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Abstract

In this paper, using Steffensen’s inequality we prove several inequalities involv-
ing Taylor’s remainder. Among the simplest particular cases we obtain Iyengar’s
inequality and one of Hermite-Hadamard’s inequalities for convex functions.
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1. Introduction and Statement of Main Results
In this paper, using Steffensen’s inequality we prove several inequalities (The-
orems1.1 and1.2) involving Taylor’s remainder. In Sections3 and4 we give
several applications of Theorems1.1 and1.2. Among the simplest particular
cases we obtain Iyengar’s inequality and one of Hermite-Hadamard’s inequali-
ties for convex functions. We prove Theorems1.1and1.2 in Section2.

In what followsn denotes a non-negative integer,I ⊆ R is a generic inter-
val, andI◦ is the interior ofI. We will denote byRn,f (c, x) thenth Taylor’s
remainder of functionf(x) with centerc, i.e.

Rn,f (c, x) = f(x)−
n∑

k=0

f (k)(c)

k!
(x− c)k.

The following two theorems are the main results of the present paper.

Theorem 1.1. Let f : I → R andg : I → R be two mappings,a, b ∈ I◦ with
a < b, and letf ∈ Cn+1 ([a, b]), g ∈ C ([a, b]). Assume thatm ≤ f (n+1)(x) ≤
M , m 6= M , andg(x) ≥ 0 for all x ∈ [a, b]. Set

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.

Then

(i)
1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx

≤ 1

M −m

∫ b

a

[
Rn,f (a, x)−m

(x− a)n+1

(n + 1)!

]
g(x)dx
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≤ 1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λ)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx;

and

1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx(ii)

≤ (−1)n+1

M −m

∫ b

a

[
Rn,f (b, x)−m

(x− b)n+1

(n + 1)!

]
g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(b− x)n+1 − (b− λ− x)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx.

Theorem 1.2. Let f : I → R and g : I → R be two mappings,a, b ∈ I◦

with a < b, and letf ∈ Cn+1 ([a, b]), g ∈ C ([a, b]). Assume thatfn+1(x) is
increasing on[a, b] andm ≤ g(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ1 =
1

(M −m)(b− a)n+1

∫ b

a

(x− a)n+1g(x)dx− m

M −m
· b− a

n + 2
,

λ2 =
1

(M −m)(b− a)n+1

∫ b

a

(b− x)n+1g(x)dx− m

M −m
· b− a

n + 2
.
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Then

f (n)(a− λ1)− f (n)(a)(i)

≤ (n + 1)!

(M −m)(b− a)n+1

∫ b

a

Rn,f (a, x)(g(x)−m)dx

≤ f (n)(b)− f (n)(b− λ1);

and

f (n)(a + λ2)− f (n)(a)

(ii)

≤ (−1)n+1 (n + 1)!

(M −m)(b− a)n+1

∫ b

a

Rn,f (b, x) (g(x)−m) dx

≤ f (n)(b)− f (n)(b− λ2).

Remark 1.1. It is easy to verify that the inequalities in Theorems1.1 and1.2
become equalities iff(x) is a polynomial of degree≤ n + 1.
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2. Proofs of Theorems1.1and 1.2
The following is well-known Steffensen’s inequality:

Theorem 2.1. [4]. Suppose thef and g are integrable functions defined on
(a, b), f is decreasing and for eachx ∈ (a, b), 0 ≤ g(x) ≤ 1. Setλ =∫ b

a
g(x)dx. Then∫ b

b−λ

f(x)dx ≤
∫ b

a

f(x)g(x)dx ≤
∫ a+λ

a

f(x)dx.

Proposition 2.2. Let f : I → R andg : I → R be two maps,a, b ∈ I◦ with
a < b and letf ∈ Cn+1 ([a, b]), g ∈ C[a, b]. Assume that0 ≤ f (n+1)(x) ≤ 1 for
all x ∈ [a, b] and

∫ b

x
(t − x)ng(t)dt is a decreasing function ofx on [a, b]. Set

λ = f (n)(b)− f (n)(a). Then

1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx(2.1)

≤
∫ b

a

Rn,f (a, x)g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λ)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx.
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Proof. Set

Fn(x) =
1

n!

