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ABSTRACT. The goal of this paper is to study the existence of weak periodic solutions for some
quasilinear parabolic equations with data measures and critical growth nonlinearity with respect
to the gradient. The classical techniques based Gegimates for the solution or its gradient
cannot be applied because of the lack of regularity and a new approach must be considered.
Various necessary conditions are obtained on the data for existence. The existence of at least
one weak periodic solution is proved under the assumption that a weak periodic super solution
is known.The results are applied to reaction-diffusion systems arising from chemical kinetics.
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1. INTRODUCTION

Periodic behavior of solutions of parabolic boundary value problems arises from many bio-
logical, chemical, and physical systems, and various methods have been proposed for the study
of the existence and qualitative property of periodic solutions. Most of the work in the earlier
literature is devoted to scalar semilinear parabolic equations under either Dirichlet or Neumann
boundary conditions (cf. [4]/ 5], 114]/ [15]/ 18], [19], [20], [23], [24], [25]) all these works
examine the classical solutions. In recent years attention has been given to weak solutions of
parabolic equations under linear boundary conditions, and different methods for the existence
problem have been used (cf [1]] [2]] [31J [6]J [71./ [OL![8l, 110], [11], [16], [21], [22], etc.).
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2 N. ALAA AND M. IGUERNANE

In this work we are concerned with the periodic parabolic problem
u — Au=J(t,x,u, Vu) + \f inQr

(1.1) u(t,x) =0 on ) .

u(0,z) =u(T,x) inQ,

where() is an open bounded subset®¥, N > 1, with smooth boundarg, Qr = 10, T x ,
> =10,T[x 09, T > 0, A are given numbers; A denotes the Laplacian operator bhwith
Dirichlet boundary conditions, the perturbatidn: Q7 x R x RY — [0, +o0| is measurable
and continuous with respect toandVu, and f is a given nonnegative measure@mn.

The work by Amann([4] is concerned with the problem [1.1) under the hypothesig that
is regular enough and the growth of the nonlinearitiewith respect to the gradient is sub-
guadratic, namely

J(t,z,u, Vu) < c(|u]) (|Vu|2 +1).

He obtained the existence of maximal and minimal solutions'iff2) by using the method of
sub- and super-solutions and Schauder’s fixed point theorem in a suitable Banach space (see
also [5], [12]).
In this work we are interested in situations wheres irregular and where the growth of
with respect tdvu is arbitrary and, in particular, larger tha‘ﬁuy2 for large|Vu| . The fact that
fis not regular requires that one deals with “weak” solutions for wRieh u, and even itself
are not bounded. As a consequence, the classical theory @iSHagpriori estimates to prove
existence fails. Let us make this more precise on a model problem like

u — Au+au=|Vul’ + A\f in Qr

(1.2) u(t,z) =0 on > -

u(0,z) =u(T,x) in  Q,

where|-| denotes th&¥-euclidean normg > 0 andp > 1.

If p < 2, the method of sub- and super-solutions can be applied to prove existence in (1.2)
if f is regular enough. For instancedif> 0 and f € C*(Qr), then[1.2) has a solution since
w = 0 is a sub-solution andi(¢, z) = v(x), whereuv is a solution of the elliptic problem

av — Av = Vol + X fll, InQ

v=20 onof

is a super-solution of (1.2) (see Amann [4]). The situation is quite differept>f 2 : for
instance a size condition is necessary\gnto have existence in (1.2) evehis very regular,
indeed we prove in Sectign 2.1 that there exists< +oo such that[(1.]2) does not have any
periodic solution for\ > A*. On the other hand we obtain another critical valtie= 1 + % of
the problem, indeed as proved in Secfior] 2.2, existenge ih (1.2)pwithp* requires thaif be
regular enough.

We prove in Sectiof]3, that existence of a nonnegative weak periodic super solution implies
existence of nonnegative weak periodic solution in the case of sub quadratic growth. Obvi-
ously, the classical approach fails to provide existence stnisenot regular enough and new
techniques must be applied. We describe some of them here. Finally in Sgction 4, the results
are applied to reaction-diffusion systems arising from chemical kinetics.

