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Abstract

If A and G are the arithmetic and geometric means of the numbers z; € (a,b),
a family of inequalities is derived of which a + b — A > ab/G is a special case.
These inequalities demonstrate a new monotonicity property for power means.
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Let A, G andH be the arithmetic, geometric and harmonic means of the positive
numbersr; < z, < ... < z,, formed with the positive weights, whose sum
is unity. Then the following inequalities were proved ii.[

If

Ple)= Q;E[‘T;—C;A] and Q(x) = 2z — G?:QGG[A -G
then e
1.1 Pln) Zn: wi(zp — A)? > A—G > P(x,) Xn: wi (g — A)? R
and 1 1 Title Page
n n Contents
1.2)  Q(an) Eljwk@:k —G2>A-G > Q) gljwkm —G), » o,
< >

provided that at least two of the, are distinct.
These inequalities improved similar ones which were proved]if f] and Go Back
[6]. Instead of the multiplierd” and ) appearing here, the earlier results had

(2z1)~tand (2, )~! appearing in the upper and lower bounds respectively, in Close
each of (.1) and (L.2). Now these inequalities imply that(z;) > P(x,) Quit
andQ(x;) > Q(z,) and it is a simple matter to see that these in turn are each Page 3 of 10
equivalent to the inequality
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It would seem to be of interest to give a proof of this in its own right but as well
as doing that we shall also introduce a family of inequalities of whicB) (s a
special case. That is the purpose of this note.
Note.

In all that follows we shall suppose thét< a < b andthaty < z; < x5 <
- <z, < bwith at least one of the,, satisfyinga < z; < b.

We now prove a slight generalization d¢f.§).

Lemma 1.1. .
A Monotonicity Property of
ab Power Means
(1.4) a+b—A>—.
G A.McD. Mercer

Proof. Since (b — t)(t — a) is non-negative for <t < b, division byt gives

b . . . Title P
a+b—t> i (with equality only ift = a ort =b). edagts
¢ Contents
Putt =z, for k = 1,2, ..., n. Forming the arithmetic mean on the left and the
geometric mean on the right completes the proof of the lemma. O « dd
We next look at some consequences of this inequality. Making the substi- < >
tutionsa — a~',b — b~!, 1, — x;' in it and taking inverses extends.{) Go Back
° +b—A> ab > (a7t 407! H‘l)f1 cose
a — — a — .
G Quit
With r > 0, we substitutes — a”, b — V", z;, — 2}, in this and then raise all P
age 4 of 10

three members to the powgr We get
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Now introducing the notation

(1.5) Q-(a,b,x) = (ar +b - Z wwi) " for all realr £ 0,

these last inequalities read

(16) Qr(aa ba LL’) > QO(aa ba £L’> > Q*T(Gﬂ ba LL’) forr > Oa

Where we have ertte@o(a, b, .T) fOI’ the Ilmlt hmr*)o QT (a/, b, l’) WhOSG Value A Monotonicity Property of
is easily seen to be Power Means
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The considerations of the previous section lead us to formulate the following

theorem.
Theorem 2.1.Let +00 > r > s > —o00. Then
(2.1) b>Q.(a,b,x) > Qs(a,b,x) > a.

Note.
From (L.5) we see thaf),(a, b, z) can be written as

3=

Qr(a,b,x) = (@ +b" = M,/ (z,w))7,

wherelM, (z, w) is the ‘power mean’ of the numberg with weightsw;, defined
by

S|

M, (z,w) = (Z wka) (r #0) andMy(z, w) = l% M, (z,w).

For the various properties of these means we refer the read&y ¢o [4]. In
particular, it is well-known that they have the monotonicity property:

xy, > M, (z,w) > Ms(x,w) > 1 (+o0 >1 > 5> —00)
and so writing 2.1) as
b> (" +0 = M (w,w))" > (a* +b° = My(z,w))* > a,

we see that this is another monotonicity property of power means.
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Proof of the theoremThere are three cases which remain to be considered:
@r>s>0,
(b) 0 >r > s,

) r>0>s.

Once these are proved it is a simple matter to verify that

lim Q.(a,b,x)=0b and lim Q.(a,b,x) = a, A Monotonicity Property of
r—+00 T—=—00 Power Means

giving the upper and lower bounds in the theorem. AMcD. Mercer
The cases (b) and (c) follow easily from (a) aid5| above. So let us sup-
pose the truth of case (a) for the moment and dispose of these other cases first.

Title Page
(a) reads
) ) Contents
<ar+br—2wkx};>T > <as+bs—2wkxz>s when r > s > 0. <« >
< >

If we make the substitutions — a*, b — b~!, 7, — ;' in this and then
invert both sides it reads Go Back

(a_r +0" — Z wkx,;r> - < (a_s +07° — Z wkx,;5>

when —r < —s5 < 0.

-1 Close
Quit
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Writing r = —p ands = —q this reads
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which is case (b).
The case (c) where > 0 > s has two subcases namdly > |s| and
|s| > |r].
The former follows by noting tha®),.(a,b,z) > Q_s(a,b,x) > Qs(a,b,x)
by virtue of (a) and1.5).
The latter follows sinc&),(a,b,z) > Q_.(a,b,z) > Qs(a,b,z) by virtue
of (1.5 and (b). So the cases (b) and (c) have been dealt with.
It now remains to give the proof of case (a) and it is sufficient to prove that

(2.2) <a“ + b — wai‘)é > (a +b— Zwkxk) for a > 1.

A Monotonicity Property of
Power Means
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For once this is proved (a) follows on puttiag= Z, making the substitutions
a— a’, b — b, x; — x; and then raising each side to the povger\Ne now Title Page
proceed to proveX2). PES—
Let

V:(ao‘%—ba—zwka:%)é—<a+b—2wk:pk> « dd

. . o . : i < | 2
and differentiate this with respect to some particulawhich satisfies < z; <

b. We get Go Back
AV . 1o - Close
dx] {( “+b Z wkmk> ] —w; ] ) + w;. Quit

After a few lines the right side reduces to Page 8 of 10
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where, for brevity, we have writtef = (a® + b* — 3" wy,z9)«.

So we see tha% iS positive or negative in case; is less than (greater
than)Z. SoV will decrease ifz; < Z andx; decreases, or if; > Z andx;
increases. Also, by differentiating’ — x;| with respect tor; we find that this
derivative is

1—a
T {wjxyl (ao‘ + b — Z wkxg) 4+ 1]

in caser; is less than (greater tha#) Hence, ifz; is less than (greater tha#)

it will remain so asr; decreases (increases). A MonoFt)onicityMProperty of
These considerations lead us to proceed as follows: oweriieans
Taking thoser;, which lie strictly betweem andb in the order of increasing A.McD. Mercer
subscript we let them tend toor b, one by one, according to the rules:
(i) if = is less than the curreit let z;, — a. Title Page
(ii) if x;, is greater than or equal to the curréhtet z;, — b. Contents
In this way we produce a strictly decreasing sequence whose first member is 4« 44
V' and whose last member containsmngs at all. We conclude that < >
1
vV = (ao‘—i—ba—Zwkxg)a - (a—l—b—Zwkxk) Go Back
o a1t Close
> [(1=Wp)a”+ (1 — W)= — [(1 = Wy)a+ (1 — Wa)b],
where; and W, are positive numbers with/; + W, = 1. But this last ex- Quit
pression is positive by virtue of the classical inequalify(z, w) > M,(x,w), Page 9 of 10
(r > s) for power means already referred to above.
This completes the proof of the theorem. ] 3. Ineq. Pure and Appl. Math. 3(3) Art. 40, 2002
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