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Abstract

Integral inequalities of Ostrowski type are developed for n—times differentiable
mappings, with multiple branches, on the L., norm. Some particular inequali-
ties are also investigated, which include explicit bounds for perturbed trapezoid,
midpoint, Simpson’s, Newton-Cotes and left and right rectangle rules. The re-
sults obtained provide sharper bounds than those obtained by Dragomir [5] and
Cerone, Dragomir and Roumeliotis [2].
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In 1938 Ostrowski ] c] obtained a bound for the absolute value of the difference
of a function to its average over a finite interval. The theorem is as follows.

Theorem 1.1.Let f : [a,b] — R be a differentiable mapping du, b] and let
|f (t)] < M for all t € (a,b), then the following bound is valid

1 b 1 (x - “Tb ?
(1.1) ‘f (l’) - b—a / f (t) dt‘ < (b - a) M Z_l + (b—Q Integral Inequalities of the
a - CL) Ostrowski Type
forall z € [a, b]. A. Sofo
The c:onstan}1 is sharp in the sense that it cannot be replaced by a smaller one.

Dragomir and Wangll?, 17| extended the resultl(1) and applied the ex- Title Page
tended result to numerical quadrature rules and to the estimation of error bounds Contents
for some special means. Dragontit P, 10] further extended the result (1) to <« b
incorporate mappings of bounded variation, Lipschitzian mappings and mono-
tonic mappings. < >

Cerone, Dragomir and Roumeliotis][as well as Dedi, Matic and Péaric o e
[4] and Pearce, Raric, Ujevic and VaroSaneclf] further extended the result
(1.1 by considering:—times differentiable mappings on an interior paine Close
[a, b]. Quit

In particular, Cerone and Dragomi][proved the following result. Page 3 of 83

Theorem 1.2.Let f : [a,b] — R be a mapping such that™—Y is absolutely

continuous ona, b], (AC[a, b] for short). Then for all € [a, b] the following ’ '”;j't;_j;;;;‘mﬂ P
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bound is valid:

b—a)" + (1) (@ =)
1.2 : G (2
(1.2) ( ] F9 ()
I/ )H

< . n+1 . n+1 R (n)

S ) ((x a)"" 4+ (b—x) ) if f'" e Lyla,b],
where

1770l 3= s 7 @] < co.
t€la
Dragomir also generalised the Ostrowski inequality#qroints, x4, . .., xx

and obtained the following theorem.

Theorem 1.3.Let], :=a =29 < 11 < ... < 231 < 11, = b be a division
of the interval(a,b], o; (i =0,...,k+ 1) be “k + 2" points so thatoy = a,
a; € [xi—1, 2] (i=1,....,k) andag, = b. If f: [a,b] — Ris ACa, b], then we
have the inequality

(1.3)

T th <Lo-arirm .

[\]
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whereh; :== z;41—z; (i =0,....,k — 1) andv (h) := max {h;|i = 0, ..., k — 1}.
The constanﬁ in the first inequality and the constaé-m'n the second and third
inequalities are the best possible.

The main aim of this paper is to develop the upcoming Thedseh(see
page 10) of integral inequalities fartimes differentiable mappings. The mo-
tivation for this work has been to improve the order of accuracy of the results
given by Dragomir §], and Cerone and Dragomii]} In the case of Dragomir
[5], the bound of {.3) is of order 1, whilst in this paper we improve the bound
of (1.3) to ordern.

We begin the process by obtaining the following integral equalities.
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Theorem 2.1.Letl, :a =29 < 71 < --- < 111 < 73, = b be a division of
the interval(a,b] and; (i =0,...,k+ 1) be 'k + 2" points so thaty, = a,
a; € [zio1,2;] (i =1,...,k)andayy = b. If f: [a,b] — R is a mapping such
that f"=Y is AC[a, b], then for allz; € [a, b] we have the identity:

j k=1

(2.1) / f(t)dt+ Z <_P > {(xm — 1)’ fOTY (wi4a)

j =0

b
~ (=) FO0 @)} = (<) [ K07 (1)

a

where the Peano kernel

(((t—a)
oy U te la, z1)
t _
( 042) y t e [ﬂfl,.ﬁllg)
n!
(2.2) K (t) == :
‘— B n
%7 te [I’k—ank—l)
n:
+ n
ﬂ7 te [xk—lab]7
\ n:

n andk are natural numbersy > 1,k > 1 and f© (z) = f ().
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Proof. The proof is by mathematical induction. Feor= 1, from (2.1) we have

the equality
b k—1 '
(23) | f@dt =3[ —am) f () = (5= i)’ f (@)
a i=0
b
— [ Ky (t) f (¢)dt,
where

(t—aq), t € la,z)
(t—ay), t € [x1,29)
Kl,k: (t) =
(t—oag—1), t€[Tpa, Tr1)
L (t—Oék), t e [Ik_l,b].

To prove @.3), we integrate by parts as follows

/ "KL ) () dt

-1

Ti+1
_ / (t— i) £ (8) dt

. Tit1
Y / () dt}
k—1

=Y (@i — i) £ (@01) — (51— @) F (@) = 3 / e,

0 1=0 @

??‘

.
Il

Mw

|: t_aH—l

IS
Il
_ O

<.
Il
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b b
/f(t) dt+/ Ky (t) f'(t)dt
k—1

=) _|(@ir1 — 1) [ (ig1) — (zi — qiga) f (@)
=0
Hence @.3) is proved.
Assume thatZ.1) holds for »’ and let us prove it for” + 1'. We need to
prove the equality

k—1 n+1 (_1)j

(2.4) /f(t)dtJrZ

i=0 j=1

X {(miJrl — i) fUY (241) — (20 — i)’ fUTY (1’2)}
= (-1)"! /b Koprn () £ (1) dt,

J!

where from 2.2)

( %7 t € la,z)
%7 t € [z1,22)
Kok (t) :=
\ %7 t € [zp_1,0].
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Consider

b n+1) Tit1 t_az-i-l n+1 (1)
Knix () f t)dt = Z T FOHD (t) dt

and upon integrating by parts we have

Ti+1

n!

Z;

_ '1 {<$i+1 - O‘iJrl.)n—H f(n) (9Uz‘+1) . (‘1' (:716_7—241))”4-1 f(n) (xz)}

/Knk () £ (1) dt

k—1 1 1
(Tip1 — o )n+ n (zi — oy )n+ n
= { +1 +1! £ (Ti41) — & ++11)! £ (%)}

b
= [ a5 .
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Now substitutefab K, (t) £ (t) dt from the induction hypothesi2(1) such
that

b k—1 n Y ' '
(_1)n/ f(t) dt + (‘Unz [Z ( 1) {(ﬂfiﬂ - Oéi+1)J f(]_l) (%’H)

1
i=0 J:

Jj=1

— (& — ag) fUY (ﬂfi)H

k—1 ( ‘ o >n+1 ( o )n+1
— Lit1 = Qi f(”) (3;4+1) _ T il f(”) (x) Integral Inequalities of the
— (n + 1)! ¢ (n + 1)! ' Ostrowski Type
b A. Sofo
- / Koo (8) £ (1) dt.
Title Page
Collecting the second and third terms and rearranging, we can state g
Contents
b A (1) <« >
[ a3 0
a i=0 j=1 < >
X {(l’z‘ﬂ —ain) U (2ig1) — (25 — i)’ fU7Y (551)} Go Back
b Close
= (™ [ Kona (0 504 (1),
a Quit
which is identical to 2.4), hence Theorer.1is proved. O Page 10 of 83

