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ABSTRACT. In this paper, we prove some explicit upper bounds for the average order of the
generalized divisor function, and, according to an idea of Lenstra, we use them to obtain bounds
for the class number of number fields.
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1. INTRODUCTION

Let K be a number field of degree, signature(ry,rs), discriminantd (K), Minkowski
boundd (K) := b = (£) (2)"|d (K)|? and class numbér (K) . We denote by the ring of
algebraic integers dk. We are interested here in finding explicit upper bound:fd) of the
type

h(K) < & (n) |d (K)|* (log|d (K)])""
wheres (n) is a positive constant depending enandlog is the natural logarithm

There are several methods to get such bounds: @) : Roland Quéme in_[8] used the
geometry of numbers to prove thabit> 17,

R (K) h (K) < w (K) (3) 4(K)|

™

NI

(2logb)",

whereR (K) is the regulator oK, andw (K) is the number of roots of unity iK.
In [5], Stéphane Louboutin proved, by using analytic methods, that
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2 OLIVIER BORDELLES

and, ifK is a totally real abelian extension @,
log d (K)
4(n—1)

The methods used to get these bounds are very deep, but it is necessary to compute the
regulator (which is usually not easy), or use the Zimmert's lower boun®fd) (see[11]):

R (K) > 0.02w (K) 46710172
We want to prove some inequalities involvihgK) in an elementary way: we have
h (K) < |{a : integral ideal ofOx, N (a) < b}/,

whereN (a) denotes the absolute norm@fand, using an idea of H.W. Lenstra (seg [4]), we
can see, by considering how prime numbers can spl, ithat, for each positive integet, the
number of integral ideals of absolute normn is bounded by the number of solutions of the
equation

R(K)h(K) < d (K)? { +o.025}n_1.

ajag - a, =m (a; € N¥).
Lenstra deduced that
(1.2) h(K) < |{(a1,...,a,) € (N)", ayay---a, < b}|.
Now the idea is to work with the generalized divisor functibnsince(1.1)) is equivalent to:
Lemma 1.1. Let K be a number field of degree > 2, and b be the Minkowski bound d.

Then:
h(K) < dy(m).
m<b
In an oral communication, J.L. Nicolas and G. Tenenbaum proved that, for any integér
and any real number > 1,

T n—1
(1.2) Z d, (m) < 1) (logx +n—1)""".

m<x

(one can prove this inequality by induction).
Hence, by Lemmpa 1] 1 and (1.2), we get Lenstra’s result, namely:

h(K) < (logh+mn—1)""".

b
(n—1)!
2. NOTATION

We mention here some notation that will be used throughout the paper:

General m,n,r, s will always denote positive integers,a real numbep> 1, and[z]| denote
the integral part of;, the unique integer satisfying— 1 < [z] < z.

o Y (z) :=x — [z] — %, ande (z) := ™. 1 is 1-periodic andy (z)| < 3.

e v~ (0.5772156649015328606065120900... is the Euler constant.

e For any finite set, |£| denotes the number of element<in

On number fields K is a number field of degree > 2, signature(r, r3) , discriminantd (K) ,
Minkowski boundb = (&) (£)"™ |d (K) 3, class numbeh (K).

On arithmetical functions By 1, we mean the arithmetical function defined bymn) = 1 for
any positive integem.
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The generalized divisor functiaf, is defined by
di(m)=1,d,(m):= Y 1({n>2),

and, ifn = 2, we simply denote it byl (m) .
If f andg are two arithmetical functions, the Dirichlet convolution productfodndg is

defined by
(frg)m) =3 F )9 (%)

dlm

3. BAsIC PROPERTIES OF THE GENERALIZED DIVISOR FUNCTION

The properties of the generalized divisor function can be found in[[5], [9]land [10]. For our
purpose, we only need to know thaf is multiplicative (i.e.d,, (rs) = d, (r) d, (s) whenever
ged (r, s) = 1) and, for any prime numberand any non-negative integemwe have :

d () = (n+§—1)7

where(}) denotes a binomial coefficient{[9], equality)).
It's important to note that we have