To finish this paragraph, we recall the following notations and definitions:
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Notations:

Cs® (Qr) = {¢ : Qr — R, indefinitely derivable with compact supportdn; }
Cy () = {¢: 2 — R, continuous and bounded §i}

M, (Qr) = {u bounded Radon measuredn-}

M (Qr) = {1 bounded nonnegative Radon measur@i} .

Definition 1.1. Letu € C(]0, T[; L*(2)), we say thau(0) = «(T) in M, (Q2) if for all ¢ €
Cy (),

lim [ (u(t,x) —w(T —t,x))pdx = 0.
t—0 Jq

2. NECESSARY CONDITIONS FOR EXISTENCE
Throughout this section we are given
(2.1) f anonnnegative finite measure gh 7' x 2
andJ : [0, 7] x Q x RY — [0, +o0] is such that
(2.2) J is measurable, almost everywheezx), » — J (¢, z,r) is continuous, convex.
(2.3) ¥r e RN J(-,-,r) is integrable on0, T x Q.
(2.4) J(t,x,0) = min {J(t,m,r) T E ]RN} = 0.
For A € R, we consider the problem
((we L0, T; Wit (Q) N C(10,T[; LHQ)), u>0 inQr
J(t,z,Vu) € L, (Qr),

(2.5)
up — Au > J (t,x, Vu) + A\F in® (Qr)

u(0) = u(T) in M, ().

2.1. No Existence in Superquadratic Case We prove in this section, if (-, -, ) is superquadratic
at infinity, then there existd* < +oo such that[(2}5) does not have any periodic solution for
A > \*. The techniques used here are similar to thosélin [1] for the parabolic problem with
initial data measure. A rather sharp superquadratic conditiod @ggiven next where the

(t, z)-dependence is taken into account. We assume

(2.6) There existge, 7| openin]0,7[,p > 2, and a constant, > 0 such that
(2.7) J(t,z,1) > co|r|” almost every wherét, z) € Je, 7[ x Q

(2.8) /] [ Qf>0.

Theorem 2.1. Assume tha{ (2}1) + (2.4), (2.6)[- (2.8) hold. Then there exXists +oc such
that (2.5) does not have any solution for> A\*.

Proof. Assumeu is a solution of[(2.5). B[ (2]6) anfl (2.7), we have
(2.9) u — Au > ¢ |[Vulf + Afin®D (Je, 7[ x Q).

Lety € C° (10, T[ x Q), ¢ > 0andyp (¢) = ¢ (1) = 0. Multiply (2.9) by ¢ and integrate to
obtain

(2.10) A/ /fSOS/ /Vquo—colvmpgo—ugpt.
€ Q € Q
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4 N. ALAA AND M. IGUERNANE

Taking into account the equality
pr = —A(Gey) = —A(Gy),,

whered is the Green Kernel oft. We obtain from[(2.10)

)\/ /fgog/ /VUV(,O—CMVU’I)(,O—VUV(GQO)t
5 Q 5 Q

this can be extended for af € C*([0,T]; L>® () N L>® (0,T;Wy™ (2)), ¢ > 0 and
¢ (e) = ¢ (1) = 0. We obtain

(2.11) )\/;/Qﬂpg /;/ng [|Vu| |W_Z<G‘p)t| —c0|vu|p1 dadt

if we recall Young's inequality’s € R sr < ¢ [r]” +¢|s|”, L + 1 = 1. We see thal)

implies
/ /fw < c/ Ve ; (o), L g

Y € C1([0,T]; L= (Q)) N L™ (0, T; Wy™ (2))

(2.12)

\ p>0andp () =¢ (1) =0.