The following corollary gives a slightly different representation of Theorem ;o roe and rerr et 3@ At 2, 2002
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Corollary 2.2. From Theoren?.1, the equality 2.1) may be represented as
b
(2.5) / f(t)dt
~ (-1)
+2

=1 7

[f {(xi — ;) = (w; - 04z'+1)j} fuy (l’i)]

Proof. From 2.1) consider the second term and rewrite it as

k—1
(2.6) Si1+S;:= Z {= @ir1 — i) [ (@i1) + (20 — i) [ (z0)}

i=0

k—1 n (_1)] . .
#3105 (e — ) 197 (i)

i=0 Lj=2 7

— (z; — aiJrl)j Uy (xl)} } )
Now
k—1
Si=(a—a) f(a)+ Z (zi — i) f(73)

k—2

+ Z {= @it1 — 1) f (@)} — (0 — o) [ (D)

=0
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Keeping in mind that:y = a, ag = 0, x;, = b anday,; = b we may write

k
S1+ 5 = — Z (g1 — ) f ()
+ 3 (_;)J [; {(l'z — o) — (2 — aiﬂ)ﬂ} FG-D (%)]
= 3 (—]Pj [; {(3% - ai)j — (2 — ai+1)j} f(j_l) (CUZ)] '

And substitutingS; + S, into the second term of(1) we obtain the identity
(2.5. O

If we now assume that the points of the divisifnare fixed, we obtain the
following corollary.

Corollary 2.3. Letl, :a =29 < 11 < -+ < 21 < xx = b be a division of
the intervalla, b]. If f : [a,b] — Ris as defined in Theorethl, then we have
the equality

27) [ fd+> i‘ [Z {—h{ + (=1 hg_l} £ (xi)]

whereh; := x;,1 — x;, h_1 ;== 0andh; := 0.
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Proof. Choose

an = a Ol_a+x1 a_l’1+$2
0o — ’ 1 — 2 ’ 2 — 2 LRI
oy = T2t Teer TRl PR oo = b
2 2
From Corollary2.2, the term
k—1
(b—ax) f(b) + (1 —a) f(a) + (qvig1 — i) f (24)

i=1

1 k—1

=5 {hof (a) + (hi + hi1) f (i) + hi—r f (b)} 5
=1

the term

> S 60 197 0) — @ ) 197 @)}

j=2

and the term
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MW

[Z U - cvnd) o 1><xl>].

=1

Putting the last three terms i.6) we obtain

b k—1
[ 1w {hof (@) + 3 (it hooa) £ (20 + B f <b>}

(=1 - S =
+ Z 1 {hi_lf@ 1) (b) — (1) héf(] 1) (a)} Integrglsltr;s\?vl;i:lg;_izgfthe
n j o ' A. Sofo
- = F{h — (1P W} 970 @)
== b Title Page
= (1" [ Kk (05 (1) Contents
Collecting the inner three terms of the last expression, we have b dd
. < 4
’ S S i i\ =D
IRCEED D MURSCT VT Go Back
” " b Close
=(=1)" [ Kux () ™ (1) dt, Quit
which is equivalent to the identity2(7). O Pege Logice

The case of equidistant partitioning is important in practice, and with this in  ; \ieq pure and Appl. Math, 3@) Art. 21, 2002
mind we obtain the following corollary. http://jipam.vu.edu.au
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Corollary 2.4. Let

(2.8) ]k:mi:a—l—i(b;a), 1=0,...,k

be an equidistant partitioning dfi, ], and f : [a,b] — R be a mapping such
that f("~V is AC[a, b] , then we have the equality

(2.9) /f dt+Z(b_a) j.[—f(j‘”(@
+Z{<—1>J‘—1} J9 () + (- >f<f1<>]

v Ko (1) 1 (8)

It is of some interest to note that the second term2dd)(involves only even
derivatives at all interior points;;, i = 1,...,k — 1.

Proof. Using 2.8) we note that

b—a b—a
ho = 901—350:7, D, 1—($k—$k 1) L
b—a
hi = iy — ;= 2
h—
andhz;l = I —T;1 = a, (Z:L ,k'—l)
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and substituting intoZ.7) we have

/abf(t) dt+j§n;ﬁ [— (b;ka)jf@-” W4y {— (b;a)j

1=

+(—1) (b . a)j} FO70 () + (-1) <b - a>j Fuy (b)]

= (=" /b K (1) f (1) dt,

which simplifies to 2.9) after some minor manipulation. O

The following Taylor-like formula with integral remainder also holds.

Corollary 2.5. Letg : [a,y] — R be a mapping such that™ is ACa, y]. Then
for all z; € [a,y] we have the identity

(2.10) g(y) =g (a) — Z_: [Z (_j—Pj {(%’H - Oéi+1)j g% (Tig1)

1=0
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Yy
(1) / Ko (4,1) g0 (1) dt.

The proof of £.10 and @.11]) follows directly from @.1) and @.5) respec-
tively upon choosing = y andf = ¢'.
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In this section we utilise the equalities of Sectiband develop inequalities for
the representation of the integral of a function with respect to its derivatives at
a multiple number of points within some interval.

Theorem 3.1.Letl, :a =29 < 21 < --- < 711 < 71 = b be a division of
the intervalja,b] and; (i =0,...,k+ 1) be 'k + 2’ points so thatw, = a,
a; € [zi—1, 2] (i =1,...,k)andayy = b. If f: [a,b] — R is a mapping such

that f"~1) is ACa, b], then for allz; € [a, b] we have the inequality: Integral Inequalities of the
Ostrowski Type

b n —1 J k . ) . A. Sofo
(3.1) ‘/ f(t)dt + Z ( ') [Z {(m, — ;) — (z; — aiﬂ)ﬂ} fU-D (:17,)] |
||f_ ” - Title Page
~ (n+1)! Z { Fitl — nH + (Tip1 — ai+1)n+1} Contents
<4< 44
(n)
S -
||f || Go Back
— (TL + 1()X!) (b - a) V" (h) if f(n) € Loo [(l7 b] ) Close
where Quit
Page 20 of 83
1F*l = sup £ (®)] < o0,

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002
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v(h) :=max{h|i =0,...,k—1}.

