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ABSTRACT. An integral inequality for convex functions defined on linear spaces is obtained
which contains in a particular case a refinement for the first part of the celebrated Hermite-
Hadamard inequality. Applications for semi-inner products on normed linear spaces are also
provided.
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1. INTRODUCTION

Let X be areal linear space,b € X, a # b and let[a,b] := {(1 — ) a+ b, A € [0,1]}
be thesegmengenerated by andb. We consider the functioffi : [a, ] — R and the attached
functiong (a,b) : [0,1] = R, g (a,b) (t) :== f[(1 —t)a+tb], t € [0, 1].

It is well known thatf is convex ona, ] iff ¢ (a,b) is convex on[0, 1], and the following
lateral derivatives exist and satisfy

(i) g% (a,0) (s) = (V=S [(1 = s)a+sb]) (b—a),s €(0,1)
(i) g (a,0)(0) = (V[ (a)) (b—a)
(i) g~ (a,0) (1) = (v-f (b)) (b—a)
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2 S.S. RAGOMIR

where(7+ f (x)) (y) are theGéateaux lateral derivativesye recall that

(V4f () (4) := lim [f (@ +hy) — ] (Sﬂ ,

h—0+ h

(V-f(z)(y) = kli%l, [f (z+ ki) —f (x)] , x,y € X.

The following inequality is the well-known Hermite-Hadamard integral inequality for convex
functions defined on a segméntb] C X :

(HH) f(a;b)g/of[(l—t)aﬂb}dtgw

2 Y
which easily follows by the classical Hermite-Hadamard inequality for the convex function
9(a,0) - [0,1] = R

7l (9 < [ senmas @80 +9(@b 1)

2
For other related results see the monograph onlline [1].
Now, assume th&tX, ||-||) is a normed linear space. The functifin(s) = 3 ||z
convex and thus the following limits exist
V) (2}, = (V4o ) (@) = Jim |Lerefmol]

t—0+
V) (@,9); = (Vo () () = Jim [Loeeel ol
foranyzx,y € X. They are called theower andupper semi-inneproducts associated to the
normf|-|.
For the sake of completeness we list here some of the main properties of these mappings that
will be used in the sequel (see for example [2]), assumingithat {s,i} andp # ¢:
@) (z,2), = [|lz|* forall = € X;
(@a) (az, By), = aB (z,y), if a, 3 > 0andz,y € X;
(aaa)|(z.y),| < llall 1yl for all =, € X:
@v) (ax +y,z), = a(z,z),+ (y,2), if 2,y € X anda € R;
V) (—z,y), = —(x,y),forallz,y € X;
(va) (z+y.2), < llz] 12l + (y. 2), for all 2,y = € X;
(vaa) The mapping., -),, is continuous and subadditive (superadditive) in the first variable for
p=s (orp=1);
(vaaa) The normed linear spac¥, ||-||) is smooth at the point, € X\ {0} if and only if
(y,z0), = (y, o), forally € X;ingeneraly, z), < (y,z), forall z,y € X;
(ax) If the norm||-|| is induced by an inner produ¢t -) , then(y, ). = (y,z) = (y, ), for
allz,y € X.
Applying inequality (HH) for the convex functioff, (z) = ||z||*, one may deduce the
inequality

2 reXis

2 2
WD I+

2 1
o BN G ERR =
0

for anyz,y € X. The same[(HH) inequality applied fgf (z) = |||, will give the following
refinement of the triangle inequality:

x—i—y‘

1
Hg/ \|(1—t)x+ty\|dt§—”xH;rHy”, 2,y € X.
0

r+y
2

(1.2)
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FIRST HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS 3

In this paper we point out an integral inequality for convex functions which is related to
the first Hermite-Hadamard inequality in (FHH) and investigate its applications for semi-inner
products in normed linear spaces.