Let us prove that this implies thatis finite (hence the existence &f). We choosep (¢, x) =
(t—e)(r—1t)"® (z), ®is asolution of

—A® () =P (z),2>0 inQ
{ O (z)=0 in 0%2,

where), is the first eigenvalue of A in 2. We then have fronj (2.12)

s ey

e nve @ - g e -2 Ve )
- C/ / ( _ g)q(q—l) (7. _ t>q(q—1) d <x>q—1

// (t —e)" T_x;) Ve @ )i+ e, / /Md dt
it provides
//t—s (1 —t)1 f<c/‘v

By the definition of® we haved € Wol’OO (Q) and ——
\wp

dzdt

qm e L) for all o« < 1. Sincep > 2

W 4z < 0. This completes the proof. O

thena = ¢ — 1 < 1, thereforef, .-
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2.2. Regularity Condition on the Data f. We consider the following problem

(we L' (0,T; Wy () nC(0,T[; L)),

J ('7 U, VU) € Llloc (QT)
(2.13)
wy — Au > J(tz,u, Vu) + Af in®D (Qr)

[ w(0) =u(T) In M, ()
wheref, J satisfy [2.1) —[(2.4) and
(2.14) there exists > 1 ¢y, o >0, J(t,z,8,7) > c1|r|’ — co,

Theorem 2.2. Assume thaf (2/1) + (2.4], (2114) hold. Assume {2.13) has a solution for some
A > 0. Then the measurg does not charge the set if >!-capacity zero(]% +o= 1) .

Remark 2.3. We recall that a compact séf in Qr is of Wq?vl-capacity zero if there exists a
sequence of’s° (2)-functions,, greater tharl on K and converging to zero iiW;-'. The
above statement means that

(2.15) (K compact V' -capacity K) = 0) = / =0
K

Obviously, this is not true for any measufes soon ag < % +lorp>1+ %, (see, e.g.l17]
and the references therein for more detalils.)

Remark 2.4. The natural question is now the following. LeK p < 1+% andf € M; (Qr),
does there exist solution of [2.1B) and if this solution exists is it unique? It will make the object
of a next work.

Proof of Theorer 2]2From (2.13),[(2.14), we get the following inequality
(2.16) u—Au>cy [Vull —co + Af  inD'(Qr).

Let K be a compact set d&/’jl-capacity zero ang,, a sequence af5° (Qr)-functions such
that

(2.17) pn > 10NK, p, - 0in W' and a.e i)z, 0 < ¢, < 1.
Multiplying (2.16) by x,, = ¢¢ leads to

T T T Dy T
(2.18) )\/ /an+cl/ /Xn]Vu|p§cg/ /Xn—u an+/ /VXnVu.
o Ja o Ja o Jo t o Ja

We useVy,, = qp?~'V,, and Young's inequality to treat last integral above:

T T T
(2.19) / /Vanu SE/ /xnIVUIp+ca/ /vanlq
0 Q 0 Q 0 Q

Due to [2.1¥), passing to the limit ip (2]18), (2.19) witBmall enough easily leads to

(2.20) A / F-o.
K
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Remark 2.5. The result obtained here is valid if one replaceg in (2.13) the operatoby A
that is to say for the equation

( u e Ll <O,T, W()Ll (Q)) N C(]OaT[aLl(Q))a
J (ta T, u, VU) € Llloc (QT)

g+ Au > J(tz,u, Vu) + Af  inD (Qr)

w(0)=u(T) In M, (Q)

\
or also for the equation
u— Au+ |Vul’ =Af inQr

u(t,z) =0 on) .
u(0,2) =u(T,x) in €.

3. AN EXISTENCE RESULT FOR SUBQUADRATIC GROWTH
3.1. Statement of the Result.
3.1.1. Assumption.First, we clarify in which sense we want to solve problém](1.1).
Definition 3.1. A functionu is called a weak periodic solution ¢f (1.1) if
(we L2(0,T, H} ()N C([0,T], L2 (Q)),
J(t,x,u,Vu) € L' (Qr)

(3.1)
w — Au=J(t,z,u,Vu) + f inD (Qr)

|« (0) =u(T) € L*(Q),
wheref is a nonnegative, integrable function and
(3.2) J:Qr xR xRY — [0,+00] is a Caratheodory function, that means:

(t,x) — J (t,z,s,r) is measurable
(s,r) — J (t,x,s,r) is continuous for almost everft, z)

(3.3) J is nondecreasing with respectd¢@nd convex with respect to
(3.4) J(t,z,s,0) = min{J(t,x,s,r) T E RN} =0

(3.5) J(t,z,s,v) <c(|s]) (Jr]* + H (t,2)),

wherec : [0, +o00[ — [0, +00o[ is nondecreasing anll € L' (Qr).

