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ABSTRACT. This paper deals with a system of quasi-variational inequalities with noncoercive
operators. We prove the existence of a unique weak solution using a lower and upper solutions
approach. Furthermore, by means of a Banach’s fixed point approach, we also prove that the
standard finite element approximation applied to this system is quasi-optimally accukate in
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1. INTRODUCTION

We are interested in the following system of quasi-variational inequalities (QVI's): find a
vectorU = (u!, ..., u™) € (H3(Q))™ such that

al(ut,v —ut) Z (ff,v—u') Yo € H}(Q)
(1.1) u <k+ut v <k4 ottt

M+1 _ 1

u u,
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2 M. BOULBRACHENE, M. HAIOUR, AND B. CHENTOUF

where() is a smooth bounded domain 8" , N > 1 with boundaryrl', a'(u, v) are M
variational forms,f* are regular functions aridis a positive number.

This system arises in stochastic control problems. It also plays a fundamental role in solving
the Hamilton-Jacobi-Bellman equation] [1], [2].

Its coercive version is well understood from both the mathematical and numerical analysis
viewpoints (cf. eg.,[[1],[12],[18]).

In this paper we shall be concerned with the noncoercive case, that is, where the bilinear
formsa’(u, v) do not satisfy the usual coercivity condition.

To handle this new situation, we transform (1.1) into the following auxiliary system: find
U= (ul,...,u) e (HQ))M such that:

bi(u',v —u') Z (f* + Mty v —u') Yo € HY Q)

(1.2) w < k4 utt v <k4+utt
uMH =t
where
(1.3) b (u, v) = a'(u,v) + A(v,v)
and\ > 0 is large enough such that:
(1.4) b'(v,0) 2 ¥ [Vl ) 7 > 0 Vo € Hy(€).

Under this condition, using a monotone approach inspired from [5], we shall prove that both
the continuous and discrete problems admit a unique solution.

On the numerical analysis side, using piecewise linear finite elements, we shall establish a
guasi-optimalL*>°—convergence order. To that end, we propose a new approach which con-
sists of characterizing both the continuous and the finite element solution as fixed points of
contractions in.°°.

This new approach appears to be quite simple. It also offers the advantage of providing an
iterative scheme useful for the numerical computation of the solution.

The paper is organized as follows. In Secfign 2, we discuss existence and uniqueness of a
solution to problem[(1]1). Secti¢n 3 deals with its discretization by the standard finite element
method where, under a discrete maximum principle assumption, analogous discrete qualitative
results are given as well. Finally, in Sectjgn 4 we respectively associate with both the continuous
and discrete systems appropriate contractions and givé€arerror estimate.

2. THE CONTINUOUS PROBLEM

Let us begin with some necessary notations, assumptions and qualitative properties of elliptic
variational inequalities.

2.1. Notations, Assumptions and Preliminaries.We are given functions

(2.1) aty(x), bi(2), af(z) € C*(Q), 1€ Q, 1<k, j<N; 1<i<M
such that:
(2.2) Y (@G Z alé?; (e (e RY, a>0)
1< j, k<N
(2.3) aék = azj; ap(z) = B> 0; x € Q.
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We define the bilinear forms: for any v € H(),

N
24)  ai(u,v) = /Q <1S;SNG 5;‘] ;;k ;bl S+ (o). uv) |
We are also given regular functioris such that
(2.5) fleC?*Q) and f>0; Vi=1,..., M.
and the following normy¥ W = (w', ..., w™) € [, L>(Q)
(2.6) Wil = max [[w']| g

1<i<M

where||-[| .« q, denotes the well-knowh>—norm.

2.2. Elliptic Variational Inequalities. Let fin L>(£2) andy in W2°°(2) such that) > 0 on

0f). Letalsob(-, -) be a continuous and coercive bilinear form of the same form as those defined
in (1.7) and considex = o(f, ) a solution to the following elliptic variational inequality VI:
findu € HJ(Q) such that

2.7)

b(u,v—u) = (f,v—u) Yo € H}(Q)
u<1; v <1

Theorem 2.1. (cf. [3],[4]) Under the above assumptions, there exists a unique solution to the
variational inequality (V1)[(2.J7). Moreovey € W27 (), 1 < p < o0

2.2.1. A Monotonicity property for VI ) Let (f,1)), (f, z/?) be a pair of data and =

o(f, ), i=0 (f, gE) the respective solutions t.7).

