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Abstract

For the given arbitrary sequence of real numbers {xi}n
i=1 we construct several

lower and upper bound converging sequences. Our goal is to localize the ab-
solute value of the sequence maximum. Also we can calculate the value of
such numbers. Since the proposed algorithms are iterative, asymptotical con-
vergence theorems are proved.

The presented task seems to be pointless from the ordinary point of view,
but we illustrate its importance for a set of applied problems: matrix analysis,
measurement data processing and Monte Carlo methods. According to the
modern conception of fault tolerant computations, also known as ”interval anal-
ysis“, these results could also be treated as a part of interval mathematics.

2000 Mathematics Subject Classification: 11K31, 65Gxx, 15A42, 11K45
Key words: Interval analysis, Maximum value, Data processing
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1. Introduction
We deal with an arbitrary sequence of real numbers{xi}n

i=1. If all the sequence
numbers are explicitly given, an exact maximum (or it’s absolute value) along
with a quantity of such values are searched directly.

The problem becomes harder if the sequence is not explicitly given and we
are supplied only it’s mean value or in general — by power sums

sk = s(k) =
n∑

i=1

xk
i , k – natural.

For a variety of tasks we must also calculate the quantity of numbers, which
are, by modulus equivalent to the maximal one. Thus, we definemultiplicity
as a quantity of numbers whose modulus is equal to the absolute value of a
sequence maximum.

Moreover, if {xi}n
i=1 is stochastic, the usual meaning of the “maximum”

becomes quite arbitrary. Therefore considering a sequence of lower and upper
bounds for the maximum (as embedded intervals) seems to be reasonable. This
idea leads us to the well-known estimation, given for example in [9]:

Lemma 1.1. If x1, . . . , xn are real numbers, such that0 ≤ xn ≤ xn−1 ≤ . . . ≤
x1, then

(1.1)

∑n
i=1 xi

n
+

√√√√ 1

n(n− 1)

n∑
j=1

(
xj −

∑n
i=1 xi

n

)2

≤ x1.
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This lemma, in modified form, see [7], may be used for estimating its max-
imal value by the absolute value of the number in the sample. (In the follow-
ing work we use the standard notion of sample when referring to a sequence
{xi}n

i=1).

Lemma 1.2. Considering the real valued sample{yi}n
i=1, with k ≥ 1 some

integer,

(1.2)

∑n
i=1 y2k

i

n
+

√√√√ 1

n(n− 1)

n∑
j=1

(
y2k

j −
∑n

i=1 y2k
i

n

)2


1
2k

≤ max
i
|yi|.

The above lemmas have an evident connection in statistics:

M{x} =

∑n
i=1 xi

n
, D{x} =

1

n

n∑
j=1

(
xj −

∑n
i=1 xi

n

)2

.

Herex
def
= {xi}n

i=1. According to one cornerstone theorem in statistics (see [3]
for example):

(1.3) P
(
M{x}+

√
D{x} ≤ max

i
|xi|
)
→ 1 .

Moreover, one can directly check, that the correctness of the inequality depends
only on the multiplicity.
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2. Estimation of Proper Bounds
Taking into account that

(2.1) D{x} = M{(x−M{x})2} = M{x2} − (M{x})2 =
s2

n
− s2

1

n2
,

we will investigate the properties of the generalized sequence

fk(x, p) =

∑n
i=1 xk

i

n
+

√√√√p

(∑n
i=1 x2k

i

n
−
(∑n

i=1 xk
i

)2
n2

)
1
k

(2.2)

=

[
sk

n
+

√
p

(
s2k

n
− s2

k

n2

)] 1
k

.

The left hand side of expression (1.2) is equivalent to (2.2) for p = 1
n−1

. In
formula (2.2) we directly use the power sumssk, mentioned in the introduction.
In what follows we shall takek = 2j in (2.2), which is equivalent to the conse-
quent squaring of each number in the sample. Under this supposition, sequence
(2.2) is proved to be at least linearly convergent, depending on the parameterp.

The fact that the generalised sequencefk

(
x, 1

n−1

)
converges tomaxi |xi| from

below can be found in [7]. Here we investigate a more general result of (2.2)
using other techniques.