(3.1) dy=1x1x..x1 (n>1).
—
n times

One knows that the average orderdgf(m) is ~ (logm)™™" / (n — 1)! : to see this, one can
use the following result/(]9], equalit}g)):

1 1
d, z (1 B — — 1, n>2).
2 o (m) = log )" om0 )) o1z
Our aim is to compute several constants:) depending (or not) on such that
Z d, (m) < k(n)x (logz)" "
m<x
We will need the following lemma:
Lemma 3.1.Letxz > 1. Then:

1 ,
Z—zlogm—l—’y—w—i—i with  |e| <
m T T

2

-

m<x

This result is well-known, and a proof can be found.in [2].

4. RESULTS
Theorem 4.1.Letn > 1 be an integer and > 1 a real number. Then:

1 n—1
Zdn(m)gx(logx+7+—> :
x

m<x

Theorem 4.2.Letn > 1 be an integer and > 6 a real number. Then:
Zd ) < 2z (logz)" "

m<x
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5. APPLICATION TO CLASS NUMBER

Theorem 5.1.LetK be a number field of degree Minkowski bound and class numbeér (K) .
Then:

h(K) < b(logh+ v+ bil)n_l .

Theorem 5.2. Let K be a number field of degree> 2, Minkowski bound and class number
h (K). Then, ifb > 6,

h(K) < 2b(logh)" "

Theorem 5.3.LetK be a number field of degree discriminantd (K) and class numbei (K) .
Then :

=

2n—1
h(K) <

_mld(K)\

(log|d (K))" ™.

More generally, ifa > 0 is satisfyings > 2 (n — 1) / (log |d (K)|) , then

- 1)n1 L) 1o () )

h(K)§< 2 (n—1)!

6. PROOFS OF THE THEOREMS

In the following proofs, we set

Proof of Theorem 4]1.

Su(x)=>_ > 1

m<zx aj....an=m

Y Y.y

a1<z az<z an<z/(ai...an—1)

Xz
S Z Z at...Ap—1

a1z ap-1<x

n—1
1
—(x)
a<x

and we use Lemnia 3.1 to conclude the proof. O
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Proof of Theorer 4]2. (1) We first note that, since

1, if 1<t<2,
n+1, if 2<t<3,
M+ 1, if3<i<d
2
W’ if4<t<5,
Sy (t) =<
2
w, if 5<t<6,
2
2
(3n +7n+2)’ f6<t<T.
2
2
2 .
(Bn +29”+ ) fr<i<s
\

then

2

c 7 3e? 1093 9e2
-2 _ _ 2 _ 1 — 2
/1 7S, (1) dt (24 5 >n +(84O 5 )n—l— e’

and then, ifn > 2,

2

e 2 2
(6.1) / 28, (t)dt<%.
1

(2) Letz > 6, n > 1. The theorem is true ik = 1, sinceS; (x) = [z] < z, SO we prove
the result fom > 2.

We first check that the theorem is true wher< = < e2. Indeed, in this case, we
have

2
AL g () > S, ().

2 (logz)" ™' > 12 (log6)" " > 4n? > 5 >

S0 we can suppose that> ¢? andn > 2.
We prove the inequality by induction : if = 2,

Sy () = Z Z 1 <zxlogx 4+ x < 2xlogx.
r<z s<z/r
Assume it is true for some > 2. By (3.1), we have:

Susr (@) = 3 (dy + 1) (m)

m<x

S WAC

m<x §|m

Syl

o<z

J. Inequal. Pure and Appl. Math3(3) Art. 38, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 OLIVIER BORDELLES

_ x/ £14(S, (1)