Theorem 2.2.(cf. [4]) If f > fandy > ¢ theno(f,v) > o(f, ).

2.3. Existence and uniquenessAs mentioned earlier, we solve the noncoercive system of

QVI's by considering the following auxiliary system: find a vector = (u',...,u") €
(HL ()" such that

b (ut,v —ut) Z (ff+ Mutyo —ut) Yo € HY (Q)
(2.8) W <k+utt, v<k+ut!

M+1 1

u =Uu.

It can readily be noticed in the above system, that besides the obstacles*!”, the right
hand sides depend upon the solution as well. Therefore, the increasing property of the solution
of VI with respect to the obstacle and the right hand side, reduces the pr¢blem (2.8) to finding
a fixed point of an increasing mapping aslin [5].

Let L=(Q) = [, L (), whereL(Q2) is the positive cone of.*(£2). We introduce the
following mapping

(2.9) T :L=(Q) — L=(Q)
W —TW = (¢',...,¢")
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whereVi=1,..., M, (* =oc (f"+ M’ k+w'™) is solution to the following VI:

b (Chv—C 2 (f' + Mw',v— (') Yo € Hy ()
(2.10)
C<k+wt, v<k+wt!

Problem [(2.1ID) being a coercive variational inequality, thanks!tol[3], [4], has a unique solu-
tion.

2.3.1. Properties of The Mapping T Let us first introduce the vectdr® = (a0, ... aMoy,
whereVi = 1,..., M, 4*° is solution to the equation

(2.11) a'(a"°,v) = (f',v) Vv € Hy(Q).

Since f* > 0, there exists a unique positive solution to probl.ll). Moreowet, €
W2P(Q), p < oo (cf. e.g., [5]).

Proposition 2.3. Under the preceding notations and assumptions, the magpiagncreasing,
concave and satisfie§ WV < U°, ¥V W € L>°(Q) such thatV < U°.

Proof. 1. T isincreasing.
LetV = (v',...,oM), W = (w',,...,wM) in L>®(Q) such that'’ < w', Vi =
1,,...,M . Then, by Theorer 22, it follows that(f* + A\w’; k + w™™) > o(f* +
vk + o). Thus, TV < TW.

2. TW < U° YW < U,

Let us first recall that:™ = sup(u, 0) andu™ = sup(—u, 0). The fact that both of the
solutions¢’ of (2.10) andi*° of (2.11) belong taf}($2), we clearly have:

¢ — (¢ —a)" e HH(Q).

Moreover, ag¢’ — a%%)™ > 0, it follows that
¢ = (¢ —a" ) < <k+wtt
Therefore, we can take = (' — (¢* — 4*°)* as a trial function inO). This gives:
b (Cz, _ i_ AzO ) > <f7, o, — (Cz _@i,o)+> '
On the other hand, taking= (¢* — a*%)" in equationml) we get
z’(wo (Cz_wo) ) (fz+)\AZO (Cz_AzO) )

and, sincéV < U°, by addition, we obtain

b (¢ @) (¢ - a) ) 20
which, by [1.4), yields
Thus

G<a®vi=1,2,...,.M
i.e.,
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3. T'is concave
Let us agree on the following notations:

wy = 0w’ + (1 = 0)u'; why =0k +w') + (1 —0)(k+w'); 0 € [0,1].

Then we have:

TOW + (1 —0)W)
= [o (f' + Mgk +wy),....o (f'+ X wgs k+wy™) ..o o (Y 4+ dwy's b+ wy) ]
= [o (f"+ wgiwgy) - o (ff + Mg wihl) o (Y + dag’wg ) ]
Now, denoting by:
(=0 (f + ' k+wt),

& :U(fi—i-)\ﬁ)i;k—i-zbiﬂ),
G =0¢"+(1-0)C,

Uy =0 (f" 4+ dwpwy™) .
It is clear that} is admissible for the problem which h&% as a solution. So
Uy + (Us — Go)
is admissible for this problem. Therefore,
(2.12) b (U3 (U5 = G)7) = (o + i (U5 = G5) 7).

