g’;j)?secéasvoﬁg;s”d
way to prove Theoren2.2. However, the operatorg,, () can be explicitly
computed more easily than from the recursive condition as was done in Theorem

2.3, as well as in greater generality. Title Page
Remark 2.1. For any real entire functionp, the operatorsL, (¢) defined by COEE
equation R.1) are given by the formula PP SY
2n ; 4 >
(=1)7*" (20 »
L - G) ()29 ().
(o) =3 T ()@ o Back
) Close
Proof. By Taylor’s theorem, for each fixed € R,
Quit
. . . = R (0) ,,
h(y) = lp(x +iy)]* = oo+ iy)ex —iy) = (2n§, Ly Page 11 of 34

n=0
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where we have used the fact thdy) is an even function (of). Let D,, = d/dy
denote differentiation with respect to Then by Leibniz’s formula, for higher
derivatives of a product, we have

hem(0) =) (2; ) (Dyelx +iy)),_, (D} oz —iy))

by the uniqueness of the Taylor coefficients. O

Iterated Laguerre and Turan
Inequalities
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Definition 3.1. For any real entire functionp(x), set

T (p()) = (™ (2))? — p* D (@)p® D () i k> 1,

and forn > 2, set

T (p(@) == (" (@) = T @) TV (e@) it k2 n 2 2.

Iterated Laguerre and Turan
Inequalities

Remark 3.1. (a) Note that with the notation above, we ha@&)(y)
(n) ; . Thomas Craven and
= ']; ((,O(J)) fork>n andj =0,1,2.... George Csordas

(b) The authors’ investigations of functions in the Laguerre-Pdlya clags ([

[3]) have led to the following problem. Title Page
Open Problemlf (x) € £-PT, are the iterated Laguerre inequalities Contents
valid for all z > 0? That is, is it true that <« >
31)  T"(p(x)>0 forall x>0 and k>n? < 4
Go Back
(c) If we assume only that(z) € L£L-P, then the inequalit%f”)(go(x)) > 0, Close
x > 0, need not hold in general, as the following example shows. Con- —
ul

sider, for examplep(z) = (z — 2)(x + 1)* € L-P. Then?;@)(go(x)) =
216x(—2 + 3z + %) and so we see thagm)(go(m)) is negative for all
sufficiently small positive values of

Page 13 of 34
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(d) There are, of course, certain easy situations for which the iterated La-
guerre inequalities can be shown to always hold. For example(if =
(x4a)e*,a > 00r¢(x) = (x+a)(x+b)e*, a, b > 0, thisis true. Since the
derivative of such a function again has the same form, the remarks above
indicate that it suffices to show thﬁ)f"“)(go(x)) >0fork=1,2,... and
all x > 0. For the quadratic case, we obtain

7" (p(x))
22k_262km((a + x)Q + (b + :C)2 Iterated Laguerrg_and Turan
-0—2(/{2 — 1)(21’ +a+b+k%— k;))7 for k& odd Inequalities

Thomas Craven and
George Csordas

22" 12 (1 4 a)(x +b) + k(2z +a+b+k —1)), fork even
and each expression is clearly nonegative for all real

Title Page
(e) A particularly intriguing open problem is the case@fr) = =™ in (3.1).
Special cases, such as the iterated Turan inequalities discussed in the next CEEE
section, can be easily established ('[Té.")(:v") = (n!)?"), but the general < >
case of7," (x™*), k =0,1,2,..., seems surprisingly difficult. < >
In [2, Theorem 2.13] it is shown thaB(l) is true whenn = 2; that is the —=——
0 bac

double Laguerre inequalities are valid. Here we present a somewhat different
and shorter proof (which still depends on Theoretizand?2.3) in the hope Close
that it will shed light on the general case. Quit

Proposition 3.1. If p(z) is a polynomial with only real, nonpositive zeros and Page 14 of 34

positive leading coefficient (so thatx) € £-P* N R[z]), then

(3.2) ’];6(2)(30(33)) >0 forall >0 and k> 2. J. Ineq. Pure and Appl. Math. 3(3) Art. 39, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:tom@math.hawaii.edu
mailto:
mailto:
mailto:george@math.hawaii.edu
http://jipam.vu.edu.au/