=S, (z) + x/lx t728, (t) dt

2 T

= S, (a:)+x/ t725, (1) dt+m/ t728, (t) dt.
1 e

2

Using {6.1) and induction hypothesis, we get

2n’x

2z (log )" " + 3

Sn+1 (37)

IN

+ 2.:1:/ t~ (logt)" " dt

e2
2 B 2 2 2n+1
= —m(logx)njtx{Q(logx)" Ly }
n

3 n
= 2z (logz)" —xf, (x),

where
2 2 2n+1
foa) = (2= 2) toga)” = {2 0gay + 2 - 22
3 n
Now we have
2 2
fo (@) = fu (€9) :2”—% >0,
hence
Sni1 (z) <2z (logz)™.
This concludes the proof of Theor¢gm4.2. O
Proof of Theoremis 5|1 & 5.2Direct applications of Theorems 4.1 gnd|4.2. O

Proof of Theoremi 5]3Let a > 0, and suppose > e"~1/% Thenn — 1 < alogr, and, using

€.2),

(6.2) 5 (@) < e

(n—1)! -

z (log z)"

Now, Sinceb < ]d(K)ﬁ , we have, by Lemmla:ll.l,

hEK) < D dy(m).
m<|d(K)|"/?
We then use the inequality ([6], Lemma 10)
d(K)| 2 0/

and [6.2) witha = 3 to get the first part of Theorem %.3.
The 2nd part comes directly frormn (6.2). This concludes the proof of Thejorgm 5.3. O
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7. USING THE CONVOLUTION RELATION IN A DIFFERENT WAY

We now want to prove another bound, using the Dirichlet hyperbola principle:

Theorem 7.1.LetK be a number field of degree Minkowski bound and class numbéi (K) .
Then, ifb > 36,

(i) n=2p (p=1),

p _ 1\p—1
h(K) < w2 (p 1) (logb)” (logb+p —1)" ",

(1) n=2p+1 (p=1),
h(K) < m (log b)? {logb(logb+p g (2%) (logb+p)p}.

We first need the following result:
Lemma 7.2. Letx > 6 be a real number ané > 1 an integer. Then:

Z di (m) < 2(logz)".

m

m<x

Proof. The result is true it: = 1, so we supposé > 2. Suppose first that > 2. By partial
summation, we can write, using Theorem|4.2,

Z@ = 715, (m)—l—/zt_QSk (t) dt

1

m<zx
62 X

< 2(1og1;)’€—1+/ t728), (t) dt +2/ t' (log )" dt
1 e?
2k‘2 2k+1

(log )" + 2 (log )" ™" + = — ——,

<
3 k

ENRN)

and one can check that

o2 okt 1
2 (logz)" ™" + % - < (g - E) (log )"

if z > 2 andk > 2, hence

Z dy, (m) < (g + %) (logl‘)k <2 (loga:)k.

m
m<x

Now, if 6 < 2 < e? andk > 2, we get

2(logx)" > 2(log6)" > — > o (245K” + 1093k + 840) = » >y ,

which concludes the proof of Lemral/.2. O
Proof of Theorer 7]1Let x > 36 be a real number. I = 2p is even, using[(3]1) again, we

can write:
S du(m) =" (dujs  dujz) (m) = 3 (dy ) (m),

m<x m<x m<x

and, by the Dirichlet hyperbola principle, we get, for any real numbsatisfyingl < 7 < z,

Zdn(m)g de(m) Z dp (r) + Z dp, (m) Z dy (1),

m<x m<T r<z/m m<z/T r<z/m
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and then, using (112),

and, with Lemm2, ifnin (7', Z) > 6, we get

S, 1og(x - D" {ogTy + (1og ()}

m<x

and we choos@ = x2 (somin (7, ) = x2 > 6) to conclude the proof.
If n =2p+ 1is odd, then we write:

Z dp (M) = Z (d(n—l)/2 * d(n+l)/2) (m) = Z (dp * dpy1) (M) .

m<zx m<x m<z

8. CASE OF QUADRATIC FIELDS

We suppose in this section th&t = Q <\/E> , whered € 7\ {0,1} is supposed to be
squarefree. We denote hekethe discriminant and (d) the class number. We recall that:

d, ifd=1 (mod4),
A:

4d, ifd=2o0r3 (mod4).