Also, we can take¢’ — (U, — ¢})~ as a test function in the problem whefeis the
solution and(* — (U; — ¢;)~ can be taken as a test function in the problem whose
solution is¢*. From this we deduce that

(2.13) b (¢ U= )7 ) 2 = (f+ 2, (U= G))
and
(2.14) b (C W =G)7) = = (F 420, (U - ).
Now multiplying (2.13) by, and [2.14) byl — 6, addition yields
0 (G (U= G) ) = = (1 + 2w, (U5 G))
which added tg/(2.12) gives
b (V-G (U5 —G)7) = 0.
Thus
(U5 —G) =0
which completes the proof i.e.,

T (eW (1 e)W) > 0TW + (1 — 0)TW.
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2.3.2. A Continuous Iterative Scheme of Bensoussan-Lions Tyf&tarting fromU° solution
of (2.11) and’° = 0, we define the iterations:

(2.15) Ut =70 n=0,1,...
and

(2.16) Ul =10" n=0,1,...,
respectively.

The analysis of the convergence of these iterations requires to prove the following interme-
diate results.

Lemma 2.4. Assumef® > % > 0; 1 <i < M, wheref? is a positive constant, and let

fO

0 < p <inf - ; -
Jo°].. el

Then we have
(2.17) T(0) > pU°.

Proof. Indeed, from[(2.16)7°(0) = U* = (a'!,...,a"“M), whered®! is the solution of the
following variational inequality:

b (@t v —att) 2 (f' 4+ A0 v —att) Ve € Hy(Q)
(2.18)
it <k v<k.

Then by the choice of it is clear that
v = (ai,l o /JJ,&'L',O)_ + ﬁi’l

can be taken as a trial function in the YT (2.18) inequality. So taking

v = — (ﬂz‘,l - Mai,O)_
as a trial function in[(2.11) and using the fact théit> f° andu* = 0, we get by addition:

b (ai,l — (,ai,l _ um,oy) > ((fz —ufi— ,u)\ai,()) , (ai,l _ Mai,O)*)
> (20 ) = paa?) , (@ = i) ")
But, again, by the choice of
O = p) = pAa™® > fO(1 = p) — pA HUOHOO > 0.

Thus, by[(1.4)

i.e.,

O

Proposition 2.5. Let C = {W € L=(f) such that0 < W < U°}. Let alsoy € |0 ;1],
W, W € C such that:

(2.19) W —W <AW.
Then, the following holds
(2.20) TW — TW < y(1 — ) TW.
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Proof. By (2.19), we have(l — )W < W . Then, using the fact thaf is increasing and
concave (see Propositipn P.3.), it follows that

(1 =9)TW ++T(0) < T[(1 =)W +7.0]
<TW
Finally, using Lemma 2]4. we gét (2]20). O
Theorem 2.6. Under conditions of Propositio.Elz.S, the sequer(cﬁé%) and (U") are

monotone and well defined . Moreover, they converge respectively from above and below
to the unique solutio®’ of system of QVI'Y (1]1).

Proof. The proof will be carried out in five steps.

Step 1. The sequencéU”) stays inC and is decreasing.
From (2.15) it is easy to see that @*" is solution to the following VI:

(At v — @) Z (ff 4 Mt v — at) Yo € H (Q)
(2_21) abn < k44 nitln— 1’ v < k_i_azdrl,nfl

ﬁ]\/1+1,n — ﬁl,n

Since f* > 0 and4*® > 0, a simple induction combined with standard comparison
results in variational inequalities lead t6™ > 0 i.e.,

(2.22) U">0 Vn>0.
Furthermore, by Propositign 2.3. and (2.15), we have:
Ut =10 < U°.
Thus, inductively
(2.23) o< =TU"<U"<---<U".
Step 2. (U”) converges to the solution of the systl.l).
From (2.22) and (2.23) itis clear theit = 1,2,..., M
(2.24) nlggo " (z) = u'(z), x € Qand(a',...,a") e C.
Moreover, from[(2.22) we have + i+~ > 0. Then we can take = 0 as a trial
function in [2.21), which yields

AT AN Azn % ~i,n—1
Y8 |1 < V(@ < |7+ 28 o Nl

or more simply

Al?’L

(P

/\’Lﬂ

ey < €.

whereC is a constant independentof Hencei’" stays bounded in!(Q2) and con-
sequently we can complefe (2]24) by

(2.25) lim 4" = @’ weakly in H(Q).

n—oo

Step3 U = (@', ..., ™) coincides with the solution of systefn (1L.1).
Indeed, since
( )<k,+w+1n 1(17)

then [2.24) implies
u'(r) < k+a"(x).
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Step 5.