Proof. First we prove 8.2) by induction, in the special case whén= 2. If
degyp = 0 or 1, then7‘2(2)(<p) = 0. Now suppose that3(2) holds (withk =
2) for all polynomialsg € L£-P* of degree at most. Let p(z) = (z +
a)g(z), wherea > 0. For notational convenience, detz) := 7, (g(z)) =
(¢'(2))* — g(x)g"(z) and note thak(z) is just L, (g(x)) in Theorem2.3. Then

some elementary, albeit involved, calculations (which can be readily verified

with the aid of a symbolic program) yield
(33) ¢(2)L" (o(x))
= ¢(@) { (@ + ' TV (h(@)) + ¢(2) [126(x) La(9(2)) + A@)]}
whereL,(g(x)) is given by ¢.2) and
A(x) =8(g'(x))* — 129(z)g'(x)g" (x) + 4g(x)*¢" (x).

Sincep(z), ¢"(x) € L-PT, p(x) > 0 andy”(z) > 0 for all z > 0. Also, by
Theorem2.2, Ly(g(x)) > 0 for all z € R. Now, another calculation shows that

J" (@)L (h(2)) = ()T, (9(x))

and soZ;” (h(z)) > 0forz > 0, since by the induction assumptiGi® (g(z)) >
0 for = > 0. Therefore, it remains to show thatx) > 0 for x > 0. Let
g9(z) = c[[;—i(z + z;), wherec > 0 andz; > 0 for 1 < j < n. Then using

Iterated Laguerre and Turan
Inequalities

Thomas Craven and
George Csordas
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logarithmic differentiation and the product rule we obtain

3.4 Aw) = 1900 1 (/10) )

=Y ey

>0 forall z>0.

Thus, the right-hand side o8(3) is nonnegative for alk > 0 and whence
7% (p(x)) > 0if 2 > 0. Butthen continuity considerations show tgt’ (¢(x))
> 0 for all z > 0. Finally, sinceC-P* is closed under differentiation and since
Tk(f}(gp) = T( (W) for k > nandj = 0,1,2... (see Remark.1(a)), we
conclude that:{ 2) holds. O

Recall from the introduction, that ib(z) € L£L-P*, thenp(z) can be ex-
pressed in the form

“ i
3.5 = ce’” 14+ — 0<w<
35 o) = ce H(+x) <w<o,
wherec > 0,0 > 0,z; > 0and)_ 1/z; < co. Now set
AN min(N, w) "
goN(x):c(lnLN) H (1+x—j).

Jj=1

Thenpy(z) — ¢(x) asN — oo, uniformly on compact subsets @f More-
over, the clas€-P* is closed under differentiation, and so the derivatives of

Iterated Laguerre and Turan
Inequalities
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©(x) can also be expressed in the forén5). Therefore, the following theorem
is an immediate consequence of Proposifich

Theorem 3.2.1f p(x) € L-P*,thenforj =0,1,2...,
TPV (z)) >0 forall z>0 and k>2.

In the course of the proof of Propositi@nl, we have shown (seé&.{)) that
for polynomialsg(x) € £L-PT, the following inequality holds

(3.6) 2(¢'(2))° —3g(2)g'(2)g"(x) + g(x)’g"(x) 20 forall =z >0.

Next, we employ the foregoing limiting argument (see the paragraph preceding
Theorem3.2) and the fact that-P* is closed under differentiation, to deduce
from (3.6) the following corollary.
Corollary 3.3. If
o(r) = %xk € L-PT,
k=0
thenforp =0,1,2... and forallz > 0,

(3.7) 2 (") (2)) =3P (2)p ") (2) o+ (2)+ (P () o®*¥) (z) > 0.

The interest in inequality3(7) stems, in part, from the fact that fer= 0 it
provides a new necessary condition for a real entire function to belofgRo.
Indeed, forz = 0, inequality 3.7) may be expressed in the form

(3.8) 2y (’Yz-s-l - ’Yp7p+2) > Y (Wp+1Yp+2 — Whpts) (p=0,1,2,...).