The problem of the class number is in this case utterly resolved: for examgle, #4, we
have (se€ ]1], Corollary 5.3.13)

-6, 5,6

where(%) represents the Kronecker-Jacobi symbol. Nevertheless, we think it would be inter-
esting to have upper bounds flofd).
We also note that, by [3], we can replace, in Lenjma 1.1, the Minkowski béundthe
boundg defined by:
A/8,  ifA>8

Vv—A/3, if A<0.
We can see that the problem of the class number of a quadratic field is then connected with
that of having good estimations of the error-term

Zd )—x(logx 4+ 2y —1)

m<x

B

(Dirichlet divisor problem).
One can prove in an elementary way thatz) = O (x%> (see below)Voronoi proved

that R (x) = O (a:% log x) . If we use the technique of exponent pairs (see [2]), we can have

J. Inequal. Pure and Appl. Math3(3) Art. 38, 2002 http://jipam.vu.edu.au/
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R(x) = O <I%> . By using very sophisticated technics, Huxley succeeded in proving that

461

R(z)=0 (l‘% (logx)m)
The following result is well-known, but, to make our exposition self-contained, we include
the proof:

Lemma8.1.Letz > 1. Then:

3

Zd ) <z(logzx+2y—1)+2 Z 1/)<m> +Z.

m<x m<zl/2

Proof. By the Dirichlet hyperbola principle, we have:

d dm) = Y1

m<x rs<z
DI I D
r<z1/2 s<z/r s<zl/27r<z/s r<al/2 s<al/2

=2 Y Y- AT

r<zl/2 s<z/r

— 2 Y - ( T (\/5)—%>2

r<zl/2

. <x/r_ x/m_%)_x-w(ﬁ)

r<zl/2

20 (VE) VE+VE - (VE),

and, by using Lemmia 3.1, we get

Zd(m) = 2x(%10gw+7—x‘5¢(\/§)+m_1)—2 Z 1/1(%)—\/5—1—@0(\/5)

m<zx r<al/2
1 1
+§—w—w2(\/5)—1+2w(\/5)\/E+f—w(\/5)
1 x
= x(logx—i—?y—l)—f—?&—i—z—w ) —2 ;1/2 (;)
and we conclude by noting tha <  and|} — ¢? (V)| < 1 if 2 > 1. O

Corollary 8.2. Letxz > 1. Then:

> d(m) <z 10gx+27—1)+\/_+—

m<x

Proof. Use|y (¢)| < 3 in Lemmg8.1. O

We get, using Lemma 1.1:
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Corollary 8.3. LetK = Q <\/E> be a quadratic field of discriminank. Then :

( 1
[A 1 3 AN+ 3 .
— < = — 1] - = — — >
8{210gA—|—2’y 1 210g2}+(8) +4, if A > 8,

1
Al 1 ANT 3 .
——<=log(—A)+2y—1—=1log3 —= -, ifA<O.
\ 3{2og( )+ 2y 2og}+< 3> +o FA<

Example 8.1.1f d = 13693, then, using PARI system (sé€ [1]), we ggftd) = 15. The bound
of Corollary[8.3 gives

h(d) <

h(d) < 166.
Example 8.2.1f d = —300119, then we havé: (d) = 781, and Corollary 8.3 gives
h(d) < 1889.

For bigger discriminants, it could be interesting to have a lower exponent on the error-term.
We want to prove this explicit version of Voronoi’s theorem:

Lemma 8.4.Letx > 3. Then:

Z ¢(£> <6x%10ga:.
m
m§x1/2
We first need an effective version of Van Der Corput inequality:
Lemma 8.5. Let f € C?((N;2N] — R). If there exist real numbers > 1 and )\, > 0
satisfying
A < f"(x) <elg (N <x<2N),
then:

> e(£f(m)

N<m<2N

<43 {cmg +2)\;5}.