∫ b

x

(t− x)ng(t)dt,

Gn(x) = fn+1(x),

λ =

∫ b

a

Gn(x)dx = f (n)(b)− f (n)(a).

ThenFn(x), Gn(x), andλ satisfy the conditions of Theorem2.1. Therefore

(2.2)
∫ b

b−λ

Fn(x)dx ≤
∫ b

a

Fn(x)Gn(x)dx ≤
∫ a+λ

a

Fn(x)dx.

It is easy to see thatF ′
n(x) = −Fn−1(x). Hence∫ b

a

Fn(x)Gn(x)dx =

∫ b

a

Fn(x)df (n)(x)

= f (n)(x)Fn(x)

∣∣∣∣b
a

+

∫ b

a

f (n)(x)Fn−1(x)dx

= −f (n)(a)

n!

∫ b

a

(x− a)ng(x)dx +

∫ b

a

Fn−1(x)Gn−1(x)dx

= −f (n)(a)

n!

∫ b

a

(x− a)ng(x)dx

− f (n−1)(a)

(n− 1)!

∫ b

a

(x− a)n−1g(x)dx +

∫ b

a

Fn−2(x)Gn−2(x)dx
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= . . .

= −f (n)(a)

n!

∫ b

a

(x− a)ng(x)dx− f (n−1)(a)

(n− 1)!

∫ b

a

(x− a)n−1g(x)dx

− · · · − f(a)

∫ b

a

g(x)dx +

∫ b

a

f(x)g(x)dx.

Thus

(2.3)
∫ b

a

Fn(x)Gn(x)dx =

∫ b

a

Rn,f (a, x)g(x)dx.

In addition ∫ a+λ

a

Fn(x)dx =
1

n!

∫ a+λ

a

(∫ b

x

(t− x)ng(t)dt

)
dx.

Changing the order of integration, we obtain∫ a+λ

a

Fn(x)dx

=
1

n!

∫ a+λ

a

(∫ t

a

(t− x)ng(t)dx

)
dt +

1

n!

∫ b

a+λ

(∫ a+λ

a

(t− x)ng(t)dx

)
dt

= − 1

n!

∫ a+λ

a

g(t)
(t− x)n+1

n + 1

∣∣∣∣x=t

x=a

dt− 1

n!

∫ b

a+λ

g(t)
(t− x)n+1

n + 1

∣∣∣∣x=a+λ

x=a

dt
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=
1

(n + 1)!

∫ a+λ

a

(t− a)n+1g(t)dt

− 1

(n + 1)!

∫ b

a+λ

[
(t− a− λ)n+1 − (t− a)n+1

]
g(t)dt

=
1

(n + 1)!

∫ b

a

(t− a)n+1g(t)dt− 1

(n + 1)!

∫ b

a

(t− a− λ)n+1g(t)dt

+
1

(n + 1)!

∫ a+λ

a

(t− a− λ)n+1g(t)dt.

Thus,

(2.4)
∫ a+λ

a

Fn(x)dx =
1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λ)n+1

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx.

Similarly we obtain

(2.5)
∫ b

b−λ

Fn(x)dx =
1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx

Substituting (2.3), (2.4), and (2.5) into (2.2), we obtain (2.1).

Proposition 2.3. Let f : I → R andg : I → R be two maps,a, b ∈ I◦ with
a < b and letf ∈ Cn+1 ([a, b]), g ∈ C ([a, b]). Assume thatm ≤ f (n+1)(x) ≤

http://jipam.vu.edu.au/
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M for all x ∈ [a, b] and
∫ b

x
(t− x)ng(t)dt is a decreasing function ofx on [a, b].

