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ON AN INEQUALITY RELATED TO THE LEGENDRE TOTIENT FUNCTION

PENTTI HAUKKANEN

DEPARTMENT OFMATHEMATICS, STATISTICS AND PHILOSOPHY

FIN-33014 UNIVERSITY OF TAMPERE,
FINLAND .

mapehau@uta.fi

Received 06 February, 2002; accepted 27 February, 2002
Communicated by J. Sándor

ABSTRACT. Let∆(x, n) = ϕ(x, n)−xϕ(n)/n, whereϕ(x, n) is the Legendre totient function
andϕ(n) is the Euler totient function. An inequality for∆(x, n) is known. In this paper we give
a unitary analogue of this inequality, and more generally we give this inequality in the setting of
regular convolutions.
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1. I NTRODUCTION

The Legendre totient functionϕ(x, n) is defined as the number of positive integers≤ x
which are prime ton. The Euler totient functionϕ(n) is a special case ofϕ(x, n). Namely,
ϕ(n) = ϕ(n, n). It is well known that

(1.1) ϕ(x, n) =
∑
d|n

µ(d)
[x
d

]
,

whereµ is the Möbius function. A direct consequence of (1.1) is that

(1.2) ϕ(x, n) =
xϕ(n)

n
+O(θ(n)),

whereθ(n) denotes the number of square-free divisors ofn with θ(1) = 1. This gives rise to the
function∆(x, n) defined as∆(x, n) = ϕ(x, n)− xϕ(n)

n
. Suryanarayana [8] obtains two inequal-

ities for the function∆(x, n). Sivaramasarma [7] establishes an inequality which sharpens the
first inequality and contains as a special case the second inequality of Suryanarayana [8]. The
inequality of Sivaramasarma [7] states that ifx ≥ 1, n ≥ 2 andm = (n, [x]), then

(1.3)

∣∣∣∣∆(x, n) + {x}ϕ(n)

n
− 1

2

[
1

m

]∣∣∣∣ ≤ θ(n)

2
+
θ(m)

2
− mθ(m)ψ(n)

nψ(m)
,
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where{x} = x− [x] andψ is the Dedekind totient function. See also [4, §I.32].
In this paper we give (1.3) in the setting of Narkiewicz’s regular convolution and thekth

power greatest common divisor. As special cases we obtain (1.3) and its unitary analogue. The
proof is adapted from that given by Sivaramasarma [7].

2. PRELIMINARIES

For eachn let A(n) be a subset of the set of positive divisors ofn. The elements ofA(n)
are said to be theA-divisors ofn. TheA-convolution of two arithmetical functionsf andg is
defined by

(f ∗A g)(n) =
∑

d∈A(n)

f(d)g
(n
d

)
.

Narkiewicz [5] (see also [3]) defines anA-convolution to be regular if

(a) the set of arithmetical functions forms a commutative ring with unity with respect to the
ordinary addition and theA-convolution,

(b) theA-convolution of multiplicative functions is multiplicative,
(c) the constant function1 has an inverseµA with respect to theA-convolution, andµA(n) =

0 or−1 whenevern is a prime power.

It can be proved [5] that anA-convolution is regular if and only if

(i) A(mn) = {de : d ∈ A(m), e ∈ A(n)} whenever(m,n) = 1,
(ii) for each prime powerpa (> 1) there exists a divisort = τA(pa) of a such that

A(pa) =
{
1, pt, p2t, . . . , prt

}
,

wherert = a, and

A(pit) =
{
1, pt, p2t, . . . , pit

}
, 0 ≤ i < r.

The positive integert = τA(pa) in part (ii) is said to be theA-type ofpa. A positive integern
is said to beA-primitive if A(n) = {1, n}. TheA-primitive numbers are1 andpt, wherep runs
through the primes andt runs through theA-types of the prime powerspa with a ≥ 1.

For alln letD(n) denote the set of all positive divisors ofn and letU(n) denote the set of all
unitary divisors ofn, that is,

U(n) =
{
d > 0 : d

∣∣∣n,(d, n
d

)
= 1

}
= {d > 0 : d ‖ n}.

TheD-convolution is the classical Dirichlet convolution and theU -convolution is the unitary
convolution [1]. These convolutions are regular withτD(pa) = 1 andτU(pa) = a for all prime
powerspa (> 1).

Let k be a positive integer. We denoteAk(n) =
{
d > 0 : dk ∈ A

(
nk

)}
. It is known [6] that

theAk-convolution is regular whenever theA-convolution is regular. The symbol(m,n)A,k

denotes the greatestkth power divisor ofm which belongs toA(n). In particular,(m,n)D,1 is
the usual greatest common divisor(m,n) ofm andn, and(m,n)U,1, usually written as(m,n)∗,
is the greatest unitary divisor ofn which is a divisor ofm.