Proof. We first prove the following result:
Let f € C?([N;2N] — R) satisfying
(i) f'(z) ¢ Zif N <z <2N,
(i) there exists\, € (0; 2] verifying f” (z) > X» (N <z <2N).

Then
(8.1) S ek (m)| <dn il
N<m<2N
Since
doe(=fm)| =] > elfm)],
N<m<2N N<m<2N

we shall prove[(8]1) just fof, and sincef” (z) > 0 for z € [N;2N], f'is a strictly increasing
function.

Letz be a real number satisfyirig< = < % By (i) , we can define real numbeisv, Ny, N,
such that, := ' (N),v:= f'(2N),andf' (Ny) = [u] + z, f' (N2) = [u] + 1 — z. We have :

dooefm)= Y e(fm)+ > el(fmh+ Y. e(f(m)),

N<m<2N N<m<Ny N1<m<Ny No<m<2N
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with

Y. elf(m)

N<m<N;

for some real numbef € (IV; N;) , then, by(ii),

< max{[u]—i_)\#,l} < max{)\%,l},

-1
Smax{v—i_aj )\Z[u] ,1} Smax{)%,l}a

and we use Kusmin-Landau inequality (see [7]) to get

< max {N; — N, 1} = max { I (le)”?ffl (N>, 1}

> elf(m)

N<m<N;

and we have the same for

Y. elf(m)

No<m<2N

T 2
< cot <—> < —.
2 T

Y. elf(m)

N1<m<Ns
T 2
< Qmax{—, 1} + —.
Ao T

We then have:

Y elf(m)

N<m<2N
We then choose = (22)?2, SOL = (WAQ)_% > 1if A\, < 7', and we get
_1
S e (m)| <aniat
N<m<2N

We are now ready to prove Lemia}8.5:

1
If Ao > 2, thendr—2¢cNAZ > 47N > N, SO we SUpposa, < 1
We takeu, v as above, and we define

w;v]NZ:={l+1,.., 1+ K}
for some integet and positive integek’, and define
Jy={meZ l+k—-1<m<Il+k}nuv] (QA1<k<K+1).
We have, by[(8]1),

ST oe(fm)| <SS e(f(m)] <dni (K +1)A,7,

and, by the mean value theorem,

K—-1<v—u=f(2N)— f'(N) <cN,

thus
S e(f(m)| < d4rF (NAs +2) N2
N<m<2N
This concludes the proof of LemrmaB.5. O
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Proof of Lemma 8]4We write

Yoo T e@e o)z

1 1/3 1
m<z?2 m<2z!/ 2x1/3<m<x2

We then split the interva(2x%;x%] into sub-intervals of the formiN; 2N] with 223 < N <
z%: the numbet/ of such intervals satisfies

271N < 22 < 27N,
and sinceV > 273, we have

log <x%/N) log
log 2 s 6log2’

We then have :
log x
6log 2’

X < max

> ()
2x1/3< N<gl/2 m

N<m<2N

Moreover, using Erdds-Turan inequality (see Appendix A), we get, for any positive inkeger

x hx 1 hx

> v()|=amt {Zh Soe(E) T % (a)‘}
N<m<2N N<m<2N h>H N<m<2N

so0, by Lemma 8]5, with, = ha/ (4N?3) andc = 8, we get

> vl )g%umz{hﬁ:(%(m) + (NB) )

N<m<2N

t\.’)\»—A

g%—i—l&rg{ (xHNY)? + (g(;’>+2/3> }

where¢ (2) := 37°, k2. The well-known bound (0) < /(0 — 1) (o > 1) gives¢ (2) +
2 <4 <4 hence

N<m<2N

We then choose

J. Inequal. Pure and Appl. Math3(3) Art. 38, 2002 http://jipam.vu.edu.au/
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Considering the inequality/ [y] < 2/y (y > 1), we get

I

(6473273 4+ 2) & + 64n ENEa

N<m<2N
and
2| < {(647r—%2—% + 2) ¥ + 6473 } g?f;,
and sincer > 3, x1 < 3~/1235 then
1
5| < {647r : (2 343 ) + 2} xglg;g; < 523 log .