Setλ = 1
M−m

[
f (n)(b)− f (n)(a)−m(b− a)

]
. Then

1

(n + 1)!

∫ b

b−λ

(x− b + λ)n+1g(x)dx(2.6)

≤ 1

M −m

∫ b

a

[
Rn,f (a, x)−m

(x− a)n+1

(n + 1)!

]
g(x)dx

≤ 1

(n + 1)!

∫ b

a

[
(x− a)n+1 − (x− a− λn+1)

]
g(x)dx

+
(−1)n+1

(n + 1)!

∫ a+λ

a

(a + λ− x)n+1g(x)dx.

Proof. Set

f̃(x) =
1

M −m

[
f(x)−m

(x− a)n+1

(n + 1)!

]
.

Then0 ≤ f̃ (n+1)(x) ≤ 1 and

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
= f̃ (n)(b)− f̃ (n)(a).

Hencef̃(x), g(x), andλ satisfy the conditions of Proposition2.2. Substituting
f̃(x) instead off(x) into (2.1), we obtain (2.6).

Proof of Theorem1.1(i). If g(x) ≥ 0 for all x ∈ [a, b], then
∫ b

x
(t − x)ng(t)dt

is a decreasing function ofx on [a, b]. Hence Proposition2.3 implies Theorem
1.1(i).
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Proof of Theorems1.1(ii), 1.2(i), and1.2(ii). Proofs of Theorems1.1(ii), 1.2(i),
and1.2(ii) are similar to the above proof of Theorem1.1(i). For the proof of
Theorem1.1(ii) we take

Fn(x) = − 1

n!

∫ x

a

(x− t)ng(t)dt, Gn(x) = fn+1(x).

For the proof of Theorem1.2(i) we take

Fn(x) = −f (n+1)(x), Gn(x) =
1

n!

∫ b

x

(t− x)ng(t)dt.

For the proof of Theorem1.2(ii) we take

Fn(x) = −f (n+1)(x), Gn(x) =
1

n!

∫ x

a

(x− t)ng(t)dt.
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3. Applications of Theorem1.1
Theorem 3.1. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and let
f ∈ Cn+1 ([a, b]). Assume thatm ≤ f (n+1)(x) ≤ M , m 6= M , for all x ∈ [a, b].
Set

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.

Then

1

(n + 2)!

[
m(b− a)n+2 + (M −m)λn+2

]
(i)

≤
∫ b

a

Rn,f (a, x)dx

≤ 1

(n + 2)!

[
M(b− a)n+2 − (M −m)(b− a− λ)n+2

]
;

and

1

(n + 2)!

[
m(b− a)n+2 + (M −m)λn+2

]
(ii)

≤ (−1)n+1

∫ b

a

Rn,f (b, x)dx

≤ 1

(n + 2)!

[
M(b− a)n+2 − (M −m)(b− a− λ)n+2

]
.

Proof. Takeg(x) ≡ 1 on [a, b] in Theorem1.1.
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Two inequalities of the formA ≤ X ≤ B andA ≤ Y ≤ B imply two
new inequalitiesA ≤ 1

2
(X + Y ) ≤ B and|X − Y | ≤ B − A. Applying this

construction to inequalities (i) and (ii) of Theorem3.1, we obtain the following
two more symmetric with respect toa andb inequalities:

Theorem 3.2. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and let
f ∈ Cn+1 ([a, b]). Assume thatm ≤ fn+1(x) ≤ M , m 6= M , for all x ∈ [a, b].
Set

λ =
1

M −m

[
f (n)(b)− f (n)(a)−m(b− a)

]
.

Then

1

(n + 2)!
[m(b− a)n+2 + (M −m)λn+2](i)

≤
∫ b

a

1

2

[
Rn,f (a, x) + (−1)n+1Rn,f (b, x)

]
dx

≤ 1

(n + 2)!

[
M(b− a)n+2 − (M −m)(b− a− λ)n+2

]
;

and

(ii)

∣∣∣∣∫ b

a

[Rn,f (a, x) + (−1)nRn,f (b, x)] dx

∣∣∣∣
≤ M −m

(n + 2)!