Definition 3.2. We call weak periodic sub-solution (resp. super-solution] of (1.1) a funetion
satisfying [(4.1) with“ = ” replaced by <” (resp.> ).

3.1.2. The main result.We state now the main result of this section

Theorem 3.1. Suppose that hypothesgs (3.2) —|(3.5) hold and proljlerh (1.1) has a nonnegative
weak super-solutiow. Then [1.11) has a weak periodic solutiarsuch that:0 < u < w.

3.2. Proof of the Main Result.
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3.2.1. Approximating ProblemLetn > 1 andj, (¢, z, s, -) be the Yoshida’s approximation of
the functionJ (¢, x, s, -) which increases almost every wherejt@, z, s, -) asn tends to infinity
and satisfies the following properties

Jw<J.and gy (B2, s )| S

Let
Jn (tv z,s, T) = jn (ta z,s, T) 1[w§n} (ta z,s, ’I") )
wherew is a super-solution of (1].1).

It is easily seen thaf,, satisfies hypotheses (B.2)— (3.5).
Moreover

(36) J, < Jl[wgn] and Ip < Jn+1.
On the other hand, singee L' (Q7) , we can construct a sequenftgin L (Q7) such that

fn < fn+17 anHLl(QT) < ||fHL1(QT)

andf,, converge tof in ®’ (Qr) asn tends to infinity.
Let

Fy = fulpw<n)s w, = min (w,n) ,
and consider the sequengs,) defined by:ug = wy = 0,

u, € L* (0,75 Hy (2)) N L (0,75 L? ()
(3.7) Un, — Aty = Jy, (£, 2,01, V) + F, inD (Qr)

u, (0) =u, (T) € L*(Q).
We will show by induction thaf{ (3]7) has a solution such that
(3.8) 0 < tup_1 <uy <w,.
To do this, we first consider the linear periodic problem
u€ L2(0,T, H (Q)) N L>®(0,T,L* (), u > 0in Qr

(39) Uy — Au = F in © (QT)

uw(0)=u(T) e L*(Q).

This problem has a solution; (see [17, Theorem 6.1, p. 483]). We remark thatis a
supersolution off (3]19) and thanks to the maximum principle, we have u; > 0 on Qr,
hence there exists, such that

0 <wu <up <w.

Suppose thaf (3.8) is satisfied for 1.
Then from 3.6).u,—1 is a weak sub-solution of (3.7). Let us prove thatis a weak super-
solution of [3.T). Indeed, by the definition of, and the monotonicity of,, we have

w, € L*(0,T, H} (2)) N L*> (0,T, L* (2))
Wy, — Awy, > J, (8,2, U1, Vwy,) + F, in®" (Qr)

wy, (0) =w, (T) € L*(Q).

Hence [(3.F7) has a solution, such thatu,,_; < u, < w, (see [11]), which proves (3.8) by
induction.
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3.2.2. A Priori Estimates and Passing to the Limit.
A Priori Estimate. In this section, we are going to give several technical results as lemmas that
will be very useful for the proof of the main result.

Lemma 3.2. Letu,v € L*(0,T; H}(2)), such that

(0<u<w in Qr
u — Au >0 in® (Qr)
(3.10) v —Av >0 inD (Qr)

u(0) =u(T) € L* ()

L v(0) =0 (T) € L*(Q).

Then, there exists a constant> o, such that

/ |Vu|2§02/ Vol
T T

Lemma 3.3. Letu,, be a solution of[(3]7), then there exists a constgnt o, such that

/ I (2, U1, Vuy,) dedt < cs.

T

Lemma 3.4. Letu € L? (0,T, H} (€)), such that

w—Au=p inD (Qr)

p € Mg(Qr)

u(0)=u(T) € L*(Q).
Then

up € L' (Qr) and / up < / IVul? .