Proof. From Corollary2.2 we may write

b
(3.2) /f(t)dt
n _1j
+Z;(ﬂ)
and
b

Zk: {(xi — ;) = (z; — Oéz'+1)j} fuy (fﬂi)] |

- \<—1>" / Ko (1) £ (1) dt' ,

b
Ko (1) £ (2) dt‘ < [lF™, / | Ko ()] dt,

e

-1

Tt — g |”
/ =l g
0 /i

.
Il

k-1 Q41 . —t n Ti41 t— n
{ / (@i = 1) , v / {t = ain)” O‘fm dt
— L, n! - n!
k—1
1 n n
R {(O-/i+1 — ;) it (Tip1 — Qiy1) H}
T =0
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and thus

o [orm o

{(aip1 — 2)" o (i1 — Oéi+1)n+1} :

Hence, from 8.2), the first part of the inequality3(1) is proved. The second
and third lines follow by noting that

Hf k—1 TL k—
—+1 n+1 n+1
, Z {(aiq1 —2:)"" + (Tig1 — @i1) Z
n - 1 =0 1=0

since for) < B < A < C'itis well known that

(3.3) (A-B)""'+(C-A" < (C-B)"".
Also
k— k—1
" [FARI _ ™
Z ' k= G e ),

wherev (h) := max {h;|i =0,...,k — 1} and therefore the third line of the
inequality @.1) follows, hence Theorerd.1is proved. O

When the points of the divisiof, are fixed, we obtain the following inequal-
ity.
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Corollary 3.2. Let f : [a,b] — R be a mapping such that"~ is ACa, b]
and /I, be defined as in Corollarg.3, then

/ab f(t)dt + i (;]E)f [f {—h{ +(=1) hfﬁ} oy (%’)] ‘

[EAK1 RS

< Ton i
(n+ 1)12n

(3.4)

for f™ € Ly, [a,b].

Proof. From Corollary2.3we choose

a -+ 11
Qg = a, = 5 ) ey
T—2 + Th—1 T—1 + Tk,
Q1 = 5 , Q= — anday; = b.

Now utilising the first line of the inequality3(1), we may evaluate

k—1 k—1 h n+1
{(aig1 — 2"+ (g — Oéz‘+1)n+1} - 2 (5Z>
=0 =0
and therefore the inequality @) follows. O

For the equidistant partitioning case we have the following inequality.
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Corollary 3.3. Letf : [a,b] — R be a mapping such thagt"V is ACla, b] and

let 7, be defined byA.8). Then

[roaey (") 5
x [—f(j‘” @+Y {17 =1} 7970 @) + (1 f07Y <b>] |

=1
1] w1
A

(3.5)

for f™ € Ly, [a,b].
Proof. We may utilise 2.9) and from (8.1), note that

b—a

d
L an

hozl’l—l'o:

hi =21 — 2 =

in which case §.5) follows.

The following inequalities for Taylor-like expansions also hold.
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Corollary 3.4. Letg be defined as in Corollarg.5. Then we have the inequality

(3.6) |9(y)—g(a) +Zﬂ

X [i {(xl — ai)j — (z; — az’+1)j} g(j) (%)] ‘

n+1) ||

9 00
- Hn+1 Z{ Qi1

forall z; €

D" (i — i)™} i gD € Lo [a, 0]

la, y] Where

(”“)HOO = sup |g (n+1) t)‘ < oo0.

t€(a,y]

I

Proof. Follows directly from £.11) and using the norm as i (1). O

When the points of the divisiof, are fixed we obtain the following.

Corollary 3.5. Let g be defined as in Corollarg.5and [, : a = zp < 21 <
- < xp-1 < xp = y be a division of the intervala,y]. Then we have the
inequality

B.7) |g9(y)—gl(a)

Zn: 2i ! [Z { i+ (=1) h{+1} : (zi)] |

1

(n+1) H

Hg '2nzhn+1 ncgn+1 c L., [a y]

(n
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Proof. The proof follows directly from using(7). O
For the equidistant partitioning case we have:

Corollary 3.6. Letg be defined as in Corollarg.5and

Ik:xi:a+i-(y;a), i=0,.. .k

be an equidistant partitioning df, y|, then we have the inequality: Integral Inequalites of the

Ostrowski Type

(3.8) g(y)—g(a)—i—i Yy—a jl A. Sofo
= 2k 7!
| 1 | | o Title Page
X [—g(ﬂ) (a) + Z {(—1)j — 1} g9 (x) + (1) gV (y)] ' Contents
i=1
H (nH)H 44 44
g n+1 1
00 |f (n+1) c Loo

Proof. The proof follows directly upon usin@(9) with f' = gandb=vy. 0O Eo 2

Close

Quit
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Let

(m)

A, a=mx (m) (m)

<™ << <M=y

be a sequence of division ¢f, b] and consider the sequence of real numerical
integration formula

wherew; (j = 0,...,m) are the quadrature weights and assumeXhidt, w](.m) =
b—a.

The following theorem contains a sufficient condition for the Weigb}(@
(o] that
Lo (f. f .o, f™, A, w,,) approximates the integrglabf (z) dr with an er-
ror expressed in terms gfff || .

Theorem 4.1.Let f : [a,b] — R be a continuous mapping dn, b] such that

Integral Inequalities of the
Ostrowski Type

A. Sofo

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 27 of 83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sofo@matilda.vu.edu.au
http://jipam.vu.edu.au/

f™=Yis ACla, b]. If the quadrature Weight3y§m) satisfy the condition

2

42) 2™ - a<Zw V<P —aforalli=0,...,m—1

then we have the estimation

b
. n+1
el &= O
< + A
S CES] 2 1\° jZ;wJ v
i n+1
. (ng:z ey w§m>)
=0
FN = oy
- (n—i—l) pa <hi )
N Nas 1 pemny (g — here ()
< CES [v (K" )] (b—a), where f'") € Ly [a,b].
Also
m _ m)
v () = _max {0
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In particular, if | /]| _ < oo, then

b
i L (7. S Bwn) = [ F (0

u(h(m))HO
uniformly by the influence of the weights,.

Proof. Define the sequence of real numbers

m .
ZH.—CH—E w , =0,...,m.

Note that
Z+1—a+2w =a+b—a=0D
By the assumptior4(2), we have
ozl(;nl) € [xl(m),xffl)] forall ¢ =0,...,m—1.
Definea™ = a and compute

agm) a(()m) _ w(()m)

aﬁf}—aﬁm) = a+2w —a—ij(-m):wZ(m) (t=0,...

,m—1)
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and

m m—1
aﬁl—a,(;”):a—i—z:w](-m)—a— wj(-m):w,(;”).
7=0 7=0
Consequently
> (alm = al™) £ () =S w™ s (),
1=0 =0
and let
m n ( 1)7« m j—1 r
(m) (m) - (m) m
ij f(x] )— . [Z{(xj —a—Zw§ ))
j=0 r=2 ’ j=0 5=0
j r
e ge) o)
s=0
=1y (fafla"'7f(n)7Am7wm) .
Applying the inequality 8.1) we obtain the estimatel(1). O

The case when the partitioning is equidistant is important in practice. Con-
sider the equidistant partition

Em::xl(-)::ajtz ¢
m

, (1=0,...,m)
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and define the sequence of numerical quadrature formulae

Im(faflv--'vf(n)aAmawm)

J=0

The following corollary holds.

Corollary 4.2. Let f : [a,b] — R be AGa, b]. If the quadrature weighta;j(.m)

satisfy the condition

7 1 (m) 1+ 1 .
Egb_a;wj < L i=0,1,....n—1,

then the following bound holds:

n+1

Ny (212020 =l li{(M_ S wgm)>r
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(n) . n+1
L () s e

In particular, if | f™]|__ < oo, then

b
lim I, (f,f’,...,f<”>,wm):/ f(t)dt

uniformly by the influence of the weights, .

The proof of Corollary4.2 follows directly from Theorend. 1
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The Gruss inequality![5], is well known in the literature. It is an integral in-
equality which establishes a connection between the integral of a product of two
functions and the product of the integrals of the two functions.

