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ABSTRACT. An integral inequality is deduced from the negation of the geometrical condition

in the bounded mountain pass theorem of Schechter, in a situation where this theorem does
not apply. Also two localization results of non-zero solutions to a superlinear boundary value
problem are established.
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1. INTRODUCTION AND PRELIMINARIES
Letp € [2,00), Q2 be a bounded domain &", and let
Co () ={ueC' (Q): u=00n0Q}.
We consider the quantity

Jo |u]p_2 ]Vu|2 dr
— :

(fg ul'* dx)p

Forp = 2, )\ is the first eigenvalue of the Laplacean\ under the Dirichlet boundary con-
dition, and%1 represents the best constant in the Wirtinger-Poincaré inequality (see [7] for the
elementary Wirtinger’s inequality, [8] for its extension to functions with values in an arbitrary
Banach space, and [11] for Poincaré’s inequality). f-or 2 andn = 1 this quantity arises in

the study of compactness properties for integral operators on spaces of vector-valued functions

(1.1) A1 = inf € Cy () \ {0}
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2 RADU PRECUP

(see[[13]). Let us also note that quantities alfke](1.1) arising from physics were studied by Polya
[9] and Pélya and Szegb [10] (see alsb [6] and its references for more recent advances).

Remark 1.1. Forn = 1 andQ2 = (0,7, where0 < T < oo, the exact value of,_; can be
obtained from a result of Gajek, Katuszka and Lehic [3] in the following way. First by change
of the integration variable one has

T, 1p—2 2
A1 = inf Jo I T wectoT))\ {0}

<f0T |U|% dx) ’

fol |u|p72 u?ds

— 7 () juf tue CH0, 1)\ {0}

(fol |u|% ds)

1 2 % 1
= <T1+12J sup{(/ lul = ds) cu € Cpl0,1], / luP"? u?ds = 1})
0 0

-1

After substitutingy = (%) lu|? , we obtain
2 -1
Ao = (17 (Y orrds) s vecton], [ vrds—1
p—1 = v(5) sup 0]U| s| wveCy0,1], Ov s =
Notice that

1 1
sup{/ ]v|pd3:v66’6[0,1],/ v/st:l}
0 0
1 1
:sup{/ ]v|pds:v€C’é[0,1],/v’zdsgl}.
0 0

Now the sup in the right hand side is the quantity denotedliby3] and is given by

5 91—p (T %—i—%
b:<p(p:2)> p2+2 S(l>>

As a result

py —1
P 1 1
L (poryE 2 (T 3)
p—1 p . D+ 2 F(l> .
P

In this paper we are interested in finding upper and lower estimations,for An upper
bound is obtained from the negation of the geometrical condition in Schechter’s mountain pass
theorem, in a situation where this theorem does not apply. To our knowledge, this is the first
time that a bounded mountain pass theorem is used in order to obtain inequalities. Two local-
ization results of non-zero solutions to a superlinear elliptic boundary value problem are also
established in terms of,_;.
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1.1. Basic Results from the Theory of Linear Elliptic Equations. Here we recall some well-
known results from the theory of linear elliptic boundary value problems.

(P1) LetQ c R" be a bounded domain witfi>-boundary. The LaplaceanA is a self-
adjoint operator orL? (2) with domainH? (2) N H} (Q) (see[11, Theorem 3.33], or
[4]). It can be regarded as a continuous operator fi&RY (Q) N W, 7 (Q) to L9 (Q)
for eachg € (1,00). Moreover,—A is invertible andK := (—A)~' is a continuous
operator fromL? () into W24 (Q) (see [2, Theorem 9.32]). Alsdy considered in
L*(Q) is a positive self-adjoint operator.

(P2) (Sobolev embedding theorem) Ket— R™ be a bounded domain with Lipschitz bound-
ary,k € N, 1 < g < oo. Then the following holds:
(1°) If kq < n, we have

(1.2) Wka(Q) c L™ ()

and the embedding is continuous foE [1, nf—qkq} ; the embedding is compact if

re |l

(2% If kq = n, then [1.2) holds with compact embedding fog [1, o).
(3") If0<m<k—2<m+]1, wehave

(1.3) Wk (Q) c o™ (Q)

and the embedding is continuous oK o < k—m— 9 the embedding is compact

ifa<k—m-—2.
q

The above results are valid foir}*? (2)-spaces on arbitrary bounded domaihgsee
[1], [15, p 213] or [2, pp. 168-169]).