2. THE RESULTS

We start with the following lemma which is also of interest in itself.
Lemma 2.1. Leth : [, f] C R — R be a convex function oja, 5]. Then for anyy € [a, f]
one has the inequality

15}
(8 =R, (7) = (v — @)’ . (7)] s/ h(t)dt — (8- a)h(3)

«

(2.1)

N | —

<

[(B=)2H_(8) = (v — a)* W, ()] .

N —

The constang is sharp in both inequalities.
The second inequality also holds for= « or v = .

Proof. It is easy to see that for any locally absolutely continuous fundtioric, 5) — R, we
have the identity

g B B
(2.2) /(t—a)h’(t)dt+/ (t—ﬁ)h’(t)dt:h(y)—/ h (t) dt

foranyy € («, 3), whereh' is the derivative of. which exists a.e. ofw, 3) .
Sinceh is convex, then it is locally Lipschitzian and this (2.2) holds. Moreover, for any
v € (a, #), we have the inequalities

(2.3) B (t) < h' (y) fora.e.t € [a,9]
and
(2.4) h'(t) > k!, (y) fora.e.t € [v,].
If we multiply (2.3) byt — a > 0, ¢ € [a,~] and integrate ofty, ], we get
7 / 1 /
(2.5) [ t-n @i 5ot o
and if we multiply [2.4) bys — ¢ > 0, ¢ € [v, 5], and integrate ofy, 3], we also have
p 1
(26) [ G-0r @iz 56—, 6.
Y

If we subtract[(2.6) from{ (2]5) and use the representafion (2.2), we deduce the first inequality in

.3).
Now, assume that the first inequalify (2.1) holds with> 0 instead of}, i.e.,

I}
@7 ClB-H, () — (v - a)*h (7)] < / h(t)dt— (8 —a)h (7).

«

Consider the convex functio (t) := k |t — "‘T” ,k>0,t€ [a,f]. Then
, [a+ [ , [a+ [ a+f
o (7)o (57) = (7)<

B 1 N
(/hﬁﬂﬁ:ZMﬁ—w.

and
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If in (2.7) we chooseé: = hg, v = 212, then we get
1 1 1
C [Z(ﬂ—a>2k+1(ﬁ—a)2k] < k(B-a)

which givesC < 3 1 and the sharpness of the constant in the first pa (2.1) is proved.
If either i/, (« ) = —oo or h’_ () = —oo, then the second inequality in (2.1) holds true.
Assume that!, («) andh’ () are finite. Sincé is convex ona, 3], we have
(a

(2.8) W (t) > H,
and

(2.9) B (t) < h' (B) fora.e.t € [y,0] (v may be equal ta).

) fora.e.t € [a,7] (v may be equal t@)

If we multiply (2.8) byt — a > 0, ¢ € [«, 7] and integrate ofrv, 7], then we deduce

5
(2.10) [ t—or 0z 56— @
and if we multiply [2.9) bys — ¢ > 0, ¢t € [v, 5], and integrate ofty, 3], then we also have
3
(2.11) [ -ow@a< G- o).
vy
Finally, if we subtract{(2.70) fronj (2.11) and use the representdtioh (2.2), we deduce the second

inequality in [2.1). Now, assume that the second inequality in (2.1) holds with a constartt
instead of}, i.e.,

I}
(2.12) / h(t)dt— (B—a)h(y) < D [(B— ). (8) - (7 — a)* I, (a)] .

If we consider the convex functiohy (t) = k |t — 22 [, B], then we have
hy_ (B) = k, hy, (o) = —k and by [2.1P) applied fal, in v = 22 we get

{6 -0 <D | Th(3 - + 1h(3 - P

giving D > £ which proves the sharpness of the constgintthe second inequality if (2.1).00
Corollary 2.2. With the assumptions of Lemfna|2.1 and i («, 3) is a point of differentia-

bility for h, then
B
<5 [ nwa-ne).