Theorem 5.1.Leth, g : [a,b] — R be two integrable functions such that<
h(x) < ®andy < g(x) < T forall x € [a,b], ¢, P,y andT are constants.
Then we have

Integral Inequalities of the

1 g
(5.1) T (hg)l < (@ =6) (T ~7), oo e
A. Sofo
where
. b Title Page
(5.2) T (h,g):= m/ h(z)g(x)dx Contents
1 b 1 b 44 44
— h(x)dx - d
= |t = [g@a .
and the inequality %.1) is sharp, in the sense that the constgntannot be Go Back
replaced by a smaller one. Close
For a simple proof of this fact as well as generalisations, discrete variants, ex- Quit
tensions and associated material, seg.[The Griss inequality is also utilised

. - . . Page 33 of 83
in the papersd, 7, 14] and the references contained therein. d

A prematureGruss inequality is the following.
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Theorem 5.2. Let f and g be integrable functions defined an b] and lety <
g(z) <Tforall z € [a,b]. Then

53) T (hg) <+

N[

— (T, )E,

whereT (f, f) is as defined inq.2).

Theorem5.2 was proved in 1999 by Mdtj P&aric and Ujeve [16] and it
provides a sharper bound than the Griss inequdlity.(The termprematures Integral Inequalities of the
used to highlight the fact that the resuiitd) is obtained by not fully completing Ostrowski Type
the proof of the Griss inequality. The premature Grss inequality is completed

A. Sofo
if one of the functionsf or g, is explicitly known.
We now give the following theorem based on the premature Griss inequality _
Title Page
(5.3.
L Contents
Theorem 5.3.Letl, :a =29 < z; < --- < 111 < x = b be a division of
the intervalla, b], a; (i = 0,...,k + 1) be 'k + 1’ points such thaty, = a, o; € <4< 44
[zi1,2) (i=1,...,k)anday, = b. If f: [a,b] — Ris ACa,b] andn time < >
differentiable onla, b], then assuming that the" derivative ™ : (a,b) — R
satisfies the condition Go Back
Cl
m < f™ < M forall z € (a,b), o%e
Quit
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X [:: { 5= 5) | FIUD (@i41) = (% + 5z‘)jf(j1) (fi)}]

(2

SO E) ]

-(Ftra )R (3)”

where
h; = Tit1 — T4 and
Tiv1 T
51 = Q41 — : 9 Z, ZZO, ,k’—]_
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Proof. We utilise 6.2) and 6.3), multiply through by(b — @) and chooseé (t) :=

K, (t) as defined byd.2) andg (¢) := f™ (¢), t € [a, b] such that

b
nk ( t——/f dt-/Kmk(t)dt‘
2
[b_ [ i ([ e dt)]
Now we may evaluate

/ F (E)dt = £ () — £ (a)

/Knk

Ti41
= Z/ — (t — )" dt
n

k—

(5.5)

N|=

and

xz-{—l - az-‘,—l n+1 + (ai—i—l - xz)nJrl} .

=0
Using the definitions ok; andd; we have

h; i
Titl = Qi1 = 5 = 0i and a1 -3 = 5 + 9
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such that

k— n+1 n+l—r
R Z( , )“‘” (5>

n+1 nt+l—r
+ E ( , ) (5: (5) ] Integral Inequalities of the

Ostrowski Type

(1) () ]

Title Page
Also, Contents
b
Gyi= | K2, (t)dt « dd
a < | 2
= Z / (= oi)” a“;l) dt Go Back
=0 Y Ti <n|)
1 Close
1 n n .
= Z (@ir1 — i)™ 4 (igr — ) H} Quit
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“wrrer s (3) (X () ) o)

r=0

From identity ¢.1), we may write

I [ as ay

=0

and from the left hand side 05 (5) we obtain

/f )dt + (— )Z( 1)j

Gg =

X [;{(%—5) fli- 1>(xi+1)_(%+

_ (fm;) _(bc)l)_(nfiz—ll;!(a)) :1 ( % )n+1
B Y 0ven)

after substituting fot7;.

N (—1)
;!

j=1

k-1
" [ { Tir1 — Qi) ‘f(jfl) (Tiv1) — (i1 — l‘z‘)j f(jfl) (xz’)}]
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From the right hand side 0b(5) we substitute for7; andG, so that

oo 2w ([ K dt)z

G, =
~wrn3) S () o]
( z(%) h [z (") (ij)r{mnr}]f.
Hence,
6ol < T (G
and Theorend.3has been proved. O]

Corollary 5.4. Let f, I, anday, be defined as in Theorein3and further define

(56) 52061'4.1—%le

forall i =0,...,k — 1such that

(5.7) (5§1min hili=1,...,k}.
2

The following inequality applies:
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(e

)
(b—a)(n+1)

<5 [(zn i_na(n'ﬁ D> K " )‘V

9 (%)MH {1+ (-1}

« (%)HH (14 (=1)}

The proof follows directly from%.4) upon the substitution o6(6) and some

minor simplification.

Remark 5.1. If for any division/;, : a =

To < X1 <+ < Tpq < x, = b oS
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the interval[a, b], we choosé = 0 in (5.6), we have the inequality

b n
(5.9) ‘C—D”/nf<ﬂdt+<—0"§:§i

S )'{

7

=0
n— k-1 n+1
SRS
b—a ) (n+1)! —\ 2
m

2b—a) = i 41
(2n + 1) (n!)? Z ( 2

=0

(s ®)7) ]

The proof follows directly from%.9).

M —
<

2

Remark 5.2. Let £ be defined as in Theore®3and consider an equidistant
partitioning E, of the intervalja, b], where

b_
m:a+i(kf),i:Q”wk

Ek =
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The following inequality applies

"1 /(b—a)’
5.10 t)dt "y =
(5.10) ' [ s )jj,(%)
{ 1y fG-1 ( b(z‘—l))
G- ( (k—z)—l—zb)}
k Integral Inequa!ities of the
n—1) (n—1) b n+1 Ostrowski Type
(")~ f Y (a) a e
(b—a)(n+1) 2k
nk b—a\""! .
< (M — . ) Title Page
<M =m) T ( ok )
Contents
Proof. The proof follows upon noting thét; = =4, —z; = (%%),i=0,... JE] <« NS
| 4
Go Back
Close
Quit

Page 42 of 83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sofo@matilda.vu.edu.au
http://jipam.vu.edu.au/

In this subsection we point out some special cases of the integral inequalities in
Section3. In doing so, we shall recover, subsume and extend the results of a
number of previous published papers1].

We shall recover the left and right rectangle inequalities, the perturbed trape-
zoid inequality, the midpoint and Simpson’s inequalities and the Newton-Cotes
three eighths inequality, and a Boole type inequality.

In the case when = 1, for the kernelk, ; (¢) of (2.3), the inequality 8.1),
reduces to the results obtained by Dragordjrfer the cases whetf : [a, b] —

R is absolutely continuous anf belongs to thd.., [a, b] space.

Similarly, forn = 1, Dragomir [L1] extended Theorer.1for the case when
f la,b] — Ris a function of bounded variation da, b].

For the two branch Peano kernel,

1 n

ﬁ(t_a) , te [CL,(L’)
(61) Kn’g (t) =

1

H(t_b)na te (x7b]

the inequality 8.1) reduces to the result (2) obtained by Cerone and Dragomir
[1] and [3]. A number of other particular cases are now investigated.