(P3) LetQ2 ¢ R" be a bounded domain witfi>-boundary. Letp, = % if n > 3 andp
be any number of2, ) if n = 1 orn = 2. Let ¢y be the conjugate number pf.
Clearly,py € (2,00) andgy € (1,2) . From (P1), (P2) we have thaf has the following
properties:

(@) K : L1(Q2) — LP (Q2) for everyq € [qo, 2], 1% + %1 =1;
(b) K is continuous from? () to L? () for everyq € [qo, 2], % + % =1,
(c) the operatoi considered in.% (Q2) is a positive self-adjoint operator.

Indeed,K is continuous from? (Q2) into 1724 () . On the other handi’>? (Q2) C L7 (Q)

with continuous embedding. This is cleagit> §. Forg < § and + . = 1, observe that

ngq
n—2q

According to [5, pp. 51-56], the properties (a)-(c) are sufficient for that the opekator
considered fronL? (2) to L? () , wherep € (2, po) and% + é = 1, admits a representation in
the form

2n
pﬁmﬁpﬁ

K = AA*,
where
A:L2(Q) = LP(Q), Av= K20
and
A LT(Q) — L*(Q)

is the adjoint ofA. Here Kz is the square root of considered as an operator acting from
L*(Q)into L? (Q).
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Throughout, by-|, we shall mean the usual norm @i (§2) and by| A| we shall mean
Al = Sup{\Av|p cveL2(Q), Jul, = 1}.

1.2. Schechter’'s Mountain Pass TheoremNow we present the main tool in this paper, Schechter’s
mountain pass theorem [14]. Lat be a real Hilbert space with inner prodyet-) and norm

||, Br = {v € X : |v| < R} the closed ball of{ of radiusR, E : X — R aC'-functional on

X, vy, v1 € X andr > 0 with

lvo] <7 < |v1| < R.

Let
®={pecC([0,1];Br): ¢ (0) =vo, v (1) =v1},
cr = inf max [ (¢ ()
and let

Kep ={veEBgr: E(v)=cg, E'(v)=0}
be the set of critical points of in By at levelcy.
We say thatt satisfies the Schechter-Palais-Smale conditio®grf(S-P-S ,-condition) if

(vg) C Bgr, E (v,) -bounded,(E’ (v;),vx) — v <0,

ol ('Uk) o (E/ (Uk) ) Uk)

5 Vr — 0
|V |

= (vx) has a convergent subsequence.

Theorem 1.2(Schechter) Suppose
(): FE satisfieg S-P-S) ,-condition;
(i): there exists a constant with — (E’ (v),v) < C for |v| = R;
(ii): v#X(v—FE' (v))for|v|] = Rand\ € (0,1);
(iv): max{F (v), E (v1)} <inf{FE (v): |v| =r}.
ThenkC.,, \ {vo,v1} # 0.

We note that by the mountain pass geometry of a functidghale mean the geometrical
condition (iv) in Theorem 1]2.

2. MAIN RESULTS

We first obtain a lower bound for all non-zero solutions of the superlinear problem

—Au=|uf?u inQ
(2.1)

u=>0 on of2.
Theorem 2.1.Let() be a bounded domain & with C*-boundary, lepp € (2, 2% ) if n > 3
andp € (2,00)ifn = 1orn = 2, and Iet% +§ = 1.Ifue W Q) NW, Q) is a
non-zero solution of the problern (p.1), then the functios A* (Jul’?u) = A~'u satisfies
the inequality

(2.2) [wly > [A] " (0= 1) Ay )72 .
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Proof. Let us first prove that any solution . (2.1) beIongsCtb( ) Forn = 1 this follows

from (1.3) (choosex = 0, m = 1 andk = 2). Suppose: > 2 and fix any number, >
n(p—1).1f ¢ > %, then (P2) guarantees € L% (). Assumeg < % and denote; = gq.

Sinceu € W% (Q) andg; < %, from ( ) we haves € L9 (Q), whereq;‘ = 25 Then

*

lul’u e L1 (). Letgo = -5 Slnceu = (]u\p_Q u) and|u|’ > u € L= (Q), from (P1),
we have that, € W2 (Q) . If q > 4, as abover € L% (Q) ; otherwise we continue this way.

At the step; we find that

q;f,l * ng;—
) Qj—l = )
p—1 n—2qj-1

(2.3) ue W4 (Q), ¢ =

whereqy, ¢z, ...,q;—1 < 5 (j > 2). We claim that there existsjawith q; > 5. To prove this,
suppose the contrary, thatq]s< 5 forevery; > 1. Usingp < = we can show by induction

that the sequencgy;) is increasing. Consequently, — ¢ € [q, 2] asj — oo. Next, from
(2.3) we obtain

qj (n —2gj-1) (p — 1) = ng;j-1.
Letting j — oo this yieldsg (n — 2g) (p — 1) = ng and so

~ n(p—2)

p
q= >q=

2p—-1) — " p-1
This impliesp > 2" , a contradiction. Thus our claim is proved. Therefare; L% (). Fur-
thermore|u|’~ 2y e qu/(p V() and sinceu = K ([ul’"*u) , we haveu € W2@/(-1 ().
Sincez%_> n, by ) one hadl’?#»1 (Q) ¢ C* (Q (Q) (choosen = 0, k = 2, m = 1). Hence
ue ! (Q) .

