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ABSTRACT. LetA(z,n) = p(z,n) —zp(n)/n, wherep(z, n) is the Legendre totient function
andy(n) is the Euler totient function. An inequality fa&(z, n) is known. In this paper we give

a unitary analogue of this inequality, and more generally we give this inequality in the setting of
regular convolutions.
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1. INTRODUCTION

The Legendre totient functiop(z,n) is defined as the number of positive integersz
which are prime ta:. The Euler totient functiop(n) is a special case af(x,n). Namely,
w(n) = @(n,n). Itis well known that

s
(1.1) elam) =Y uld) 3],
din
wherey is the Mdbius function. A direct consequence@l.l) is that

12) ple.m) = 2 op(m),

whered(n) denotes the number of square-free divisors @fith 6(1) = 1. This gives rise to the
functionA(x, n) defined ag\ (z,n) = p(z,n) — %("). Suryanarayana[8] obtains two inequal-

ities for the functionA(z, n). Sivaramasarma]7] establishes an inequality which sharpens the
first inequality and contains as a special case the second inequality of Suryanarayana [8]. The
inequality of Sivaramasarmal[7] states that if- 1, » > 2 andm = (n, [z]), then

(n) 11 O(n) O(m) mb(m)(n)
(1.3) A(x,n) —|—{sc}('OT ~ 3 {E” < 5 + > T nm)
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where{z} = = — [z] and¥ is the Dedekind totient function. See al50 [4, §1.32].

In this paper we givel (1]3) in the setting of Narkiewicz’s regular convolution and:tne
power greatest common divisor. As special cases we olptain (1.3) and its unitary analogue. The
proof is adapted from that given by Sivaramasarma [7].

2. PRELIMINARIES

For eachn let A(n) be a subset of the set of positive divisorsnof The elements ofi(n)
are said to be thd-divisors ofn. The A-convolution of two arithmetical functions andg is
defined by

n
(fragm) = 3 fldg (%)
deA(n)
Narkiewicz [5] (see alsa [3]) defines alrconvolution to be regular if

(a) the set of arithmetical functions forms a commutative ring with unity with respect to the
ordinary addition and thd-convolution,

(b) the A-convolution of multiplicative functions is multiplicative,

(c) the constant functiohhas an inversg 4 with respect to thel-convolution, angi4(n) =
0 or —1 whenevem is a prime power.

It can be proved 5] that ad-convolution is regular if and only if
(i) A(mn) ={de:d € A(m),e € A(n)} whenevefm,n) =1,
(i) for each prime powep® (> 1) there exists a divisar= 74(p*) of a such that

A(pa) = {17pt7p2t7 ce 7prt} )
wherert = a, and
A" = {1, p',p*, ... p "}, 0<i<r
The positive integet = 74(p®) in part (ii) is said to be thel-type ofp®. A positive integem
is said to beA-primitive if A(n) = {1,n}. The A-primitive numbers aré andp’, wherep runs
through the primes andruns through thed-types of the prime powens' with a > 1.

For alln let D(n) denote the set of all positive divisorsofind letU (n) denote the set of all
unitary divisors ofn, that is,

U(n):{d>o:d)n,(d,%) =1} ={d>0:d]n}.

The D-convolution is the classical Dirichlet convolution and fieconvolution is the unitary
convolution [1]. These convolutions are regular with(p®) = 1 andr; (p®) = a for all prime
powersp® (> 1).

Let k be a positive integer. We denatg(n) = {d > 0: d" € A (n¥)}. Itis known [6] that
the A,-convolution is regular whenever thé-convolution is regular. The symboin, n) x
denotes the greatekth power divisor ofm which belongs ta4d(n). In particular,(m,n)p; is
the usual greatest common divigat, n) of m andn, and(m, n)y1, usually written agm, n)*,
is the greatest unitary divisor afwhich is a divisor ofmn.

Throughout the rest of the paper A will be an arbitaray but fixed regular convolution and k is
a positive integer.

The A-analogue of the M6bius functign, is the multiplicative function given by

(") = —1 if p*(> 1) is A-primitive,
pa\pP) = 0 if p® is non-A-primitive.

In particular,up = p, the classical Mobius function, angd, = u*, the unitary analogue of the
Mobius function[1].
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The generalized Legendre totient functipn (x,n) is defined as the number of positive
integersu < z such thata, n*) 4 = 1. Itis known [2] that

xr
(2.1) pan(z,n) = Y pa(d) [%] :
deAk(n)
In particular,p 4 x(n) = p4x(n*, n). We recall that
(2.2) parn) =n" [T @ -p"),
pln

wheren = [T, p"%) is the canonical factorization of andt = 74, (p"*)), and we define the
generalized Dedekind totient functian 5 as

(2.3) Yar) =[] (1 +p%).
pln
If Ais the Dirichlet convolution anél = 1, theny 4 i(z,n), ax(n) andy 4 x(n), respectively,
reduce to the Legendre totient function, the Euler totient function and the Dedekind totient
function.
It follows from (2.1) that

parlen) = D pald) (5 +00)

dGAk(n)
roAE(N
IR
deAg(n)
zpak(n)
= =+ 0(0(n)
This suggests we define
i n
(2.4) Aax(z,n) =par(r,n) — SOAT:()-

We next present four lemmas which are needed in the proof of our inequality for the function
AA,k(x7 TL)

Lemma 2.1.If f (z,n*) = {Li,l} andm” = ([z],n") , ,, then

Ak’
(i) f(z,n*) =0if m =n,
(i) = < flz,n*) <1200 m < n.