M. BOULBRACHENE, M. HAIOUR, AND B. CHENTOUF

Now letv < k + @' thenv < k4 41" ~1 ¥n > 0. We can therefore takeas a trial
function for the VI [2.21). Consequently, combining (2.24) gnd (2.25) with the weak
lower semi continuity ob(v, v) and passing to the limit in problem (2]21), we clearly
get

bi(u', v —a') = (f + \a', v —a') Yo € Hy (), v < k+a".

UniquenessLet U, U~be two solutions of the syste@.l). These are fixed points of
Therefore, sincé’ — U < U, by takingiV = U andWW = U in (2.19) withy = 1 — 4
we have )

U-U<(1-pl.
Doing this again withy = 1 — u, we obtain

U-U<(1—pU
and inductively

U—-U<(1—p)'U<(1—p)"

UOH .
Thus, making: tend toco yields U < U. Finally, interchanging the roles &f and U,
we obtainU = U

The monotone property of the sequerit®) can be shown in a similar way to that of
sequencélU"). Let us prove its convergence to the solution of sys@ (2.1). Indeed,

apply [2.19)[(2.20) with

W=0% w=0% vy=1
then

TU® —TU° < (1 — p)TU°,
SO A

0<U' —U' < (1—p)U.
Applying (2.20) again, yields

0<U?—U%< (1—p)*U?
and quite generally

0<U"—U"<(1=p)"U" <(1—p)"U° < (1—p)"

UOH .
Thus

U'—0U" -0 ae
from which it follows that
Ur—U=U
is the unique solution of system of QVIs (1.1).
O

2.3.3. Regularity of the solution of systen (1.1)rhe following is a theorem on the regularity

of (L1).
Theorem 2.7. (cf. e.g[l]). Let assumptiong (2.1)-(2.5) hold. Then each component of the
solution of systen (1.1) belongs@Q)N W2 P(Q); V2 < p < oo.

J. Inequal.
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3. THE DISCRETE PROBLEM

Let 2 be decomposed into triangles andgtdenote the set of all those elemenis; 0 is
the mesh size. We assume that the famijlys regular and quasi-uniform.
Let V}, denote the standard piecewise linear finite element space,

(3.1) Vi={veC() N H;(Q)suchthat/x € P, VK €7, }.
Let B’ be the matrices with generic coefficients
(3.2) (BY),, =b'(pr, ) L<i <M ;1< 1,5 <mf(h),

where{¢;}, | =1,2,...m(h) is the basis o¥/,.
Letr;, be the usual restriction operator defined by

m(h)
(3.3) Yo e C(Q) N HY(Q), rv = Z v

=1
In the sequel of the paper we shall make use ofdlserete maximum principle (d.m.p)
assumption. In other words, we shall assume®iat < i < M are M-matrices (se€|[7]).

3.1. Discrete Variational Inequality. Letu, € V}, be the solution of the following discrete
variational inequality

blup, v —up) 2 (f,v—up) Yv €V},
(3.4)
up < TRY; v S TRt

3.1.1. A Discrete Monotonicity Property for VI ) Let (f, ¥), (f, ¢) be a pair of data
andu = o,(f,v), u = o,(f, 1) the respective solutions .4). Then we have the discrete

analogue of Theorefn 2.2.
Theorem 3.1.Under thed.m.p If f > f and« > 1 then o, (f, %) > on(f, ).

3.2. The Noncoercive Discrete System of QVI'sLet V,, = (V},)*. We define the noncoer-
cive discrete system of QVI's as follows: fid, = (u},...,u}) € V, solution of

al(ul,v—u') Z (ff,0—ul) Yo €V

(3.5) uh <k+ult v <k+u!
M+l _ 1
Uy = Uy

And, similarly to the continuous problem, we solye {3.5) via the following implicit coercive
system: findJ;, = (u}, ,...,u}') € V,, solution to

bi(ub,v—u') = (f'+ b, v —ub) Yo € V;

(3.6) uh <k+ultt v <k+ult
up =l

Let us also note that all the properties established in the continuous case remain conserved in
the discrete case, provided ttan.p is satisfied. The proofs of these will not be given as they
are respectively identical to their continuous analogue ones.
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3.3. Existence and UniquenessLet us first definaf]}? to be the piecewise linear approxima-

tion of U° defined in[(2.111):

(3.7) a () v) = (fl,v) Yo e Vi, 1<i< M.
We consider the following mapping
(3.8) Ty : L2(Q) — V,,

W —TW = (¢}, ..., ),

whereVi=1,...,M,{ = on(f' + ', k +wi*!) is the solution of the following discrete
VI.