Letw = K (|ul""") . Clearly, likeu, @ € C* (Q) and@ = 0 on Q. By the weak maximum
principle, we have

(2.4) lu| <u onq.
Hence

—AT = |ufh < Juff
If we “multiply” by wP~! and “integrate” orf), we obtain

(2.5) (p— 1)/@”_2 V| dz < / |’ wPda.
Q Q

Now Hoélder’s inequality yields

(2.6) /Qlu!p‘zﬂ”d:c < (/Qa”fdx)i </ |u|pdx) -
— A@)? ( / uzdx)

Since|Av|, < [A] |v|, and by [2.4) one has # 0, from (2.8) and[(2.6) we deduce that
(0= 1) Xper < AP ol
that is [2.2). O

Our next result is the following inequality.
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Theorem 2.2.LetQ) C R" be a bounded domain with?-boundary. Then for eveny > 2 one
has the inequality

1
(2.7) N <
T -1 AP
Proof. We consider the functiondl : L? (©2) — R, given by
1 1
@8) B = [ (3lo@F -l @ ) de
Q p
Clearly, we have
2 A p
B = e A%
2 p

For everyv, w € L?* (), itis easy to compute
(' (v),w) = lim X! (B (0 + Xw) — B (0))

and find
(E' (v),w)=(v— A"FAv,w),
where
F:IP(Q) — L1(Q), F(u)=|uu.
Hence

E' (v) = v — A*F Av.

Notice if u is a solution of ) them = A* (Juf’ >u) = A 'w is a critical point of the
functional [2.8). Conversely, if is a critical point of the functiona[ (2.8), then= Av is a
solution of [2.1).

Our plan is as follows: we show that for evely< R,, where

(2.9) Ro =A™ [(p— 1) Apeit]72

(of course here we assumg_; > 0, (2.7) being trivial ifA,_; = 0), vy = 0is the unique critical
point of £ in Br = {v e L*() : |v|, < R} and that the hypotheses (i)-(iii) in Theor1.2
hold. Consequently, there exist npandr with 0 < r < |v;], < R such that the geometrical
condition (iv) is satisfied. As a result we obtdin (2.7).

(a) The (S-P-S)-condition is satisfied for everiz > 0. Indeed, lefv;) be any sequence of
functions inBp with
(210) (E/ (Uk) ,Uk) — UV S 0, El (Uk) — ﬁ (’Uk) Vi — 0,
whereg (v,) = % Passing if necessarily to a subsequence, we may suppose
Vkl2

that |vix|, — d for somed € [0, R]. If d = 0 we are done. So assurde> 0. Denote
Wy = £’ (Uk) — B (Uk) vi. We havewk = (1 — 5 (Uk)) Vi — A*FAUk Hence

(2.11) v = (1= B ()" (wy, — A*F Avy,)
and so
(2.12) Avi, = (1= B ()" (Awy — KF Avy,) .
Notice K (L7 (£2)) ¢ W24 (Q) and the embedding 6¥'*7 () into L () is compact.

Indeed, fromp € (2, 2%) and}loqﬁ = 1, we easily see that ¢ (2, ’_‘%q) wheng < 2.

n
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Hence the compact embedding is guaranteed by (P2). As a result, we may suppose that
(at least for a subsequenddy F' Avy,) is convergent. In addition, by (2./10), we have

Awy, — 0, (1—8w)) " — (

v
1— —

d2>1 € (0,1].

Then, from|(2.1R), we find that (at least for a subsequefide)) is convergent. Finally
(2.11) guarantees that the corresponding subsequericg)a$ convergent.

(b) For eachk > 0, there exists a

constaft; such that

—(E' (v),v) < Cgforallv € L* (Q) with |v], = R.

Indeed, if|v|, = R, then
—(E'(v),v)

— [vf5 + (A*F Av, v)
— |v]3 + (F Av, Av)
= [vl; + |Avl
—[vl3 + AP [of}
—R*+ |AP RP

: Ckg.

(c) Zerois the unique critical point df with |v], < R, (hereR, is given by[(2.9)). Indeed,
if v € L?(Q) is a non-zero critical point of?, thenv = A*F Av and soAv = KF Av.