We obtain with Lemm&aT]1:
Corollary 8.6. LetK = Q <\/E> be a quadratic field of discriminank. Then:

VA8 {Llog A+2y —1—3log2} +6(A/8) " log (A/8) + 3, if A> 72,

h(d) < V-A/3{ilog (—A) +2y — ——10g3}
+6(—A/3) 0 log (=A/3) + 3, if A < —27.

49

APPENDIX A.

We want to show here this special form of the Erdés-Turan inequality used in this paper:
Theorem A.1. Let H, N be positive integers, anfl: (N;2N] — R be any function. Then:

>, v (m))‘

N<m<2N

D,

N<m<2N

+HZ

h>H

Y. e(nf(m ))|}

N<m<2N
Proof. For any positive integers and H, we set

H 1/H
2mih J

c(h,H) := e (—ht) dt.

(1) We first note that
1 1 H
(A.1) lc (h, H)|<2—m1n(h hQ)'
Indeed, ifh, < H, then
e (h, H)| < / )| dt = —
= 2rh 2rh’

and ifh > H, then the first derivative test gives

1/H 2 H H
/ e (—ht) dt
0

- 27‘[‘h h (Wh)z < omh?’

h H)| < —
e (h, H)| < 5
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http://jipam.vu.edu.au/

14 OLIVIER BORDELLES

(2) Letz,t be any real numbers. Singe(z) < ¢ (x —t) + t, we get

1/H 1/H
/0 wmdts/o (6 (x— ) +1)d,

and then

(A.2) <H/ ¥ (z —1) dt+—

The partial sums of the serigs,,., {—sin (2rhx) / (hr)} are uniformly bounded,

hence
1/H 00 1/H
/0 bz —t)dt — —%Z%/ sin (2rh (z — 1)) dt
1/H
= 27”2 / e (ha)e(—ht) — e (—ha) e (ht)} dt

_ b e(hx)/o/He(—ht)dt— Ly el=ha) /Ol/He(ht)dt

omi h 2mi —h
h=1 h=1
e(hx) [YH 1
- -y th/ e(~htydt =~ 3 c(hH)e(he),
hEZ, h#0 0 heZ, h#0

hence, usingd (Al2),

hEZ, h#0
and
ST £ gm- S ctH) Y e(hf(m)
N<m<2N h€Z, h#0 N<m<2N
< gpt2|detH Y e(hf(m))',
h=1 N<m<2N
hence
(A-3) > w(f(m))é%HZIc(h,H)\ > e(hf(m))'-
N<m<2N h=1 N<m<2N

(3) Since we also have (z) > v (x +t) — t, we get in the same way

S wlm) = ot Y e H) Y e(-hf(m)
N<m<2N h€Z, h#0 N<m<2N
> 2 > 1c<h,H>N<;2Ne<—hf (m))‘
> ———2Z|chH 3 e<—hf<m>>‘,
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and sincee (—hf (m)) = e (hf (m)), we obtain

(A4) > wlm) =g 23 e m)]| Y e(hf(m))|.
N<m<2N h=1 N<m<2N
The inequalities (AJ3) and (Al4) give
> w(f(m))' < gpteYleml| Y e(hf(m))'
N<m<2N h=1 N<m<2N
N H
= ﬁ+2{2|c<h,ﬂ>\ > e(hf(m))‘
h=1 N<m<2N
+ D leh )| Y e(hf(m))‘},
h>H N<m<2N
and we us€ (Al1).
O
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