Throughout the rest of the paper A will be an arbitaray but fixed regular convolution and k is
a positive integer.

TheA-analogue of the Möbius functionµA is the multiplicative function given by

µA(pa) =

{
−1 if pa(> 1) isA-primitive,

0 if pa is non-A-primitive.

In particular,µD = µ, the classical Möbius function, andµU = µ∗, the unitary analogue of the
Möbius function [1].
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ON AN INEQUALITY RELATED TO THE LEGENDRETOTIENT FUNCTION 3

The generalized Legendre totient functionϕA,k(x, n) is defined as the number of positive
integersa ≤ x such that(a, nk)A,k = 1. It is known [2] that

(2.1) ϕA,k(x, n) =
∑

d∈Ak(n)

µAk
(d)

[ x
dk

]
.

In particular,ϕA,k(n) = ϕA,k(n
k, n). We recall that

(2.2) ϕA,k(n) = nk
∏
p|n

(
1 − p−tk

)
,

wheren =
∏

p p
n(p) is the canonical factorization ofn andt = τAk

(pn(p)), and we define the
generalized Dedekind totient functionψA,k as

(2.3) ψA,k(n) = nk
∏
p|n

(
1 + p−tk

)
.

If A is the Dirichlet convolution andk = 1, thenϕA,k(x, n), ϕA,k(n) andψA,k(n), respectively,
reduce to the Legendre totient function, the Euler totient function and the Dedekind totient
function.

It follows from (2.1) that

ϕA,k(x, n) =
∑

d∈Ak(n)

µAk
(d)

( x

dk
+O(1)

)

=
xϕA,k(n)

nk
+O

 ∑
d∈Ak(n)

µ2
Ak

(d)


=

xϕA,k(n)

nk
+O(θ(n)).

This suggests we define

(2.4) ∆A,k(x, n) = ϕA,k(x, n) − xϕA,k(n)

nk
.

We next present four lemmas which are needed in the proof of our inequality for the function
∆A,k(x, n).

Lemma 2.1. If f
(
x, nk

)
=

{
[x]
nk

}
andmk =

(
[x], nk

)
A,k

, then

(i) f
(
x, nk

)
= 0 if m = n,

(ii) mk

nk ≤ f(x, nk) ≤ 1 − mk

nk if m < n.

Proof. (i) If m = n, thennk|[x] and thus
{

[x]
nk

}
= 0.

(ii) Let m < n. Thennk 6 | [x] and thus[x] = ank + r, where0 < r < nk. Therefore{
[x]
nk

}
= r

nk , where0 < r < nk, that is, 1
nk ≤

{
[x]
nk

}
≤ 1 − 1

nk . Now, writing
[x]
nk = ([x]/mk)

(nk/mk)
we arrive at our result.

�

Lemma 2.2. For n ≥ 2 ∑
d∈Ak(n)

ω(d) is odd

µ2
Ak

(d) =
θ(n)

2
,

whereω(d) is the number of distinct prime divisors ofd.
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Proof. It is clear that∑
d∈Ak(n)

ω(d) is odd

µ2
Ak

(d) =

(
ω(n)

1

)
+

(
ω(n)

3

)
+ · · · = 2ω(n)−1 =

θ(n)

2
.

�

Lemma 2.3. Letmk = ([x], nk)A,k. Then∑
d∈Ak(n)

µ2
Ak

(d)([x], dk)A,k

dk
=
mkθ(m)ψA,k(n)

nkψA,k(m)
.

Proof. By multiplicativity it is enough to consider the case in whichn is a prime power. For the
sake of brevity we do not present the details. �

Lemma 2.4. We have

∆A,k(x, n) + {x}ϕA,k(n)

nk
= −

∑
d∈Ak(n)

µAk
(d)f(x, dk).

Proof. Clearly

ϕA,k(x, n) =
∑

d∈Ak(n)

µAk
(d)

( x

dk
−

{ x

dk

})
=

xϕA,k(n)

nk
−

∑
d∈Ak(n)

µAk
(d)

{ x

dk

}
.

Thus
∆A,k(x, n) = −

∑
d∈Ak(n)

µAk
(d)

{ x

dk

}
.

It can be verified that
{

x
dk

}
= {x}

dk +
{

[x]
dk

}
. Thus

∆A,k(x, n) = −{x}ϕA,k(n)

nk
−

∑
d∈Ak(n)

µAk
(d)

{
[x]

dk

}
.