Theorem 2.1.For k a natural number,

fup
k (x, m) =

[
s(2k)

n
+

√
n−m

m

(
s(2k+1)

n
− s2(2k)

n2

)]2−k
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is a decreasing sequence such that

fup
1 (x, m) ≥ fup

2 (x, m) ≥ . . . ≥ fup
k (x, m) ≥ . . . ≥ max

i
|xi|

of upper bound estimations for the modulus of the largest value in the sample
x = {xi}n

i=1. Herem,m < n is a multiplicity ofmax
i
|xi|.

Proof. Assume without loss of generality that valuesxm = maxi |xi| are the
first numbers in the sample. Hences(·) can be written as

s(2k) = mx2k

m +
n−m∑
i=1

x2k

i .

DenotingΣ1 =
∑n−m

i=1 x2k

i , Σ2 =
∑n−m

i=1 x2k+1

i , the basic inequality theorem
fup

k (x, m) ≥ xm translates into the equivalent one√
n−m

m

[
nmx2k+1

m + nΣ2 −m2x2k

m − 2mx2k

m Σ1 − (Σ1)
2
]
≥ (n−m)x2k

m−Σ1.

Squaring and collecting similar terms gives

n−m

m

[
m(n−m)x2k+1

m − Σ2
1 − 2mx2k

m Σ1 + nΣ2

]
≥ (n−m)2x2k+1

m + Σ2
1 − 2(n−m)x2k

m Σ1,

and finally(n−m)Σ2 ≥ Σ2
1. According to (2.1) we have the inequality

(n−m)
n−m∑
i=1

(
xk

i −
∑n−m

i=1 xk
i

n−m

)2

≥ 0

fulfilled ∀xi real and∀k = 1, 2, . . ..
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Theorem 2.2.For k a natural number,

f low
k (x, m) =

[
s(2k)

n
+

√
n− (m + 1)

m + 1

(
s(2k+1)

n
− s2(2k)

n2

)]2−k

is an increasing sequence such that

fup
1 (x, m) ≤ fup

2 (x, m) ≤ · · · ≤ fup
k (x, m) ≤ · · · ≤ max

i
|xi|

of lower bound estimations for the modulus of the largest value in the sample
x = {xi}n

i=1. Herem,m < n is a multiplicity ofmax
i
|xi|.

Proof. Under the same suppositions as above, the main inequalityfup
k (x, m) ≤

maxi |xi| can be written as√
p
[
m(n−m)x2k+1

m + nΣ2 − 2mx2k

m Σ1 − (Σ1)
2] ≤ (n−m)x2k

m − Σ1 .

Further simplification leads us to

p(m(n−m)x2k+1

m − 2mx2k

m Σ1 + nΣ2 − (Σ1)
2)

≤ (n−m)2x2k+1

m − 2(n−m)x2k

m Σ1 + (Σ1)
2,

(n−m)x2k+1

m [n−m− pm] + 2x2k

m Σ1[pm− n + m] + (Σ1)
2(1 + p) ≥ pnΣ2,

(n−m(1 + p))

[
(n−m)x2k+1

m − 2x2k

m Σ1 +
(Σ1)

2

n−m
− (Σ1)

2

n−m

]
+ (1 + p)(Σ1)

2 ≥ pnΣ2,
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and
n−m(1 + p)

n−m

(
(n−m)x2k

m − Σ1

)2

+

(
1 + p− n−m(1 + p)

n−m

)
(Σ1)

2 ≥ pnΣ2 .

Simplifying the second factor we have

n−m(1 + p)

n−m

(
(n−m)x2k

m − Σ1

)2

+
pn

n−m
(Σ1)

2 − pnΣ2 ≥ 0.