Theorem 6.1.Let f : [a,b] — R be an absolutely continuous mapping|enb]
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anda < z; <b,a<a; <z; <as <b. Then we have

/ fydt+ CLY [— (a—an) f97 (a) + {(a:1 —ay)’

J!

(6.2)

Hf(N)Hoo n+1 n+1
< (n+1)! ((ar —a)""" + (21 — )
+ (a3 =)™ + (b - 0)"") o e
1] 1 | A. Sof
< [} _ n b n—+ . Sofo
— (n+1)! ((I a) +( T ) )
Hf(n)‘ 00 n+1 (n) Title Page
< (b—a)"", f™eLlyglab.

(n + 1)! Contents
Proof. Consider the division = zo < x; < 29 = b and the numbers, = a,

<4< 44
oy € [a,21), a2 € (x1,b] andaz = b.
From the left hand side oB(1) we obtain < >
n (_1)]- 2 ‘ A - Go Back
‘21 J! 2 {<x1 — o)’ — (i — O‘”l)J} 7oy (w:) Close
Jj= i=
(1Y i (-1 Quit
B ]2_; 4! (a= ) f777 (a) Page 44 of 83
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From the right hand side 08(1) we obtain

1
Hf H Z {(vigr — D (i — @i+1)n+1}

((a1 —a)" + (r — )"+ (o — )"+ (b— ag)"H)

and hence the first line of the inequality.?) follows.

Notice that if we choose; = a anda, = b in Theorem6.1 we obtain the Integral Inequalities of the

Ostrowski Type

inequality (L.2). O
A. Sofo
The following proposition embodies a number of results, including the Os-
trowski inequality, the midpoint and Simpson’s inequalities and the three-eighths T
Newton-Cotes inequality including its generalisation.
o i ) Contents
Proposition 6.2. Let f be defined as in Theorefnl and leta < x; < b, and
a < (m;m)““’ <z < W < b for m a natural numberm > 2, then we 4 »
have the inequality < >
n (_1)3' (b—a) . Go Back
6.3 Pl = t)dt + : =1 (
63) [Pl i+ 35 {r e
o b—a\’ Quit
—(—1) 0D } —a) —
(D7 a) g+ ma) m Page 45 of 83
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Hf(n)Hoo b—a n+1 b—aq n+1
<t G) (- (50)
b—a n+1
+(b—x1—< -~ )) ) it f™ e Ll[ab].

Proof. From Theoren®.1we note that

o = Mo Datd oy, = et m=-1b
m m

so that

b—a b—a
a—op = —|— ,b—ay = —

T —Qp = xl—a—(b_a) and xl—agz(b_a)—(b—xl).

m m

From the left hand side o5(2) we have
~(a=a) I (@) + { (@1 - Y
— (a1 = ae)’ } fU7 (1) + (b= a2)’ 97 (1)

_ (b - a)j [F97D (b) — O (a))

m

O S N (CO R Lttt
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From the right hand side 06(2),

(Oll o a)nJrl + (1’1 . al)n+l + (Oéz . $1)n+1 + (b . a2)n+1

(5 e ()
(- (5)

and the inequalityq.3) follows, hence the proof is complete. [

The following corollary points out that the optimum of Propositi®a oc-
curs atr; = 2322 = = in which case we have:

Corollary 6.3. Let f be defined as in Propositicgh2and letr; = “T“’ in which
case we have the inequality

e (57)

(6.4)
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2Hf(n)HOO b—a n+1 m — 92 n+1
S<n+1>!(m) “( 2 )
it f™ e Lyla,b].

The proof follows directly from.3) upon substituting:; = “T“’

A number of other corollaries follow naturally from Propositiér2 and
Corollary6.3and will now be investigated.

The following two corollaries generalise the Simpson inequality and follow

directly from 6.3) and ©.4) for m = 6.

Corollary 6.4. Let the conditions of Corollarg.3 hold and putn = 6. Then
we have the inequality

Integral Inequalities of the
Ostrowski Type

A. Sofo

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 48 of 83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sofo@matilda.vu.edu.au
http://jipam.vu.edu.au/

b n+1
+(—x1+a25) ) f"™ e Ly [a,b],

which is the generalised Simpson inequality.

Corollary 6.5. Let the conditions of Corollar$.3 hold and putn = 6,. Then
at the midpointz; = “T“’ we have the inequality

a+b
(5]

b

(6.6)

Ly el Kb G ) {9700 = (17 197 ()}
)

9| £(n) —a\"!
< (Ui]; 1H)c'>o (b 6 a) (1+27), f™ € Log[a,b].

Remark 6.1. Choosingn = 1 in (6.6) we have

e
[ (250 (s ar (50 1))

(6.7)
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S%Ilfll (b—a)®, f' € Loola,b].

Remark 6.2. Choosingn = 2 in (6.6) we have a perturbed Simpson type in-

equality,
a-+b
(1)
b

(6.8)

b— a+b
t) dt — ( 6 ) ( + 4 ( 9 ) ) Integral Inequalities of the
Ostrowski Type
+ b—a ’ A. Sofo
6

b—a)’ Title Page
<P ypi, e Ll :
Contents
Corollary 6.6. Let f be defined as in Corollarg.3 and letm = 4, then we P 5
have the inequality
+0 4 g
a
(6.9) Pin ( 9 ) ’ Go Back
b—a Close
t)dt
- Z < ) Quit
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Sy Y Y o (&3]

Remark 6.3. From (6.9) we choose: = 2 and we have the inequality

P a+b
(43)
<[ [ rwa (57) (s s var (757)

.\ (b%) (f’ -7 <a>)‘
1l

) )3 "
%6 (b—a)’, "€ Lsla,b].

(6.10)

Theorem 6.7.Let f : [a,b] — R be an absolutely continuous mapping|enb]
andleta < z; < zy <bando € [a,x1), ag € [x1,22) @ndas € [x9,b]. Then
we have the inequality

(6.11) £) dt+2g [— (a—ay)’ fUV (a)

(1 —ay) — (21 — az)j> f(j_l) (x1)

— (wg — 043)j> f(jfl) (22)

+
e
H
no
|
o
M
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(n)
< |(|nf+—}1|c)>7 ((n — a)" + (1

+ (29 — ag)

_ al)n+1 + (O{Q _ :E1)n+1

n+1 + (O[g . x2)n+1 + (b . a3)n+1) ’

f™ € Ly [a,b].

Proof. Consider the division = zy < 1 < 29 = b, aq € [a,71), ay €
(1, 29), a3 € [22,b], ag = a, xg = a, x3 = b and putay = b. From the left
hand side of §.1) we obtain

g(;—})] é {(xl - @i)j — (m; — Oéz'+1)J} f9- 1)( i)

+ ((xl —ar) — (&1 - Oéz)j) FIY ()

+ ((:c2 — o)’ — (22 — a3)j> FID (@) + (b — ag)? fO1 (b)] .
From the right hand side 08(1) we obtain

[ a—a) {97 (@)

Hf H i Z{ Qg1 — ;) n+1 + (Tisg — ai+1)n+1}

_||f”)||oo el
(1 — )" + (21 — )" + (2 — 21)

(4 1)!
+ (o — 22)" "+ (b —ag)"t)

n+1

+ (:E2 . a2)n+1
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and hence the first line of the inequalitg.{1) follows and Theoren®.7 is
proved. ]

Corollary 6.8. Let f be defined as in Theorefn7 and consider the division

(m_l)a+b§a2§a+(m_1)b§a3§b

m m

a< o <
for m a natural numbern > 2. Then we have the inequality

(6.12) Qo

/bf(t)le—i

ey

(-1
;!