Iterated Laguerre and Turan
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The Turan inequalitieSyg+1 — Y Yptr2 = 0 imply that v, 17,402 — Y Yptrs >

0. Thus, ify, > 0for all p > 0, theny, (Vpr1Vp+2 — VpYp+3) /(27p+1) IS @
nontrivial positive lower bound for the Turan express¢';§g1 — Y Vp+2-
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LetI' = {v}2, be a sequence of real numbers. We definertile iter-

ated Turan sequence bfvia 7;20) =y k=0,..., andy,(g’) = (7,8"_1))2 -
’y,ir:ll)’y,(;*ll), k=rr+1,.... Thus, if we writep(z) = > vz /k!, then’y,(f)

is just Tk(’")(gp(a:)) evaluated atr = 0. Under certain circumstances, we can
show thatall of the higher iterated Turan expressions are positive for a mul-
tiplier sequence. In Sectiohwe mentioned some simple cases in which we
could, in fact, show that all of the iterated Laguerre inequalities hold. In this
section we establish the iterated Turan inequalities for a large class of interesting
multiplier sequences.

Theorem 4.1.Fix ¢ > 1 andd > 0. Consider the setM .. of all sequences of
positive number$y }7° , satisfying

(4.1) T — CYr-1Vk41 > 0,

for all k. Then

(4.2) (%3 - %-1%+1)2 — (c+d) (%371 - ’Yk—2'7k)(713+1 — MVkt2) =0
for all & and all sequences iM, if and only ifc > v+,

Proof. To see necessity, consider the specific sequence 1, v; = 1, 1 =
5, 7 = 25, W = 0fork > 4. This satisfies4.1) for anyb > c. But (4.2)
yields

1 1)’ 1 1 1/, c d
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Sinceb may be made as large as desired, this is only guaranteed to be nonneg-
ative if ¢ > 3£¥3+14 the larger root of? — 3¢ + 1 — d. The other alternative,
1 < ¢ < 324 does not occur fodd > —1 (and, in particular, forl > 0).

Conversely, assumé (1) holds withe > 3:¥5+4  An upper bound for."
is~Z. From (@.1), we obtain the lower bound

1
’Ylg ) = Yo — M1V > (¢ — D)Veo1Vrs1 -

Estimating the expression id.Q), we obtain Uitz LBV Al I
Inequalities
(7/5;1))2 —(c+ d)%il_)n;ilﬁl > [(c = Dye-1mmsa]* = e+ d) Vi1 %ien Thomas Craven and

George Csordas

= [ =3c+1—dvi_17is 20

by the condition on. O Title Page
The setM, is of particular interest. Conditior (1) forces the numberg, to Contents
decrease rather quickly, leading us to term such sequeapelly decreasing < b

sequencesThey are known to be multiplier sequences and were first investi-

gated in some detail irg]. These interesting sequences are discussed at some S 4
length in [3, Section 4] and4, Section 4]. Go Back
Corollary 4.2. For a sequence as in(1) with ¢ > % ~ 2.62, the corre- Close
sponding constant for the sequence of Turan express@h& V2 — Yp_1Vka1 Quit

is strictly greater thanc by the amountl = 222 |f we then iterate this,

forming the sequenc{ay,f)}, the corresponding constant again increases by

more thand. After a finite number of steps, it will reaeh(in the normalized 3. Ineq, Pure and Appl. Math. 3(3) Art. 39, 2002
http://jipam.vu.edu.au
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casey, = 71 = 1) and the sequence of higher Turan expressi{m@};‘;r,

for r fixed and sufficiently large, will be a rapidly decreasing sequence. In par-
ticular, if the original sequence is a rapidly decreasing sequence, the sequence
of Turan inequalities is again a rapidly decreasing sequence and we obtain an
infinite sequence of multiplier sequences by iterating this process.

Although the iterated Turan expressions seem to be positive for all multiplier
sequences (an open question in general), it follows from the Thedrethat
inequality @.1) with ¢ = 1 is not sufficient to achieve this singe(; contains
sequences that fail to satisf¢.p) for d = 0. But then, the specific sequence
used in the proof is not a multiplier sequence i 1, as it violates condition
(3.9 forp =1.
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In this section we establish the third iterated Turan inequaﬁﬂl >0k =
3,4,5...) for multiplier sequences}y;},, of the form~, = k(k — 1)ay,
k=1,2,3..., where{a;};2, is anarbitrary multiplier sequence. With the
notation adopted in Sectigh we have

(51) 7]23) - (7}&2))2 - 7]&2)1712_217 k = 37 47 5a cety

or equivalently

= (376@)" - 18T )

=0

k=3,4,5,...,

6.2 (7o)