Analyzing the first summand we see that

n−m(1 + p)

n−m
≥ 0 ⇔ p ≤ n−m

m
.

is a necessary, but not sufficient positivity condition.
Transferring the second and third summands to the right and reducing by a

(n−m) multiplier gives us

(2.3) (n−m(1 + p))((n−m)x2k

m − Σ1)
2
≥ pn((n−m)Σ2 − (Σ1)

2) ,

in which the right hand side attains its maximum with a non-zero numberx =
x2k

m − ε, whereε is a positive infinitesimal number. Substitution in (2.3) results
in the inequality

(n−m(1 + p))(n−m− 1)x2k

m + ε)
2
≥ pn(n−m− 1)(x2k

m − ε)
2
.

Upon expansion

(2.4) x2
m(n−m− 1)[(n−m(1 + p))(n−m− 1)− pn]

+ ε2(n−m− pm− pn2 + pnm + pn)

+ 2xmε(n−m− 1)[n−m− pm + pn] ≥ 0 .
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Simplified factors at elementsx2
m, ε2 andxmε respectively, we have

(i) (n−m)(n−m− 1)[(n−m− 1)− p(m + 1)]

(ii) (n−m)[p(n− 1) + 1] and

(iii) 2(n−m)(n−m− 1)[1 + p].

If there exists a parameterp ≥ 0 for which all three coefficients are positive,
then our proposition is proved. Since the second and third coefficients give
inequalitiesp ≥ − 1

n−1
andp ≥ −1 respectively, (2.4) is fulfilled iff

n−m− 1− p(m + 1) ≥ 0 ⇔ p ≤ n− (m + 1)

m + 1
<

n−m

m
.

Corollary 2.3. In the case whenm = n−1 and p = 1
n−1

, Theorem2.2provides
an alternative proof of the convergence theorem (Theorem4) in [7].

Remark 2.1. According to Theorems2.1and2.2bounding sequences are mono-
tonically increasing or decreasing, depending on parameterp. So, if we have at
least two estimationsf1, f2, or consequentfk, fk+1 in general, we can calculate
differences∆k(p) = fk+1(x, p)−fk(x, p) for consequentp(l), l = 1, . . . , n−1.

The pair of numbers(l +1, l) for which∆k(p(l))×∆k(p(l +1)) < 0, shows
a change of convergence character for (2.2) i.e. indicating the multiplicity of
maximum modulus to bem = l.
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multiplicity 1 2 3 4 5 6
difference −0.6 −0.259 −0.0887 0.02636 0.1184 0.2049

Table 2.1: Evaluating multiplicity

The following example below illustrates this remark. Let{xi}7
i=1 =

{5, 2,−1,−5, 4,−3, 5}. Herexm = 5 andm = 3. In the table we represent
approximate valuesf2(p(l))− f1(p(l)) for consequentl = 1, . . . , 6

Since the difference changes it’s sign for the pair(3, 4), thenm = 3.

Remark 2.2. Parameterp = p(n, m) was introduced for two reasons:

1. To provide strict lower and upper bounds for the maximum of the absolute
value in the sample;

2. To make this estimations more exact. Namely, fork →∞ we have

C = lim
k→∞

fk(x, p)2k

x2k

m

=
m +

√
pm(n−m)

n
.

Settingp = n−m
m

⇔ C = 1. Thus, using “sample independent” parameter
p, |xm| could be better bounded.

Now we are ready to establish corresponding convergence theorems for the
sequence (2.2).
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3. Convergence Analysis
Theorem 3.1. Let εk = xm − fk(x, p) – be the estimation residual andδ =
|x2|
xm

< 1; x2 : |x2| < xm be the second greatest, by absolute value, number
in the sample of multiplicityl, then the asymptotic convergence speed of the
sequence

fk(x, p) =

[
s(2k)

n
+

√
p

(
s(2k+1)

n
− s2(2k)

n2

)]2−k

is

lim
k→∞

εk+1

εk

= lim
k→∞

1

1 +

(
m+
√

pm(n−m)

n

)2−k−1(3.1)

=
1

2
, p 6= n−m

m

lim
k→∞

εk+1

εk

=
1

2
lim
k→∞

δ2k+1

, p =
n−m

m
.(3.2)

Proof. Transformingfk(x, p) we have

f 2k

k

x2k

m

=
nf2k

k

nx2k

m

=
s(2k) +

√
p (ns(2k+1)− s2(2k))

nx2k

m
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=

m +
n−m∑
i=1

(
xi

xm

)2k

+

√√√√p

(
mn + n

n−m∑
i=1

(
xi

xm

)2k+1

−
[
m +

n−m∑
i=1

(
xi

xm

)2k
]2
)

n
.