Henceu = Avis anon-zero so
, |U|2 Z Ro.

lution of problein (2. Mherefore, according to Theorem

(d) The Leray-Schauder boundary condition (iii) holds for evBry R,. To prove this
suppose the contrary. Then there existsaaL? () with [v|, = Rand a\ € (0, 1) with
v=A@—FE'(v)),ie v=N*FAv. Itis easily seen that the functiah= \'/?=2)y
satisfiesv = A*F Av, i.e. T is a critical point of £ with |7], < Ry. According to the
conclusion of step (cy = 0 and sov = 0, a contradiction.

(e) Proof of [2.7). Let

Obviously, [2.7) can be writte
i.e.r < Ry. Choose any? € (r,

(2.13) o (N)

where

__pP
r=|A|"72.
n as> Ry. To prove it, we shall assume the contrary,
Ry), A € (r, R] ande > 0 sufficiently small so that

+p T Ne <o (r),

2

6(0) =5

p o [A] (o >0).

Noticer is the maximum point of, ¢ is increasing on0, ] and decreasing o, o).

Now we choose a function, €
valy = 1

We claim that condition (iv) in
E (vq)

(2.14)

J. Inequal. Pure and Appl. Mat3(3) Art. 32, 2002

L? () with
and|Avy[7 > [A[” — €.
Theorem 1.2 holds fer= 0 andv; = \vy. Indeed

E ()\1)2)

)\2

o5 PN [Avol)
)\2

5 p N AP + ptWPe

() +p tNe.
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Also, for everyv € L? (Q2) with |v|, = r, we have
7,2 T2
(2.15) E() =5 —p A (r o) [ > o —p AP =0 (r).
Now (2.13), [2.14) and (2.15) guarantee (iv). From Theofem 1.2 it follows Ehat

has a non-zero critical point in the closed bal of L2 (). This contradiction to the
conclusion at step (c) proves (R.7).

O

We note that Theorenis 2.1-R.2 were previously announcéd in [12].

The next inequality of Poincaré type shows that, > 0 for p € [2, 2% ] if n > 3 and for

p € [2,00) if n = 2. Moreover, its proof connects,_; to the embedding constant W(}’Q (Q)
into L (2) .

Theorem 2.3.Let ) C R" be bounded open and lpte [2,-2%] if n > 3, p € [2,00) for

n = 2. Then there exists a constant- 0 depending only op and(2, such that

2 \7
(2.16) (/ lu| = dx) < c/ lul’ | Vul|® de
0 Q

forall uw € Cj (Q) .

Proof. According to (P2), we havé&,” () C L” () with continuous embedding. Hence
there exists a constanf > 0 with

|U|p < ¢ ’U|W01’2(Q) forallv e WOL2 (Q) .

%
2
|v|W01,2(Q) = (/Q|VU| dm) .

SinceCS° (Q) is dense iV, (Q) , we may suppose that
Co = sup {|v|p cve O (Q), |?J|W01,2(Q) = 1}.

The space’s® (Q) is also dense i@} (Q2) , and so

Ap—1 = (sup { </ |u|pg/2 dx) "ue Cy (), / luP? |Vl de = 1})
Q Q

After substitutingy = (%) lu|® , we obtain

2\? -1
Aot = (5) (sup {Jof2: v € O (). el = 1)

< m)

Thus [2.16) holds with the smallest constant

-1 _ (. C0)?
e=xh=(r3)"

Here

O

Finally we establish a localization result for a non-zero solution to the problein (2.1).
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Theorem 2.4. Let Q2 be a bounded domain @™ with C?-boundary and lep < (2 2—") if

’ n—2

n > 3andp € (2,00) if n =1 or n = 2. Then the problen] (2.1) has a solutiarwith
(2.17) AT (P = D) Apa]7? < [ATu], < 477

Proof. First notice the left inequality irj (2.17) is true for all non-zero solution$ of (2.1) accord-
ing to Theoren 2]1.

Next we prove that for eacR > r = |A| 72, ) has a solution such that
(2.18) |A™ul, < R.
Indeed, two cases are possible:

(1) The Leray-Schauder boundary condition (iii) in Theofen 1.2 does not hold. Then, there
arev € L?(Q) andX € (0,1) such thatv|, = R andv = AA*F Av. Itis easy to see
that the functiorv = A/ (?~2)y satisfiess = A*F Av, i.e. v is a critical point of, and
0 < [v], < |v], = R. Henceu := Av is a solution of[(2.]1) and satisfigs (2, 18).

(2) Condition (iii) in Theorenj 1]2 holds. Then, as follows from the proof of Thedrein 2.2,
all the assumptions of Theorém [1.2 are satisfied. Now the existence of a selwfon

(2.7) satisfying[(2.18) is guaranteed by Theofen 1.2.
Finally, for each positive integérwe putR = r + | to obtain a solution;, with | A~ ], <
T+ %, and the result will follow via a limit argument. O
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