Lemma 3.5. Letu, u, € L? (0, T, H} (2)), such that
(3.11) 0<u, <uinQrandu(0)=u(T) € L*(Q)

(3.12) u, — uweakly inL? (0,7, H; (Q))

Un, — At = pp IND (Qr)
(3.13) U, (0) = u, (T) € L™ (Q)

pn € L (Qr), pa>0and [|pul g, < ¢

wherec is a constant independent of Thenu,, — u strongly inL? (0, T, H (Q)) .
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Proof of Lemma 3]2Sinceu € L? (0,7, Hy (Q)) andAwu € L? (0,7, H* (Q)), then
19l = (-2,

where(-, -) denotes the duality product betwebh(0, T'; H] (©)) and L? (0, T; H~' (2)) .

Moreover, we havel wuu; = 0and0 < u < v, then
Qr

/ IV
T

(uy — Au,uy < (uy — Au, v)

IN
|
>
S
<

— (Au,v)
< 2 VuVw.

Using Young’s inequality we obtain

1
/TIVUF§§§/N|VM2+C/QIVMZ

wherec is a positive constant . O
Proof of Lemma 3]3Remark that

/ I (6,2, U1, Vuy,) dedt :/ I (t, U1, Vuy,) dedt
T QrNun<1]

+ / I (t, 2, U1, Vu,) dxdt.
QTﬂ[’un>1}
We note
I = / I (t, 2, U1, Vu,) dedt
QTﬂ[ungl}
and
I, = / I (6,2, U1, Vu,) dzdt.
QTﬁ[un>1]
Hypothesis[(3]5) yields
I < c(l)/ (|Vun|2 + H (t,z)) dzdt.
T

But H € L'(Qr) and0 < u, < w, then Lemma 3]2, implies that there exists a constant
such that
(3.14) I < e

On the other hand, we have

IQ§/ UnJp (t, 2, Up—1, Vu,) dedt.

T

Multiplying the equation in[(3]9) by, and integrating by part yields:

@g/yww?
Using Lemma 32 and inequality (3]14), we complete the proof. O
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Proof of Lemma 3]4Consider the sequenag, = min (u, m) . Itis clear that,, € L* (0, T, H; (2)) .
Moreoveru,, converge ta: in L? (0, T, H} (2)) and satisfies the equation

um € L?(0,T, H} (R))
(3.15) Uy — Aty > pliyeymy IND' (Qr)
U (0) = up, (T) € L™ (Q).
Multiply (B.15) byw,, and integrate by part o2+, we obtain

<umap1m<m0::<umnumt_WAum>

1
=g [, et [, 19l
Qr Qr
:/ Vtt|” .
Qr

Thanks to Fatou’s lemma, we deduce

/up:/ |Vul?

U
Proof of lemm4 315By relations (3.1]1) - (3.13), there exigtsE M;" (Qr), such that,
u — Au=pin® (Qr)
(3.16)
uw(0)=u(T) e L*(Q).
However,
/ |Vu — Vu,|” = —/ (u—up) A (u—up)
= —/ uA(u—un)Jr/ unA (4 — uy,)
Qr Qr
= VuV (u — uy,) — Vu,Vu — / Up VU,
Qr Qr Qr
= VuV (u—uy,) — Vu,Vu— / U (Up, — Auy,) .
Qr Qr T
Moreover, by Lemma 3}4, we have
/ U (Up, — Auy,) < / IVul? .
Hence
lim IVu — Vu,|* dzdt = 0.
n—-+00 Qr
0
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Passing to the Limit. According to Lemn'@ps and estlm- ate| (3(8),), is bounded in
L*(0,T; Hj () . Therefore there exists € L (0,T; Hy (), up to a subsequence still de-
noted(u,,) for simplicity, such that

u, — u strongly inL?(Qr) and a.e. imQr
u, —u weaklyinL?(0,7T; H} ().