For sufficiently largek we have

F (k, p) = m + lδ2k

+
√

p
[
(n−m)m + l(n− l)δ2k+1 − 2lmδ2k

]
,(3.3) (

fk(x, p)

xm

)2k

=
F (k, p)

n
,

with
lim
k→∞

F (k, p) = m +
√

pm(n−m).

Forp = n−m
m

, expression (3.3) becomes

F (k) = m + lδ2k

(3.4)

+

√
(n−m)2 +

l(n− l)(n−m)

m
δ2k+1 − 2l(n−m)δ2k

lim
k→∞

F (k) = n .

Analysis of its residuals ratio gives, in general,

lim
k→∞

εk+1

εk

= lim
k→∞

1−
(

F (k+1,p)
n

)2−k−1

1−
(

F (k,p)
n

)2−k .

Considering both parameter cases, we obtain
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1. p 6= n−m
m

. DenotingC =
m+
√

pm(n−m)

n
6= 1, we have

lim
k→∞

1− C2−k−1

1− C2−k = lim
k→∞

1− C2−k−1

(1− C2−k−1)(1 + C2−k−1)

= lim
k→∞

1

1 + C2−k−1 =
1

2
.

2. for p = n−m
m

. We analyze the influence of fast vanishing numbers, such
that

(3.5)

(
F (k)

n

)2−k

=

(
F (k)− n + n

n

)2−k

≈ 1 +
1

2k

F (k)− n

n
.

Now (3.4) may be expressed in the form

c +
√

b2 + a ≈ c + b +
a

2b
, 0 ≤ a � 1

and an estimation forF (k)− n is

−(n−m) + lδ2k

+ (n−m)

(
1 +

l(n− l)

2m(n−m)
δ2k+1 − l

n−m
δ2k

)
,

so that finally

F (k)− n ≈ l(n− l)

2m
δ2k+1

.

Substituting this approximation in (3.5) we obtain

lim
k→∞

εk+1

εk

= lim
k→∞

1− 1− l(n−l)
mn

δ2k+2

2k+2

1− 1− l(n−l)
mn

δ2k+1

2k+1

= lim
k→∞

2k+1

2k+2

δ2k+2

δ2k+1 =
1

2
lim
k→∞

δ2k+1

.
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We illustrate Theorem3.1and Remark3.1by the same test sample, consider

{xi}7
i=1 = {5, 2,−1,−5, 4,−3, 5}, xm = 5, m = 3 , δ = 0.8 .

The column pairs in Table3.1 represent the numerically evaluated conver-
gence ratio and the difference modulus between numerical and theoretical esti-
mations.

Iter. p = 6 p = 1/6
ratio difference ratio difference

6 0.498144 0.7826774e− 4 0.501926 0.1253511e− 3
7 0.499033 0.6200297e− 7 0.500901 0.9950568e− 7
8 0.499516 0.386122e− 13 0.500450 0.629444e− 13
9 0.499758 0.406412e− 15 0.500225 0.247138e− 15
10 0.499879 0.335205e− 15 0.5001125 0.406203e− 15

Table 3.1: Asymptotical convergence rates: ”non-optimal“ case

Remark 3.1. Considering the content of Table3.1, one can be confident in

the convergence character described by the
m+
√

pm(n−m)

n
summand. Whenp

corresponds to multiplicity less than real one, this constant is greater than1
and the numerical estimates (see columnp = 6) converges to1

2
from below.

Vice versa, forp corresponding to greater multiplicities, this summand is
less than1 and the numerical estimates (see columnp = 1/6) converges to1

2

from above.
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According to computer FPU, limitations estimations fork ≥ 10 are not
reliable and outline the coincidence between theoretical and numerical results.

Table3.2presents the numerical estimations of residualε and “error”–based
calculatedδ for the optimal parameter value4/3.