This completes the proof. �

3. GENERALIZATION OF (1.3)

Theorem 3.1.Letx ≥ 1, n ≥ 2 andmk = ([x], nk)A,k. Then

(3.1)

∣∣∣∣∆A,k(x, n) + {x}ϕA,k(n)

nk
− 1

2

[
1

m

]∣∣∣∣ ≤ θ(n)

2
+
θ(m)

2
− mkθ(m)ψA,k(n)

nkψA,k(m)
.

Proof. Firstly, suppose thatm = n, that is,nk | [x]. Then

ϕA,k(x, n) =
∑

d∈Ak(n)

µAk
(d)[x]

dk
= [x]

ϕA,k(n)

nk
.

Thus

∆A,k(x, n) +
{x}ϕA,k(n)

nk
= 0.

Sincen ≥ 2, the left-hand side of (3.1) is= 0. Therefore (3.1) holds.
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Secondly, suppose that1 ≤ m < n. Then, by Lemma 2.4,

∆A,k(x, n) +
{x}ϕA,k(n)

nk
=

∑
d∈Ak(n)

ω(d) is odd

µ2
Ak

(d)f(x, dk) −
∑

d∈Ak(n)

ω(d) is even

µ2
Ak

(d)f(x, dk).

By Lemma 2.1,

∆A,k(x, n) +
{x}ϕA,k(n)

nk

≤
∑

d∈Ak(n)

ω(d) is odd

dk 6 |[x]

µ2
Ak

(d)

(
1 − ([x], dk)A,k

dk

)
−

∑
d∈Ak(n)

ω(d) is even

dk 6 |[x]

µ2
Ak

(d)
([x], dk)A,k

dk

=
∑

d∈Ak(n)

ω(d) is odd

µ2
Ak

(d) −
∑

d∈Ak(n)

ω(d) is odd

dk|[x]

µ2
Ak

(d)

−
∑

d∈Ak(n)

µ2
Ak

(d)
([x], dk)A,k

dk
+

∑
d∈Ak(n)

dk|[x]

µ2
Ak

(d)
([x], dk)A,k

dk
.

By Lemmas 2.2 and 2.3 and definition of the numberm,

∆A,k(x, n) +
{x}ϕA,k(n)

nk
≤ θ(n)

2
−

∑
d∈Ak(m)

ω(d) is odd

µ2
Ak

(d) − mkθ(m)ψA,k(n)

nkψA,k(m)
+ θ(m).

We distinguish the casesm = 1 andm > 1 and apply Lemma 2.2 in the casem > 1 to obtain

∆A,k(x, n) +
{x}ϕA,k(n)

nk
− 1

2

[
1

m

]
≤ θ(n)

2
+
θ(m)

2
− mkθ(m)ψA,k(n)

nkψA,k(m)
.

In a similar way we can show that

∆A,k(x, n) +
{x}ϕA,k(n)

nk
− 1

2

[
1

m

]
≥ −θ(n)

2
− θ(m)

2
+
mkθ(m)ψA,k(n)

nkψA,k(m)
.

This completes the proof. �

Remark 3.2. If A is the Dirichlet convolution andk = 1, then (3.1) reduces to (1.3).

4. UNITARY ANALOGUE OF (1.3)

We recall that a positive integerd is said to be a unitary divisor ofn (written asd‖n) if d is a
divisor ofn and

(
d, n

d

)
= 1. The unitary analogue of the Legendre totient functionϕ∗(x, n) is

the number of positive integersa ≤ x such that(a, n)∗ = 1. Its arithmetical expression is

ϕ∗(x, n) =
∑
d‖n

µ∗(d)
[x
d

]
.

In particular, the unitary analogue of the Euler totient function is given byϕ∗(n) = ϕ∗(n, n).
We define the unitary analogue of the Dedekind totient function as

ψ∗(n) = n
∏
pe‖n

(1 + p−e).

It is easy to see thatψ∗(n) = σ∗(n), whereσ∗(n) is the sum of the unitary divisors ofn. The
function∆∗(x, n) is defined as∆∗(x, n) = ϕ∗(x, n) − xϕ∗(n)

n
.
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The unitary analogue of (1.3) is

(4.1)

∣∣∣∣∆∗(x, n) + {x}ϕ
∗(n)

n
− 1

2

[
1

m

]∣∣∣∣ ≤ θ(n)

2
+
θ(m)

2
− mθ(m)σ∗(n)

nσ∗(m)
,

wherem = ([x], n)∗. In fact, if A is the unitary convolution andk = 1, then (3.1) reduces to
(4.1).
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