However, Lemma 3|5 implies that the last convergence is stroid {0, 7'; H: (Q2)) . Then to
ensure that is a solution of problenf (I]1), it suffices to prove that

(3.17) T (-, 1, V) — J (-, u, Vu) in L' (Qr) .
It is obvious by Lemma 3|2 and the strong convergence,of L? (0,7, H (2)) that
Jn (455 Up—1, V) — J (4, -, u, Vu) a.einQr.

To conclude that: is a solution of[(1.1L), we have to show, in view of Vitali’s theorem thay),,
is equi-integrable il (Qr) .
Let K be a measurable subset®@f, ¢ > 0 andk > 0, we have

/ I (t, 2, Up—1, Vu,) dedt = / I (t, 2, un—1, Vu,) dedt
K KnNlun<k]

+ / I (t, 2, U1, Vu,) dxdt.
KN[un>k|

We note that
I :/ I (t, 2, U1, Vu,) dedt
KN[un<k]

and
I, = / I (2, U1, Vu,) dzdt.
KN[up>k|

To deal with the ternd,, we write
1
I, < z / ndn (6,2, U1, Vuy,) dedt

which yields from the equation satisfied by in (3.7)

1
I, < E/(unut—unAun) dxdt
K
l/\Vu * dadt.
k n
K

By Lemmg 3.2, there exists a constapt> 0 such that

C
(3.18) I, < ]j
Then, there existg, > 0,such that, itk > k, then
(3.19) hgg

By hypothesis[(3]5), we have for &ll> k

hgdm/‘ (IVunl? + H (t,)) dudt.
KNlun<k]
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The sequencé|Vu,|”) is equi-integrable in! (Qr). So there exist$; > 0 such that if

|K| < 4y, then

(3.20) c(k:)/ (IVun|?) ddt < <.
KNfun <] 3

On the other hand/ € L' (Q7), therefore there exists > 0, such that

[

(3.21) ¢ (k) / H (t,2) dedt < <,
KN[un<k] 3

whenevel K| < 6.
Choose&), = inf (41, 09) , if | K| < do, we have

/ I (t, 2, U, 1, Vuy,) dedt < e.
K

4. APPLICATION TO A CLASS OF REACTION -DIFFUSION SYSTEMS

We will see in this section how to apply the result established below to a class of raction-
diffusion systems of the form

(uy— Au=—J (t,z,v,Vu)+ F (t,z) inQr
vy —Av=J(t,x,v,Vu)+G(t,z) INQr

(4.1)
u=v=0 on .

L v (0)=u(T), v(0)=v(T) in Q,

where() is an open bounded subsef®¥, N > 1, with smooth boundargQ, Qr = 10, T x €,
Yo =10,T[x00QT >0, F, G are integrable nonnegative functions ahsiatisfies hypotheses
(H1) — (Ha).

Definition 4.1. A couple(u, v) is said to be a weak solution of the syst¢m|(4.1) if

v e L2 (0,7 HY () 1 C (0T 12 (%)
u — Au=—J(t,x,v,Vu) + F (t,z) inQr

vy —Av=J(t,x,v,Vu)+ G (t,z) InQr

L w(0) =u(T), v(0) =v(T) € L2(Q).

Theorem 4.1. Under the hypothesep (8.2) E (8.5), afidG € L?(Qr), system[(4]1) has a
nonnegative weak periodic solution.

To prove this result, we introduce the functiersolution of the following linear problem

we L2 (0,75 HY () N C ([0, T); L2 ()
(4.2) w—Aw=F+G in® (Qr)

w(0) = w (T) € L2(9).
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It is well known that[(4.R) has a unique solution, se€ [17].
Consider now the equation

ve L?(0,T, Hy () NC([0,T], L ()
(4.3) vy — Av=J(t,z,0,Vw—Vv)+G inD (Qr)

v(0)=v(T) € L*(Q).
It is clear that solving[(4]1) is equivalent to solye {4.3) andisetw — v.

Proof of Theorerm 4]1We remark thatv is a supersolution of (4].3). Then by a direct application
of Theorenj 3.1, problenj (4.3) has a solution. O
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