Iter. εk δ
2 −2.4795358e− 2 0.8107121
3 −2.1582945e− 3 0.8037043
4 −3.0960442e− 5 0.8009546
5 −1.2261571e− 8 0.7999936
6 −3.84762e− 15 0.7999976

Table 3.2: Asymptotical convergence rates: optimalp = 4/3

Here we represent three examples of applying (2.2) in practice.

3.1. Estimation of the Matrix Spectral Radius

One can apply the introduced sequence in matrix analysis for bounding matrix
spectral radius. According to the spectral property of a matrix trace operator we
have

n∑
i=1

λk
i = tr

{
Ak
}
, ∀k ≥ 1 ,

(see [2]) where λi denote eigenvalues of any matrixA. Hence, replacing∑n
i=1 xk

i by tr
{
Ak
}

we obtain the required sequence. But these estimations
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are valid (compare with results in [7]) only for matrices with real spectrum, for
example, a symmetric matrix.

For interested readers we recommend the recent articles [5, 6] and [8] and
compare these results to the older ones [7] and [9]. The unique convergence
speed estimation1

2
of this type was done by Friedland in [1]. He obtained the

result
ρ(A) = lim

k→∞
2k
√
‖A2k‖∞

to be linear. This upper bound estimation rises from matrix norm properties
[2].

3.2. Processing Data Measurements

Experimental measurements are made by using sets of identical measuring units
that are normally independent. Measurements are however, close enough to give
detailed information about the device being tested.

Typically these units are equipped with several circuits, registering several
observations during the external synchronization cycle. In this case, we are usu-
ally given the mean and dispersion of the internally registered sample. More-
over, the measurement scale is usually shifted to output only positive numbers.

According to Theorems2.1 and2.2, we can guarantee thatf1(x, n − 1) ≤
xm ≤ f1(x, 1).

If we could construct measuring units producings4, s6 (betters8 thans6) and
consequents(2k), then closer bounds forxm can be obtained. According to the
afore-mentioned theorems, we need to calculate differencesfk+1(x, l)−fk(x, l)
for consequentl = 1, . . . , n− 1. The pair of indicesl + 1, l locating the change
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of difference sign points tom = l. Hence the best currently available estimation
will be xm ∈ [fk(x, m + 1), fk(x, m)] for the last made stepk.

As we outlined in the introduction, the notion of the maximum or absolute
maximum value of the noised measurement sample could be meaningless. In
contrast, the set of embedded localization intervals containing this value is of
great practical interest. The same principle concerns the next example, which
could be treated as a generalization of this principle for large sample sizen.

3.3. Monte Carlo Methods

Monte Carlo and quasi-Monte Carlo methods are now widely used in differ-
ent fields of numerical modelling. Monte Carlo methods have their origins in
physics and mathematics, and are now used in computer graphics, bioinformat-
ics, geoscience and many other domains. Due to it’s probabilistic properties
and overall computational complexity, Monte Carlo algorithms are optimized
for best computational performance.

Therefore finding a maximum over the used lattice translates into a program-
ming problem. Moreover, since we can not guarantee that any one of the lattice
points directly coincides with points of the global maximum (minimum), the
sequence of nested intervals becomes the only reasonable approach to such a
problem.

Consideration of computer hardware is an important component of the prob-
lem. Modern scalar, super-scalar, parallel and distributed computers (often re-
ferred to asnumber crunchers) employ branch prediction, prefetching and car-
rying to increase their performance. The branch direction cannot be predicted in
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a maximum search. This means that inside the main MCM cycle we must pro-
ceed through a branch prediction, which leads to a drastic drop of performance
for all modern CPU’s (for example, Intel’s Pentium 4 architecture will seriously
suffer from the performance drop-down in contrary to AMD’s Athlon).

Hence a reasonable compromise may be found in calculating several ad-
ditional sums forf(xi)

2, f(xi)
4, f(xi)

8, . . . by consecutive squaring (take into
account the increased effectiveness of extended integer/float register files em-
bedded in modern CPU’s).