[~ (a=a) 1970 (@)
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<

OoRmn
- (n +1)!
(AR it ((m=1)a+b "
T (n+ 1) (o =)™ + (T_al)
(m—l)a+b n+1 a—l—(m—l)b n+1
R A — T ™
1 b n+1
N (ag ~ w) - a3>n+1) |
m
f™ e Ly la,b].
Proof. Choose in Theorerf.7, z; = W andz, = w hence the
theorem is proved. ]

Remark 6.4. For particular choices of the parameters andn, Corollary 6.8
contains a generalisation of the three-eighths rule of Newton and Cotes.

The following corollary is a consequence of Coroll&r.

Corollary 6.9. Let f be defined as in Theoreth7 and choosey, = “T*b =
nte then we have the inequality

(6.13)  [Qun

— /bf(t)dt—ki(_
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15
S (g ) Tom
_ w1 ((m—1)a+b
n+1 n+1
+ 2 ((b —a) (m27—)12)> + (as. om0 (n:n_ D b)
+ (b — Oé3)n+1) , f™ e Ly a,b].

Proof. If we puta, = 42 = 21422 into (6.12), we obtain the inequality6(13
and the corollary is proved. O

The following corollary contains an optimum estimate for the inequality

(6.13.
Corollary 6.10. Let f be defined as in Theorefn7 and make the choices

3m —4 4 —m
a1=< >a+(—>b and
2m 2m
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B 4—m . 3m—4 b
a8 = 2m “ 2m

then we have the best estimate

(6.14)
Qmn
- /abf(t) dt+i (_jpj
x [(“ U L0 ) - 1y 90 @)
(282 o]

2] f b—a i 1 n+1
Ak () o s

f™ e Ly [a,b].

Proof. Using the choicer, = 92 = ife2 ) — (m=Datb gpgy, — od(mo1b
we may calculate

(4—m)(b—a)

2m

(g —a) = = (b—az3)
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and

($1 - 041) = (042 - xl) = ($2 - 042) = (043 - xz)
~ (m—=2)(b—a)
N 2m '
Substituting in the inequalitys(13 we obtain the proof ofg.14). O

Remark 6.5. For m = 3, we have the best estimation 6f14) such that

Integral Inequalities of the

(6 15) ‘©3 Ostrowski Type
) b § ( 1)]- A. Sofo
= / f(t)dt+ZT
“ j=1 Title Page
b—a\’ ¢ . . b—a)’
X [( 5 a> {f(]*l) (b) — (—1) f(]*l) (a)} + ( - a) Contents
44 44
x {1- (-1} (f(j‘” (2a2+ b) + 07 (GE%))” < >
Hf(n) H - - Go Back
= 6™ (n+ 1)! (b=a)™, f"€ Lo la,b]. Close
Proof. From the right hand side 06(14), consider the mapping Quit
" " Page 57 of 83
4 _ n _ n
e ()2 ()
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then

2 1 2 1\" 1 1\"
’ m2 m 2 2 m
and),, , attains its optimum when
2 1 1 1

m 2 2 m’

in which casen = 3. Substitutingn = 3 into (6.14), we obtain 6.15 and the
corollary is proved. O

Whenn = 2, then from 6.15 we have

[roa- ("5 v o+ s

S (5 vo-re

()0 (5)]

< Hf//”oo (b— a)3 f// e Loo [CL b] )
- 216 ’ ’

Q3,2

The next corollary encapsulates the generalised Newton-Cotes inequality.

Corollary 6.11. Let f be defined as in Theorefn7 and choose

2a + b a-+2b a-+b
ry = 71‘2: 7a2: )
3 3 2
—1 b —1)b
o = TTHetb e, = ¢ Db

T T
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Then forr a natural number; > 3, we have the inequality

(6.16) |T:.n

2 w1 ro3\" 1
Sm(b—a) ,,,n+1+( 3r ) +6n+1 )

Proof. From Theoren6.7, we putz; = 242, 7, = <2 o, = 4 o

(r—lr)a-l-b andas — w Then 6.16) follows. 0

Remark 6.6. The optimum estimate of the inequalifyi6) occurs whemn = 6.
from (6.16 consider the mapping

1 r—3\"" 1
Mr,n = 7’”+1+( 3r ) +6”+1
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the M), = —(n+1)r "2+ (=) (3 = 1)" and M,,, attains its optimum
when! = 1 — 1, in which case" = 6. In this case, we obtain the inequality

(6.195 and specifically for, = 1, we obtain a Simpson type inequality

~ ’ b—a
617 |ou|=| [ rwa- (1) v+ so)
b—a 2a +b a+2b
UG (5)
/ -
<Ml ap, yeraio, T
which is better than that given bg.(7). A Sofo

Corollary 6.12. Let f be defined as in Theorefn7 and choosen = 8 such

thata; = 2, a, = 2 andag = “7 with z; = 242 andz, = 422, Then Title Page
we have the inequality Contents
(6.18) |Ts.,| «“ 3
b < >
=[] f@)dt
a Go Back
S (D (b=a) g J £G-1) Close
o ) e - Y @) _
J=1 Quit
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< 2 Hf(n)Hoo (b - a)nH (3n+1 4ogrtl 5n+1) 7

(n+1)! 24
f™ e Ly la,b].
Proof. From Theoren®.7we put
2a+b a-+2b Ta+b a—+T7b
T = , XLog = , 1 = , O3 =
3 3 8 8
anda, = “* and the inequality§.18) is obtained. O

Whenn = 1 we obtain from .18 the ‘three-eighths rule’ of Newton-Cotes.

Remark 6.7. From (6.16) with » = 3 we have

[ s dt+z [(b‘a) (F979 1) = (=17 979 (@)

N (b—a) {f] D (2,) — U1 (361)}”

20" 1 1
—(LLZ 1H)T° (b—a)"! <W + 6n+1) L f™ € Loo [a,0].

In particular, forn = 2, we have the inequality

[ w52 o+ )

()25

’Tgm‘ =

|T372| =

+
VR
o>~
wl |
)
~_
[N~}
VRS
i
=
S~—
o |
%
—~
~__
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N (bgay(f'(%%);f'(%“’))‘

Hf/,Hoo (b_a>3’ f// c Loo [(Z,b].

<
- 72

The following theorem encapsulates Boole’s rule.

Theorem 6.13.Let f : [a,b] — R be an absolutely continuous mapping on
[a,b] and leta < z1 < x5 < 3 < bandoy € [a,21), @y € [v1,22), a3 €

(o, x3) @anday € [z3,b]. Then we have the inequality

(6.19) (A{H@dt+§i£%?ﬁL{a—o@jﬂfﬂ(@
(=) = (@ = a2)) f970 (@)
+ ((932 — ) — (22— Oés)j> FU (2)
(2 = )’ = (s = @)’ ) f971) (1)

f(n n n n
< ‘(‘n—f— ‘1“)"; (a1 — ) o (r — o))" (ag — )T

+ (22 — )™ + (o3 — )" + (23 — a

+ (g — I3>n+1 +(b— a4)n+1) if f(") € Ly |a,b].
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Proof. Follows directly from 8.1) with the pointsag = 29 = a, 4 = a5 = b
and the divisiorn = 2y < 1 < 29 < 23 = b, a; € [a,x1), ap € [T, X2),
a3 € [(L’Q,ZL‘g) anday € [ﬁg,b].