=

where

(5.3) o(x) = Z’T o e L-PT.
k=0
Before embarking on the proof of the third iterated Turan inequality, we briefly

discuss a representation of the third iterated Turan expres%ian =
('];(3)(@<ZL‘))> in terms of Wronskians and determinants of Hankel matri-

ces (Proposmor‘s 1). We recall that the:{(*" order) Wronskian (determinant)
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W(p(z), ¢ (x),...,o" Y (x)), wherep(z) is an entire function, is defined as

(5.4) W(p(z),¢'(x),...,¢" V()

o(z) ¢ (z) e V()
_| @) e (z) - ()
D) o) o A (a)

and that thes{'" order)Hankel matricesassociated with the sequenieg }3°,
are matrices of the fomﬁ{,g") = (Vhritj—2)ij=1, thatis

Vi Ve+1 o+ o Vk4n—1
g = | T Ve Thgni (n=1,2,3,....k=0,1,2,...).
Ye4n—1 Ve+n -+ Vk+2n—2

We note that if we sett! = det 7™, then
W(®(0), " 0(0), ..., "+ 70(0)) = AP

and forn = 3 the following relation holds

(5.5) (—ry2) AP =42, k=0,1,2....

Furthermore, ifp(x) € L-P* is given by 6.3) and ifv,, > 0, then by Theorem

3.2 (’];(2)(@(:6))) , >0forz >0 (k =2,3,4...) and whence, in light of

Proposition 5.1.
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(5.5, A,(f’) < 0fork =0,1,2,.... A straightforward, albeit lengthy, calcu-

lation yields the following representation of the third iterated Turan expression

v,
Lety(z) :=
(5.6) T,"(¢(x))
— (7;(1)(90(55))) (W (SO(k_S) (33), gp(k_Q)(:E), go(k_l)(ﬂi),

T2 (p(2)) T2 (o ()
=D () p®+D ()

fork =3,4,5.... Inparticular, ifr =0andk =0,1,2..., then
67 = ()

4 3)
= (713—&-3 — V2 Vhrd) (Afg )7,f+3 + A AéJrz)

> reo Lo be an entire function. Then fare R,

oW (2)) o™ (2)? +

=0

whereA(” = det H ) denotes the determinant of the Hankel maﬂ{é<
Remark 5.1.

(a) Since the equalitiess(6) and (.7) are formal identities, the assumption
that o(x) is an entire function is not needed.

(b) With the aid of some known identities (see, for exampi&,YII, Problem
19]), equation 6.7) can be recast in the following suggestive form

(5.8) 'Vl(ci):a = (A/(::Zl> Vits — A Ak+27k+27k+4
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Now, suppose that(z) := > 77 a* € L-P*. Then, by virtue ofg.9),

2
W >0 Whenevel(A,(ijl> —AYAP, >0,k =0,1,2.... However,
this inequality is not valid, in general, as the following example shows.

Letp(z) == D ooy Lah = 2?(x + 1) Here,yp = 71 = 0,72 = 2,73 =

B\ _ 43) 4@
66,4 = 1320, 5 = 19800 and~ = 237600. Then(A1 ) AP AB) =
2718144,

(c) Letp(z) € L-PT be given by §.3). SinceA,(f’)zél,(fj2 > 0 (cf. (6.5 and e —
Theorem3.2), (5.7) shows thaty\”, > 0 wheneverd!” > 0. However, Inequalities
A,(f) may be negative, as may be readily verified using the fungtion Thomas Craven and
defined in part (b). Examples of this sort are subtle as they depict a hereto- George Csordas
fore inexplicable phenomenon. The technique used below sheds light on
this and at the end of this paper we provide a sufficient condition which Title Page
guarantees thatél,(f) < 0. In connection with the investigations of a con-

. . " ) . Content
jecture of S. Karlin, additional examples are considered ihdnd [1]. ontents
Furthermore, to highlight the intricate nature of Karlin’s conjecture, it 44 (44
was pointed out in these papers, in particular, théf) > 0if v = ag/k!, < >
k=0,1,2..., where{a.}?2, is any multiplier sequence.
. ) Go Back
(d) In the sequel we will prove that if
Close
_ — k(k =)oy, , + [
o(z) = Z ¢ e L-PT, Quit
h=0 Page 25 of 34

where{a; }7°, is any multiplier sequence, thaég) > 0. Itis not hard
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quences that begin with two zeros. However, the assumptioq dh&ge

is a multiplier sequence is not necessarily required to make the inequali-
ties hold. To see this, we consider once again the example in part (b). Let
ag = oy = 0 andfork > 2, setay, = 7. We claim that{ay }72, IS

not a multiplier sequence. Indeed, consider the fourth Jensen polynomial
(defined, for example, ir’]) associated with the sequenée;. }>,, that

is,

4

4
ga(z) = kz:% (k) apa® = 22%(3 + 222 + 5527%).
Sinceg,(x) has two nonreal zerog,oy } 2, is not a multiplier sequence,

though our main theorem will establish the third iteration of the Turan

inequalities for{~;}72,.