(2.13) (O‘;ﬁ )h’( )
Now, recall that the following inequality, which is well known in the literature as the Hermite-
Hadamard inequality for convex functions, holds

a+ 3 1 A h(a)+ h(3)
_ < < ——
(2.14) h( . )‘5—a/a h(t)dt < .
The following corollary provides both a sharper lower bound for the difference,

1 A a+f3
B_@/@h(t)dt—h( 5 ),

which we know is honnegative, and an upper bound.
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Corollary 2.3. Leth : [a, 5] — R be a convex function o, 5]. Then we have the inequality

i (557) - (5] oo

1 A a+p3
< ﬁ—a/a h(t)dt—h( 5 >

S () - (@] (- a).

The constan§ is sharp in both inequalities.

Example 2.1. Assume that-co < o < 0 < [ < oo and consider the convex functidn:
la, B] = R, h(x) = exp |z| . We have

—e 7 if x <0,
W (x) =

e’ if x>0;

(2.15) 0

IN
ol =

<

andh’ (0) = —1, #/_ (0) = 1. Also,

B B
/ h(t)dt = /0 e “dr + / e’dx = exp () + exp (—a) — 2.
« a 0

Now, if <32 = 0, then by (2.15) we deduce the elementary inequality

(2.16) 0 < &P (8) J;}efp&(—a) -2 o | _g 3
< 1 [exp (B) + exp (—a)] (B — «).

8
If QT”’ = 0 and if we denotel = a, a > 0, thusa = —a and by ) we also have

la - XD (a) —1

1
(2.17) —-1< 50 exD (a).

a

The reader may produce other elementary inequalities by choosing in an appropriate way the
convex functiom.. We omit the details.

We are now able to state the corresponding result for convex functions defined on linear
spaces.

Theorem 2.4.Let X be a linear spaceg,b € X,a # bandf : [a,b] C X — R be a convex
function on the segmeft, b|. Then for any € (0, 1) one has the inequality

(218) 5 [(1- 9 (V4 f (1= 9)at sb]) (b= a) (9 [ [(1 = ) a+ ) (b — a)]
< /lf[(l—t)a+tb]dt—f[(1—s)a+sb]
< S [U= 9 (T FO) (0 a) ~ 2 (v4f (@) (b - a)].

The constang is sharp in both inequalities.
The second inequality also holds for= 0 or s = 1.

Proof. Follows by Lemma| 2]1 applied for the convex functiér(t) = g¢(a,b)(t) =
fl(1—t)a+tb], t €0,1], and the choices = 0, § = 1, andy = s. O
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Corollary 2.5. If f : [a,b] — R is as in Theorem 2|4 and Gateaux differentiablecin=
(I —=X)a+ Ab, A € (0,1) along the directionb — a), then we have the inequality:

(2.19) (% - A) (VF(e)) (b—a) < /0 FI1—t)a+tb]dt— £ (c).

The following result related to the first Hermite-Hadamard inequality for functions defined
on linear spaces also holds.

Corollary 2.6. If f is as in Theorerp 2|4, then
ez 0 < g|vs (") o-a-vs (") 0-a)

2
/Of[(l—t)a+tb]dt—f<a;rb>
[

V-f(0)(b—a)=(V+f(a))(b—a).

The constan§ is sharp in both inequalities.

Now, let2 C R™ be an open and convex setlit.
If F:Q — Ris a differentiable convex function dn, then, obviously, for any € Q we
have

IN

<

VE(@e) @) =) agf) Y, 7€ R",

where are the partial derivatives d@f with respect to the variable, (i = 1,...,n).
Usmg @) we may state that

OF (Aa+ (1— A\)b)

(2.21) (% — A) > Tz - (b — a;)

i=1

g/lF[u—t)aHB} dt—F((l—)\)c‘LJr)\E)

"~ OF (b)

D).

for anya, b € Q and € (0,
, we get

In particular, forA = 1

(2.22) 0 < /1F[(1—t)a+tb}dt—F(a;6)
u (b) _ OF (a)
g;( ox; ox; )O(bi_ai)'

=1

In (2.22) the constan is sharp.