V(Ghv—G) 2 (f 4w, v =) Yo € Vi,
(3.9)

G < rp(k 4w, v < ry(k +wh).

Proposition 3.2. Under thed.m.p 7T}, is increasing, concave and satisfiggil’ < U,? YW €
L>(Q), W < UY.

3.4. ADiscrete Iterative Scheme of Bensoussan-Lions TypalVe associate with the mapping
T,, the following discrete iterative scheme: starting fréfm defined in ) and’? = 0, we
define:

(3.10) Ut = 1,07
and

(3.11) Urtt = 1,07
respectively.

Similarly to Theorenj 2]6, the convergence of the above algorithm rests on the discrete ana-
logues of Lemma 2]4. and Propositjon|2.5, respectively.

Lemma 3.3. Assumef? > % > 0; 1 <i < M, wheref? is a positive constant, and let
fO
Joz]. Al +

0 < p < inf

Then we have
(3.12) T0(0) = uUy

Proposition 3.4. Let C, = {W € L*(Q) such thab < W < UP}. Let alsoy €]0,1],
W, W e C,, such that:

(3.13) W —W <A~W.
Then the following holds
(3.14) TW —T,2W < y(1 — p)T,W.

Theorem 3.5. Under conditions of Propositio.2Ei}3.4, the sequen@®) and (U}) are
monotone and well defined @,. Moreover, they converge respectively from above and below
to the unique solutio®,, of system of QVI'q (3]5).
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4. THE FINITE ELEMENT ERROR ANALYSIS

In what follows, we prove the convergence of the approximation and establish a uniform
error estimate. Our approach consists of characterizing both the solution of systgms (1.1) and
(3.9) as the unique fixed points of appropriate contractiofis*(2). To that end we need first
to introduce a coercive system of quasi-variational inequalities and prove that its solution is
monotone with respect to the right hand side.

Let F = (F',...,FM) € L>(Q). We denote by Z = (z',...,2") the solution of the
coercive system of QVI’s:

bi(z v —2Y) = (F', v—2") Yv e H Q)

(4.1) 2P < k42
SMA1 1
Denoting byz = o(F', k + 1), we introduce the sequenc&s = (z',...,zM") and

Zm = (24, ..., M) defined by
2 = g (F' k4 27,
and
L+l — O(Fi7 L _'_éi—i-l,n)’
wherez*? is the unique solution of(z° v) = (F*, v) Yo € H}(Q2) andz™? = 0.

Theorem 4.1. (cf. [6]) The sequencéZ") and (Z") converge respectively from above and
below to the unique solution of systgm [4.1). Moreavee W2P(Q) 1 <i < M; 1< p < cc.

Proposition 4.2. Let (F*,..., FM); (F’l, o FM) be two families of right hands side and

Z = (z4,...,2M); Z = (3',...,2") be the respective solutions of syst(4.1). Then the
following holds. IfF > F, thenZ > Z.

_ —=0 — — ) —
Proof. Let Z2° = (z'°,...,z2™0%) andZ = <21’0, . ,Z’M’O) such thatz"® and7"" are so-

lutions to equation$(z*°,v) = (F* v) andb (Ei’o,v> = <F”', v), respectively. Then the
respective associated decreasing sequences
7" =z, ..., ZM") and 7 = (51’", . ,EM’”>
satisfy the following assertion.
If F'> Fithenz™" > 2" Vi=1,..., M.
Indeed, since
Fintl _ (Fi’ k+ 2i+1,n) :

7l _ o (F" k+ ?H’") :
Fi > Fiimpliesz® > 2° Vi = 1,2,..., M. So, k + +10 > k + 2% and thus, from
standard comparison results in coercive variational inequalities, it follows that

i i1
vl > 7%,
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Now assume that>»~1 > "' Then, asF" > F?, applying the same comparison argument
as before, we get:

z n > ;zn
Finally, by Theorel, passing to the the limitas> co, we getZ > Z. O

Remark 4.3. Propositiorj 4.2 remains true in the discrete case provided.thep is satisfied.