Corollary 6.14. Let f be defined as in Theorefh7 and choosey; =

o)
Titxs

The following inequality arises from Theoresnl3

_ atl1b _ Ta+2b
y Qg = 12 ! €Ty = 9 x3

— 1la+T7b a3 = Ta+11b

18 b ’ 18
%, then we can state:

dt+z
+<b;a) {G) -}
{f(J 5 (7a+2b) _ 1y f(j_1)<

b—a
9

2

X

20,
(n+1)!

36

(_1)j} JE (“ ‘5 b)

b —a ’I’L+1
( ) (3n+1 4 4n+1 4 5n+1 4 6n+1) 7

11

2a+7b
= 20 and x,

2a 4+ 7b
9

if ™ € Ly[a,b].

O

a+b

12 >

-
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In this section we utilise the particular inequalities of the previous sections and
apply them to numerical integration.
Consider the partitioning of the intervéd, b given by A, : a = 2y <
1 < o < Typq < Ty, = b, pUth; == x50 —x; (1 =0,...,m—1) and put
v (h) := max (h;|i = 0,...,m — 1). The following theorem holds.
Theorem 7.1.Let f : [a,b] — R be AGa,b], £ > 1 andm > 1. Then we have
the composite quadrature formula

b
(7.1) | F©dt = 2B )+ B (B, 1
where
(72) Ak (Arm f) = _Tk (Am7 f) - Uk (Ama f) s

(7.3) T (A, f) = '_ (&) % [—f(jfl) () + (1) f979 (2i41)

and

m—1 n ' j
04 N =33 (5) 5

i=0 j=1

X Ei {(_1)9' _ 1} FU1) <(k’ —7) a:k +razi+1>]

r=1

Integral Inequalities of the
Ostrowski Type

A. Sofo

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 64 of 83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sofo@matilda.vu.edu.au
http://jipam.vu.edu.au/

is a perturbed quadrature formula. The remainder(4,,, f) satisfies the es-
timation

Al

(7.5)  |Re (A, f) D Zhn“, it ) e L [a,b],

|—2n(

wherev (h) := max (h;|i =0,...,m —1).
Proof. We shall apply Corollar.3on the intervalz;, x; 1], (i = 0,...,m — 1).

Thus we obtain Integral Inequalities of the
Ostrowski Type
Tit1 n h; 7 (1) i G-1) A. Sofo
@7 (g ) 5 |27 @+ (1 I i)
x; j=1
k-1 Title Page
+ {(—1)j — 1}f(j71) ((’f — )T +mi+1)] ‘
k Contents
r=1
1 i — i\ <44 44
< sup |f™ ) (M) ‘
(n + 1)'2n te[z;,xit] k 4 | J
Summing over from 0 to m — 1 and using the generalised triangle inequality, Go Back
we have Close
m—l xi+1 . . QUIt
a3 (1) L [00 a4 (7 550
; /ﬂf Z 2k) ! ’ Page 65 of 83
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1 m—1 hn+1

< L 1),
(n + 1)'2” ; kntl te|w;,xiy1] | }

m—1 n
o | 1o 1<2k)ﬁ

=0 j=

3

x [197 (@) + (1) 19 ()] +

-2 () 5

=0 j=1
k—1
_ j _ (j—l) (kf — T) ZT; + TxH,l
X rl{( 1) 1}f ( :
As sup |f™(t)| < || f™]_, the inequality in 7.5) follows and the theo-
te[:vl Tit1)
rem is proved. ]

The following corollary holds.

Corollary 7.2. Let f : [a,b] — R be a mapping such that®™~Y is ACa, b],
then we have the equality

b
(7.7) / f@)dt = =Ty (A, [) = Us (A, f) + Ra (A, f)
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73 )= 305 (B) L [90 ) 4 (1 170 )

]l

U (A, f) is the perturbed midpoint quadrature rule, containing only even
derivatives

Uz (A, f) EZZK ) {ew—QﬂH%?iﬁﬂ)
’ 2
0 j=1
and the remaindet?; (A,,, f) satisfies the estimation

Rz (Am, f)| < A .

’ < 22n+1—n—|—1| hn+1, if f S L [(I b]

Corollary 7.3. Let f andA,, be defined as above. Then we have the equality

b
(7.8) /f@ﬁ=—E@mﬁ—%@mﬁ+&@mﬁ,

where
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; 2z, i i i + 2z
« {fu-n (%) LD (H%)]

and the remainder satisfies the bound

Hf || mz:lhn-H’ if f [ ]

Am, )| <

Theorem 7.4.Let f and A,, be defined as in Theorel and suppose that
& € [z, xi1]) (1 =0,...,m —1). Then we have the quadrature formula:

— !Ei)j U1 (z;)

— (1) (w1 = &) FUV (i) |+ R(E A f)

and the remainder? (¢, A,,, f) satisfies the inequality

>_A

m—
Hf n+1

(7.10) R (& A f)] n+1

=0

(xm—gi)”“), it e Ly la,b].
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Proof. From TheorenB.1we putag = a, 29 = a, x1 = b, ay = banda; =
a € [a, b] such that

[ rwas > S - a-ap o
(=) V)| = R(E A ).

Over the intervalz;, ;1] (. = 0,...,m — 1), we have

/xmf(t)dwri(_

i

Pj |:xl+1 gz) f (lerl)

— (=17 (& =2 f970 (@)] = R (& Ams f)
and therefore, using the generalised triangle inequality

R (€, Am,f)!

<Z

$1+1 m—1 n (_1)j

(n n+1 o enntl
N n * 1 ‘ =0 t€ :7,115+1] }f ‘ ( Z) + <xl+1 5’) ) :
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The inequality in 7.11) follows, since we have sup | f™ (t)| < || f™||__,

tG[{Ei,Z’H_ﬂ

and Theoren?.4is proved.

The following corollary is a consequence of Theorém

Corollary 7.5. Let f and A,,, be defined as in Theoreml The following

estimates apply.

(i) Then™ order left rectangle rule

b m—1 n j
—hi) -
[rwa=3"3%" (T)ﬂf D (i) + Re (A, f)
a i=0 j=1 ’
(i) Then™ order right rectangle rule
b Sy ) e
/ f(t)dt = _ZZTfO_ N(@it1) + By (A, ).
a i=0 j=1 )
(4ii) Then™ order trapezoidal rule

froa-E5(4)'

i=0 j=1

< {19 @) = (<17 £970 @) | + B (B ).
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where

m—1
1 1= 1R B 1 < S e i 0 €1
=0

(n+1) (n+1)! ¢
and
(A “
n (n)
e (A DI < 37 ,Zh Jif f € Lo [a,0].
Theorem 7.6. Consider the intervallxi < ag < & < 0452) < Tipp io= '”te@fgs'gs\?v‘;ﬁ:“ﬁgthe
0,...,m—1,andletf andA,, be defined as above. Then we have the equality
A. Sofo
m—1 n .
Wi .
7.11 / t)dt = ( i — a?)) G=1) (g,
( ) fit i—0 le J! { d () Title Page
B {(@ B a(1)>j B (& B a@))j} £00 (g Contents
44 >
- (5Uz+1—04 ) fut (xiﬂ)} < >
+R (5 ol a@ A f) Go Back
Close
and the remainder satisfies the estimation out
’R (5705(‘1)7051(2)7Am7f>‘ Page 71 of 83
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n+1 n+1
+ (a§2) - &) + (xiﬂ - a?’) } it f e L lab].