Leaving the main cycle we will have a number of sums

sk =

∑n
i=1 f(xi)

k

n
, k = 1, 2, 4, . . .

wheren is a number of processed points. Consequently we can do the follow-
ing:

1. Model 1. Implement an aposteriori cycle to revise the behavior of differ-
encesfk+1(x, l) − fk(x, l) for consecutivel = 1, . . . , n − 1. We need to
determine a pair of numbersl + 1, l for which the sequence change a con-
vergence character. Hence form = l the range estimation is[fk(x, m +
1), fk(x, m)] for the last availablek.

Since the typical number of lattice points can be in the order of millions,
the above mentioned approach can be treated as “doubling” the number of
lattice points and being directly implemented, Model 1 is just a point of
theoretical interest. However, at the end of this section we introduce an
evident solution.
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2. Model 2. Without an additional cycle we can only estimate the lowest and
highest interval bounds:

fk(x, n− 1) ≤ xm ≤ fk(x, 1) .

This rough solution is reasonable for smalln or fast changing functions.

Here we represent a small computational example in accordance to model 2.
The scalar function

f(x) = ex+sin(π(x− 1
2
)), max

x∈[0,1]
f ≈ 7.389056

is evaluated over a GLP (good lattice points, see [4]) set. A number of points
taken isn = 10000001. To compare the computational time an experiment was
repeated fork = 1, 2, k = 1, 2, 4 and1, 2, 4, 8 (calculatingf1, f2 andf4).

Table3.3 below contains calculation times in seconds for the two proces-
sors, an AMD K6-2/500(weak floating point unit, strong branch prediction)
and anIntel P-II/350(strong floating point unit and moderate branch prediction
efficiency).

The third column of the table, entitled “upper” contains results calculated for
m = 2 (applicable because test function has only one maximum over[0, 1]).

Computational times prove that for CPU with several floating-point out-of-
order execution units we can replace the exhaustive maximum search by com-
putation of two additional sums minimum. In this case we can use Model 1 to
compute a bounding range.

The other results, concerning the lowest and highest boundaries, seems to
be inapplicable. However, as a careful reader will see, that lattice points are
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Experiment Maximum Upper AMD Intel
Direct 7.389049 36.3 42.9
1, 2 [1.617683, 5866.923986] 4149.015164 38.9 42.6

1, 2, 4 [2.461533, 199.026414] 167.365892 40.4 42.9
1, 2, 4, 8 [3.730634, 36.416130] 33.394119 48.3 43.2

Table 3.3: Numerical experiment timings

very dense for largen = 10000001 and smooth functionf . Hence, points
close tox = 1 will be treated numerically as equal. This leads to overestimat-
ing of upper bound and underestimating the lower one. For example, setting
m1 = 400000, m2 = 350000, k = 1, 2, 4, 8 provides a much better estimation
7.389056 ∈ [7.349532, 7.469766]

The simplest way to resolve this problem is by settingm = m + ∆, ∆ step
have to be about50000 for our example. This additional cycle will be repeated
only 200 times, which is significantly less than a number of lattice points.

The other important remark is evident lattice dependence of multiplicitym.
Taking the other GLP sequence for the samem1, m2, k provides a wrong local-
ization interval[7.954751, 8.080737]. But settingm1 = 750000, m2 = 700000
gives the correct interval[7.388547, 7.448697] 3 7.389056.

The detailed discussion of this numerical example highlighted the best pos-
sible way for locating maximum value (and it’s multiplicity) —binary search.
Applying it instead of fastened linear search will require onlylog2 n = 20
checks in our example.
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4. Conclusions
In this paper we presented a non-standard, but powerful approach for solving
some auxiliary tasks aimed at bounding the maximum by modulus value in
the given sample. This approach is closely linked with current needs of inter-
val analysis and can be neatly applied in several engineering and mathematical
tasks, as was illustrated above. Accompanied by a binary search algorithm, this
iterative bounding sequence can be successfully applied to MCM and quasi-
MCM computational algorithms even for huge lattices and multi-dimensional
tasks.

Having a computational shortage in matrix algebra due to a time consumable
matrix squaring, this approach still is applicable in other cases.
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