4.1. A Contraction Associated with System of QVI's [1.1). Consider the following mapping
4.2) S:L>®(Q) — L>*(Q)
W —SW =7= (,zl,...,zM),
whereZ is solution to the coercive system of QVI's below
bi(zv—2Y) 2 (f'+ M'v — 2%) Yo € HY(Q)
(4.3) A< k42t v<k+2thi=1,..,M
SMAL 1

zZ.

By Theoren 4.1, problenj (4.3) has one and only one solution.
Proposition 4.4. The mapping is a contraction in[LOO(Q) ie.,

%W’SWH

A+ 0 ﬁ
Therefore, there exists a unique fixed point which coincides with the solutadrihe system of
QVI's (T1).

Proof. Let W, W € L>(Q). We considerZ = SW = (z',...,2M) andZ = SW =
(2'..., M) solutions to system of QV! '4 (4.3) with right hands sifle= (F!,..., FM) and
F = (F ., FM), whereF' = fi + \w andF’ = f' + \i'. Now setting

[e.9]

S L RECPeo
A+ o A+ %0
it follows that
Figfyi_f_HFz‘_Fi
and
Fit /(\ 5 HF Fi|| < F' 4 (ag(z) + A\®) (because (z) = 3 > 0)

so, by Proposition 4]2, we obtain:

<l
Interchanging the roles i and¥, we similarly get

7 <+ 0
Thus

2" = yHL“(Q) <&

which completes the proof. O

In a similar way to that of the continuous problem, we are also able to characterize the
solution of the system of QVI's (3.5) as the unique fixed point of a contraction.
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4.2. A Contraction Associated with The Discrete System of QVI's[(3]5) We consider the
following mapping:

(4.4) S : L=(Q) =V,
W — S\W =2, = (z,ll,...,zéw),
where 2} is solution to the discrete coercive system of QVI's:
b(z,v—2z)) = (f +  w',v—2z)) Yo €V,

(4.5) 2 <k+2thv<k+z
M+l _ 1
h T Fh

Thanks tol[6],[8] systen (4,5) has one and only one solution.
Next, making use of Propositipn 4.2 and Renjark 4.3 we have the contraction propgsty of

Proposition 4.5. The mappingS;, is a contraction inL>°(2). i.e.,
A
P
Therefore, there exists a unique fixed point which coincides with the soluifiah the system

of QVI (3.5)

Now, guided by Propositiorjs 4.4 ahd 4.5, we are in a position to establish a uniform error
estimate for the noncoercive system of QV['s {1.1). To this end, we need first to introduce the
following auxiliary discrete coercive system of QVI's.

]« 25 ]

4.3. An Auxiliary Coercive System of QVI's. We consider the following coercive system of
QVI's: find Z, = (%, ..., z)") solution to

b(zi,v—2) 2 (f+Mv—2z) Yve,
(4.6) Z<k+zthu<k+zi=1,....M

M1
Zh — Zhu

Clearly, ) IS a coercive system whose right hand side depends @n(ul, e ,uM) the
continuous solution of systern (1.1). So, in view|of [4.4), we readily have:

4.7) Zn = SpU.

Therefore, using the result of| [6], we have the following error estimate.
Theorem 4.6. (cf. [6])

(4.8) |1Z, — U||, < Ch?|Loghl|’.

4.4. L°°- Error Estimate For the Noncoercive System of QVI's (1.1).Let U andU, be the
solutions of systenj (1.1) and (B.5), respectively. Then we have:

Theorem 4.7.
|U — Ul < Ch*|Loghl’.

Proof. In view of (4.8) and Propositioris 4.4 and 4.5, we clearly have
U= SU, Uh = ShUh; Zh == ShU
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Then , using estimation (4.8), we have
Sl = SU|l, = [|Zn = U,

< Ch? |L0gh]3.
Therefore
|Un = Ulloo < [Un = ShUllo + [IShU = SUJ|
<|ISpUn — SpU]||, + |S,U = SU]|
A
<" _WU-U Ch?|Logh|® .
< 551U~ Ul +C12 | Logh
Thus , 5
Ch?|Logh
U~ Uil < R
1— ——
(1-533)
This completes the proof. O
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