Proof. (i) If m = n, thenn*|[z] and thus{f—,l} =0.
(i) Let m < n. Thenn* } [z] and thusz] = an® + r, where0 < r < n*. Therefore
{E‘f—;l} = 2, where0 < r < nF, thatis, & < {Lf—,}} < 1— L. Now, writing

nk

Li,l = gfg;z’;g we arrive at our result.

O
Lemma2.2.Forn > 2

2 o 0(n)
Z MAk(d) ~ 9

de A (n)
w(d) is odd

wherew(d) is the number of distinct prime divisors @f
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Proof. It is clear that

S () = (‘“g”)) : (‘”g”b)) bz 00

deA (n)
w(d) is odd
Lemma 2.3. Letm” = ([z], n*) 4. Then

5, () (@], d*)ak mPO(m)Yas(n)
Z dk - nkwA,k(m)

dEAk (n)

Proof. By multiplicativity it is enough to consider the case in whicks a prime power. For the
sake of brevity we do not present the details. O

Lemma 2.4. We have

App(z,n)+{z}

PARI) _ S (@) ).

deAy (TL)

Proof. Clearly

pantem) = 30 @ (G {5 })

Thus
App(z,n)=— Z pa, (d) {%}

dEAk(n)

It can be verified thaf £ } = 2} {5‘—,}} Thus

SOA;fk(n)— Z MAk(d){[dx—;J}-

deAg (n)

Ayp(z,n) = —{z}

This completes the proof. O

3. GENERALIZATION OF (1.3)

Theorem 3.1.Letz > 1,n > 2 andm”* = ([z],n*) 4. Then

2

m

2 2 n’“z/)Ak(m)
Proof. Firstly, suppose that: = n, that is,n* | [z]. Then

oar(z,n) = Z %i)[x] — [z] ¢A:;§n)-
deAy(n)

(3.1) AAk(I,n)—l—{x}SOA;fk(H) 1 {1” B Om) _ mtO(m)as(n)

Thus
App(z,n) + —{x}gf;,k(n) =0.

Sincen > 2, the left-hand side of (3/1) is 0. Therefore[(3]1) holds.
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Secondly, suppose that< m < n. Then, by Lemma 24,
i
Analo,n) + EIPAE _Sm s ) = Y (@),

k
n deAy (n) deAg(n)
w(d) is odd w(d) is even
By Lemmg 2.1,
i Ak
AA,k($7n)+{ }@k (n)
n
([z], d*)a ([z], d*) 4
< Y oa@(-Epe) o g oty
de Ay (n) de A (n)
w(d) is odd w(d) is even
dk fz] dk fz]
- 2 (0) - 40
Ha, Ha,
deAy (n) deAy (n)
w(d) is odd W(?kﬁ Tdd
xa Ak dk)A,k
Z MAk + Z 'LLAk :
deAg(n) de€Ay(n
dk\[%]

By Lemmag 2.P and 2.3 and definition of the numhbgr

{z}par(n) _ 0(n) 5 m*O(m)ar(n)
AA,k(:E7 TL) + nk < 9 - dEAzk(:m) Ha, (d) - nkwA,k(m) + e(m)
w(d) i odd

We distinguish the cases = 1 andm > 1 and apply Lemma 2,2 in the case> 1 to obtain
{z}par(n) 111 _6(n) + O(m)  m*0(m)yax(n)

nk 2| m|]— 2 2 nFihar(m)
In a similar way we can show that

{r}par(n) 1[1 O(n) _0(m)  m*o(m)var(n)
O 11 s st s v

This completes the proof. 0J
Remark 3.2. If A is the Dirichlet convolution ané = 1, then [3.1) reduces tp (1.3).

AAJﬁ(I, n) +

4. UNITARY ANALOGUE OF (1.3)

We recall that a positive integéris said to be a unitary divisor of (written asd||n) if d is a
divisor of n and (d, g) = 1. The unitary analogue of the Legendre totient functidf, n) is
the number of positive integets< x such thata, n)* = 1. Its arithmetical expression is

=Y w@[5].
dln

In particular, the unitary analogue of the Euler totient function is givepty,) = ¢*(n,n).
We define the unitary analogue of the Dedekind totient function as

n)=n][1+p).
plln
It is easy to see that*(n) = o*(n), wheres*(n) is the sum of the unitary divisors af The
function A*(z,n) is defined ag\*(z, n) = ¢*(z,n) — 220,
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The unitary analogue of (1.3) is

(4.2) A*(z,n) + {x}@ ! F} L0 0m)  mh(m)o"(n)

2| m||— 2 2 no*(m) '

wherem = ([z],n)*. In fact, if A is the unitary convolution and = 1, then [3.1) reduces to

@.2).
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