3. APPLICATIONS FOR SEMI-INNER PRODUCTS

Let (X, ||-||) be a real normed linear space. We may state the following results for the semi-
inner products:, -), and(, -)..
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Proposition 3.1. For anyz,y € X ando € (0, 1) we have the inequalities:
(3.1) (1-0)(y—z,(1-0)z+oy), -0’ (y—,(1 — o)z + oy),

1
s/ 1= t)a + ty|2dt — (1 = o) + oy
0

<(1-0)(y—=zy),— o (y—zy),.
The second inequality if (3.1) also holds or= 0 or o = 1.
The proof is obvious by Theor.4 applied for the convex funcfion) = 1 |z|?, = € X.

If the space ismooth then we may pufe, y| = (z,y), = (z,y), for eachz,y € X and the
firstinequality in [(3.1L) becomes

(32) <1—2o>[y—x,<1—a>x+oms/0 10— t)a+ tyldt — [[(1 - o) 2+ oy

An interesting particular case one can get frpm|(3.1) is the one fer,

(3.3) 0 < %[(y—m,y%—@ —(y—x,y+ )]

< /H(l—t)x—i—ty” dt—H H

1
< -2y —{y—z2)].
The inequality[(3.8) provides a refinement and a counterpart for the first ineqiiality (1.1).
If we consider now two linearly independent vectary € X and apply Theorer 2.4 for
f(z) = ||z|, z € X, then we get
Proposition 3.2. For any linearly independent vectoisy € X ando € (0,1), one has the
inequalities:

(3.4)

N | —

(1_0)2 (y—z,(1-0)z+oy), _02<y—x>(1_0)$+0?/>i]
(1 =)z + oyl (1 = o)z + oyl

1
s/ 1=tz + tyldt — (1 — o)z + oy
0

1 — , —
S - |:(1 _ 0_)2 <y l',y>z _ 0_2 <y ZIZ',[L'>5:| )
2 Iyl [l
The second inequality also holds for= 0 or o = 1.
We note that if the space is smooth, then we have

1 ly—z,(1 —0)x+ oyl !
@) (3-0) Uit < [ el - o - a)a s ol

and foro = , (3.4) will give the simple inequality

1 Tty Tty
(36) 0 < §[<y—x,@> —<y—l’,?

< /||1—tx+ty||dt—H H
[~

S o Yy—, 7+ - y—l',— .
SK lyll /; ]l /
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The inequality[(3.6) provides a refinement and a counterpart for the first inequalityjin (1.2).
Moreover, if we assume thét/, (-, -)) is an inner product space, then py {3.6) we get for any
x,y € H with ||z|| = |ly|| = 1 that

(3.7) O§/1 (1 —1t)z + ty| dt —
0

The constant is sharp.
Indeed, ifH = R, (a,b) = a- b, then takingr = —1, y = 1, we obtain equality in (3]7).
We give now some examples.
(1) Let?* (K), K = C, R; be the Hilbert space of sequenaes: (z;), .y with >_>°, 2]
oo. Then, by [(3.F), we have the inequalities
1
2) 2

1
1 oo 2 fe')
/ (Z!(l—t)xi+ty,»|2> dt—(Z
0 \i=0 i=0
1 & )
i=0

for anyz, y € £% (K) provided> >, |z:* = 32, lwil* = 1.

(2) Letu be a positive measuré, (£2) the Hilbert space ofi—measurable functions dn
with complex values that az-integrable orf2, i.e., f € L, (Q) iff [ |f (¢ WP du (t) <
oo. Then, by [(3.F), we have the inequalities

(3.9) / (/\ ) +Ag<>|2du<t>)%cm

_( (1) +9() Qdu@)

e B e

i+ Yi
2

(3.8) 0

IN

D=

2

SNCEACI

forany f,g € Ly (2 )DFOVIdede|f Wu(t) = [o,1g () du(t) = 1.
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