The proof of the main theorem requires that we exp(@)@(ﬂx))) in
0

terms of sums of powers of the logarithmic derivativess¢f). Accoraci?gly,
we proceed to establish the following preparatory result.

Lemma 5.2. Letp(z) = [[}_,(z + 2;), =; > 0,j = 1,2,...,n, be a poly-
nomial in £-P*. For fixedz > 0andj = 1,2,...,n, seta; := ﬁ and let

n

and D := Za?.

i=1

5.9 A= Zn:aj, B = zn:a?, C:= zn:a?a
j=1 Jj=1 Jj=1

Then

(5.10) = A® - 3AB +2C
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and

(4)
PE) _ 44 6A°B 4 3B? + 8AC — 6D.
o(x)

Proof. Logarithmic differentiation yields

xr xX;
j=1 T

o) _ (¢@) (v -
plz) (90(1‘)) <sz+x3> ]Zl x+x]
:(me) TL G ATE

j=1 7j=1

Continuing in this manner, similar calculations yield

(’0///(1,)
p(z)

"1 ’ "1 u 1 “
:<le+xj> _3<;x+xj> (Zl(x—l—x] >+2(Z1 a:+xj )
= A® - 3AB +2C

(10/(1’) _ - 1 Z — A 1 — Y ;
By L ad )= o (ZH) GED vyl
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(L) o (E05) (Sor) 2 (Ser)

+8 Z_: x+ x; Z_: (q; +zz -)3 =6 Z_: T+ x; Z_: (q; +x »)4 Iterated Laguerre and Turan
j=1 J j=1 J j=1 J =1 J

Inequalities
= A* —6A%B + 3B* + 8AC — 6D.

Thomas Craven and
George Csordas

O
The next lemma gives an explicit expression ﬁé:P = (7},(3)(go(x))> , Title Page
=0
wherep(z) is of the formy(z) = z%y(z). While the verification involves only Contents
simple algebraic manipulations, the expression obtained is sufficiently involved
to warrant the use of a computer. « dd
Lemma 5.3. Lett(z) := Y7, 2" be an entire function. Let ¢ d
Go Back
Yk
= Close
o) = 0(e) = 30 e
k=0 Quit
sothatyy = = 0andy, = k(k — 1)ag_o, fork =2,3,.... Then Page 28 of 34
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where
E(z) =729 (2)® — 1458 ¢(2) ¢/ (x)* ¢ () + 324 (2)* ¢/ (z)* ¢/ (2)”
+2169(2)* ¢ (2)” + 5z (2)* ¢/ ()’ ) ()
— 360 ¥(x)* ¢/ (2) " () ¢ () + 100 Po(2)* @ (z)”

—90¢(x)" ¢ () P (2).

Preliminaries aside, we are now in a position to prove the principal result of .o\ 2guerre and Turan
this section. Inequalities
Theorem 5.4. Lety(z) := Y, Seak € L-PT. Let Tomee e e

— Yk
pla) Z k_ Title Page
k=0
Contents
sothatyy = v = 0andy, = k(k — 1)ag_o, fork =2,3,.... Then
44 44
(5.12) 7D = (75(3)(90(96))) 20 < >
. Go Back
Proof. In view of (5.11) of Lemma5.3, sincey(z) € L-PT, (Tk( )(w(x))> > o
=0 ose
0(k = 1,2,3...), we only need to establish th&(0) > 0. Also, since _
w(x) € L-PT, ¢(x) can be uniformly approximated, on compact subsets of Quit
C, by polynomials having only real, nonpositive zeros. Therefore, it suffices to Page 29 of 34
prove inequality §.12 wheny(z) = [[j_, (z + z;), (xj > 0), is a polynomial

in £-P*. Now if ¢»(0) = 0, thenE(0) = 729¢/(0)° > 0 and so in this case 3.Ineq. Pure and Appl. Math. 3(3) Art. 39, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:tom@math.hawaii.edu
mailto:
mailto:
mailto:george@math.hawaii.edu
http://jipam.vu.edu.au/

inequality 6.12) is clear. Thus, henceforth we will assume ti@0) -4 0 and,
for fixedx > 0, considerE () as given in Lemm&.3. We will prove a stronger
result, namely, that for alf > 0,