The proof follows directly from Theorens.1 on the intervalgz;, z;1],

(i=0,...,m—1).
The following Riemann type formula also holds.

Corollary 7.7. Let f and A,,, be defined as in Theoreiml and choose€; €

[$i7 xi+1]’

(¢ =0,...,m—1). Then we have the equality
m—1 n
Uu)/j’dt & —x)"H!
i=0 j=1

- (fz’ — %‘H)nﬂ} FI(&) + Rr (& A, f)

and the remainder satisfies the estimation

m—1
|RR (A, f)] < Hf H Z nH (Iz’+1—§i)n+1),

(n+1)!
if f™ e Ly [a,b].

=

(1)

The proof follows from 7.11) wherea, ’ = z; andal@) = Tyl

Remark 7.1. If in (7.12 we choose the midpoigt; = x;,; + x; we obtain the
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generalised midpoint quadrature formula

m—1 n ]+1 j
(7.13) / ft)dt = Z ( >
=0 j=1
X {1 — (—1)j}f(j*1) (%) + Ry (Am,f)
and Ry (A, f) is bounded by
(n)
|Ras (A, f)] < (H"; H,2n Zh”“, if £ € Ly [a,b].

Corollary 7.8. Consider a set of points

¢ e {5xi+xi+1 $i+5$i+1:| (=0, m—1)

6 ’ 6
and letf andA,, be defined as in Theoreml Then we have the equality

Z [( )j{(—l)jf(j‘” (@)

7j=1

—f(j_l) (l’z‘+1)} - { (fz‘ - —5331- zxiﬂ)]

_ (&. _ %5%“)]} f(j—l) (&)

m—

(7.14) /f t)dt =

1=

Ry (A, f)
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and the remaindei?, (A,,, f) satisfies the bound

Hf(n)Hoo - h\"" 5+ i\

=0
] ) n+1
+ (% —a@-) } if " € Loc [a,].
Remark 7.2. If in (7.14 we choose the midpoigf = “+1*** we obtain a integral Inequalities of the
generalised Simpson formula: Ostrowski Type
) . A. Sofo
b m—1 n (_1)] hi J . 1 1
[ rma=3 3= (g) {17 1579 @) = 1979 (@) |
a i=0 j=1 J: Title Page
h; J ; . i i Content
- <§> {1- (v} (%) + R (A f) —
44 44
and R, (A,,, f) is bounded by < 4
Hf(n)” - m—1 hi ntl . Go Back
Rl < @2 Y ()i e e, ose
=0
uit
The following is a consequence of Theor&rb. £
) ) Page 74 of 83
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and letf andA,, be defined as in Theoreml.
The following equality is obtained:

b

=0 j=1
(j—1) Tiv1 + T, (1) 7 Integral Inequalities of the
X f (QZZ) - T - Ostrowski Type
§ A. Sofo
(%H + 7 (2)) } (G-1) <$z+1 + zz)
- ; f
2 2 .
Title Page
- <xz+1 - a(2)> f(J ) (x; +1)} + Rp (ag”,a?, A, f) , Contents
where the remainder satisfies the bound S Al
| 4
1 @)
‘RB (Oé- , O 7Amaf>‘ Go Back
Hf H ( )"“ n <$z‘+1 +z a(1)>n+1 Close
~ (n+1) (n+1)! 2 ’ Quit
n (a@) _ Tiyl + xl)"ﬂ n <$ . a(2)>"+1} Page 75 of 83
% 9 i+ i .
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Remark 7.3. If in (7.15 we choose

1) 3T+ i ;
V=" """ and o/ = ="
o; 1 o, 1 ,

we have the formula:

S () [ o e - 0

—{1—(—1Y}f04)(ﬁi%tﬁ)}%RBUme%

The remainderRz (A,,, f) satisfies the bound

A B\
|R(Amfﬂ_( +D'x4§: T it f™ e Lo [a,b)].
’ i=0

The following theorem incorporates the Newton-Cotes formula.
Theorem 7.10.Consider the interval
xigagl)ggf) <§ V<ay (1=0,...,m—1),

and letA,,, and f be defined as in Theoreml. This consideration gives us the
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equality

") (e -a) )
{6 - a) - (€2 - ) f o ()

+ R (a0l 0l 6V 6? A, £).

K3 (2

S

The remainder satisfies the bound
O ]
Hf H M nt1 W 1)+
{( u) (60— al?)
n+1 n+1 n+1
g <a§2> =) (60— al) T (o - 6)

n+1
+ (ml —al® >> } . iff™ e Lo [a,b].

The following is a consequence of Theor&mQ
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Corollary 7.11. Let f andA,,, be defined as above and make the chatéé)s:
TT;+Tiq1 2)
it o

A 3
L o :m+96z+1’ 047(; ) —

zi+Txipr (1) _ 2zitxi (2) _ zit2wi
i 2 ) 8+’€i - 3+and£i - -
then we have the equality:

3 )

_ ; ; (—;)j [(f;l)] {(_1)j FO () — fG-D ($¢+1)}
(g_) {5/ - (cay} oo (2t )
_ (%)j {4j _ (_5)3} FG-D (f” +§_xi+1)]
+ Ry (A, f),

where the remainder satisfies the bound

2 (n) m—1
’RN (Amaf)’ S % (3n+1 _|_4n+1 + 5n+1) Z

h‘ n+1
> (i)
=0

if f™ € Ly [a,b].
Whenn = 1, we obtain from 7.18) the three-eighths rule of Newton-Cotes.

Remark 7.4. For n = 2 from (7.18, we obtained a perturbed three-eighths
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Newton-Cotes formula:

/abf(t) dt = ng <(%) (f () + f (241)) + (%)2 (f’ (z;) —2f’ (xm))
() (5 s (252)
_ (3g1)2{f’ (252 ;f’ (%)}

where the remainder satisfies the bound

+RN(Am?f)7

PRI Ny o R ')

1=0
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This paper has extended many previous Ostrowski type results. Integral in-
equalities forn—times differentiable mappings have been obtained by the use
of a generalised Peano kernel. Some particular integral inequalities, including
the trapezoid, midpoint, Simpson and Newton-Cotes rules have been obtained
and further developed into composite quadrature rules.

Further work in this area may be undertaken by considering the Chebychev
and Lupas inequalities. Similarly, the following alternate Griss type results Integral Inequalites of the
may be used to examine all the interior point rules of this paper. Ostrowski Type

Leto (h(x)) = h(z) — M (g) where

A. Sofo

1 b
M (h) = h_ a/ h(t) dt. Title Page
Contents
T (h,g) = M (hg) — M (h) M (g). “ >
4 | J

Then from 6.2
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