E(x) _ 729¢/(2)"  14584/(x)" ¢"(x)

WP~ )y oGy
N 3247,0/(1‘)2 }LZ}”(‘%)Q . 216 w//(f)?) . 540 ¢/($)3 ZZ}(?))(x)
(x) () W(x)
3609/ (@) (@) ¥ P (a) | 1004P ()" 909" (@) ¥ (2)
()’ ()’ W(x)

> 0.

For fixedz > 0, by Lemma5.2with ¢ in place ofp, we obtain

E(z) _ 6 4742 2042 _ )2
W@)P 729A° — 1458 A%(A* — B) + 324A%(A* — B)

+216(A% — B)® + 5404°*(A® — 3AB + 2C)
— 360A(A* — B)(A® — 3AB + 2C) + 100(A® — 34B + 2C)?
—90(A% — B)(A* —6A’B +3B* +8AC — 6D)

or

E(z) =A%+ 12A*B— 18 A2B%2 + 54 B3+ 40 A3 C
(¥ (x))S

+240 ABC + 400 C? 4+ 540 A?> D — 540 BD
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3B 63 B?
=A°+12B A2 - ==
cup (- 22)  B)

+40 A> C' + 240 A BC' + 400 C* 4 540 (A* — B) D.

Sincex; > O0forj = 1,2...,n, we haveA, B,C,D > 0 and all the deriva-
tives of ¢)(x) are positive forz > 0. Therefore we also haved? — B) =

" (x)/¢(x) > 0, and thusE'(z) > 0 for z > 0. O

Remark 5.2. _(a) We wish_ to p_oint out tha’F in Theoreh¥ we introduced the _ lterated Laguerre and Turdn
factor 22 in order to simplify the ensumg algebra. In the absence of this Inequalities
factor we would have to calculat‘é(pi as well as2(®) *) (see the proof Thomas Craven and
of Lemmab.2). Then, as in the proof of Theoreby, ‘we would obtain George Csordas

an expression, analogous f0(x), which hasl12 terms rather than nine.
Nevertheless, it seems that the technique developed above, should yield the

. : o Title Page
desired result§.12 for an arbitrary multiplier sequence rather than one
with the first two terms equal to zero. GO
(b) We briefly indicate here how the foregoing technique can be used to de- 4« 4
rive a sufficient condition which guarantees th@f) = det Hé‘” < 0. < 4
Let p(z) = x*)(x), wherey(z) = []}_, (= + 2;), z; > 0, is a poly- Go Back
nomial in £L-P*. Then, the determinant of th&" order Hankel matrix 0=ac
(¢'"72(0))#,_; reduces to Close
Quit

A =W (p(0),¢'(0), ¢"(0), ¢ (0))
=48 (27¢/(0)" — 54 w< )4'(0)%4"(0) + 124(0)* 4" (0)?
(513) ‘|‘20 @ZJ(O) ( ) ( ) 5770(0) @ZJ ( )) J. Ineq. Pure and Appl. Math. 3(3) Art. 39, 2002
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Guided by .13 and the argument used in the proof of Theored we
form the expression

K= Y@ 5G] () | 120" ()"
L 20 (z) ) () - 5@ (2)

and with the aid of Lemm@a.3, for fixedz > 0, we obtain that

K(x) =3(10D — B?),

where the quantities3 = " ,¢f and D = 77, aj have the same
meaning as in%.9). Thus, we readily infer that if the the zeros of the
polynomialy)(x) € L£-PT are distributed such that0 D < B2 holds at

z =0, thenAl" < 0. By way of illustration, considep(z) = 2(z) =
2?(z + a)'?, wherea > 0. Then forz = 0, we find thatl0D = 120/a* <
144/a* = B?, and whence by our criterionAEf) < 0. Indeed, direct

computation yields that{") = —3456a%.
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