[
(b− a)n+2 − λn+2 − (b− a− λ)n+2

]
.

We now consider the simplest cases of inequalities (i) and (ii) of Theorem
3.2, namely the cases whenn = 0 or 1.
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Case 3.1.n = 0
Inequality (i) of Theorem3.2for n = 0 gives us the following result.

Theorem 3.3. Let f : I → R be a mapping,a, b ∈ I◦ with a < b and let
f ∈ C1 ([a, b]). Assume thatm ≤ f ′(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ =
1

M −m
[f(b)− f(a)−m(b− a)] .

Then

m +
(M −m)λ2

(b− a)2
≤ f(b)− f(a)

b− a
≤ M − (M −m)(b− a− λ)2

(b− a)2
.

Remark 3.1. Theorem3.3 is an improvement of a trivial inequalitym ≤
f(b)−f(a)

b−a
≤ M .

For n = 0, inequality (ii) of Theorem3.2gives the following result:

Theorem 3.4. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and let
f ∈ C1 ([a, b]). Assume thatm ≤ f ′(x) ≤ M , m 6= M for all x ∈ [a, b]. Then∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣
≤ [f(b)− f(a)−m(b− a)] [M(b− a)− f(b) + f(a)]

2(M −m)
.

Theorem3.4 is a modification of Iyengar’s inequality due to Agarwal and
Dragomir [1]. If |f ′(x)| ≤ M , then takingm = −M in Theorem3.4, we
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obtain∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣ ≤ M(b− a)2

4
− 1

4M
[f(b)− f(a)]2 .

This is the original Iyengar’s inequality [2]. Thus, inequality (ii) of Theorem
3.2can be considered as a generalization of Iyengar’s inequality.

Case 3.2.n = 1
In the casen = 1, inequality (i) of Theorem3.2gives us the following result:

Theorem 3.5. Let f : I → R be a mapping,a, b ∈ I◦ with a < b and let
f ∈ C2 ([a, b]). Assume thatm ≤ f ′′(x) ≤ M , m 6= M , for all x ∈ [a, b]. Set

λ =
1

M −m
[f ′(b)− f ′(a)−m(b− a)] .

Then

1

6

[
m(b− a)3 + (M −m)λ3

]
≤

∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a) +

f ′(b)− f ′(a)

4
(b− a)2

≤ 1

6

[
M(b− a)3 − (M −m)(b− a− λ)3

]
.

In the casen = 1, inequality (ii) of Theorem3.2implies that iff ∈ C2 ([a, b])
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andm ≤ f ′′(x) ≤ M , then∣∣∣∣f(b)− f(a)

b− a
− f ′(a) + f ′(b)

2

∣∣∣∣
≤ [f ′(b)− f ′(a)−m(b− a)] [M(b− a)− f ′(b) + f ′(a)]

2(b− a)(M −m)
.

This result follows readily from Iyengar’s inequality if we takef ′(x) instead of
f(x) in Theorem3.4.
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4. Applications of Theorem1.2
Takeg(x) = M on [a, b] in Theorem1.2. Thenλ1 = λ2 = b−a

n+2
and Theorem

1.2 implies

Theorem 4.1. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and let
f ∈ Cn+1 ([a, b]). Assume thatfn+1(x) is increasing on[a, b]. Then

(i)
(b− a)n+1

(n + 1)!

[
f (n)

(
a +

b− a

n + 2

)
− f (n)(a)

]
≤

∫ b

a

Rn,f (a, x)dx ≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)]
;

and

(b− a)n+1

(n + 1)!

[
f (n)

(
a +

b− a

n + 2

)
− f (n)(a)

]
(ii)

≤ (−1)n+1

∫ b

a

Rn,f (b, x)dx

≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)]
.

The next theorem follows from Theorem4.1 in exactly the same way as
Theorem3.2follows from Theorem3.1.

Theorem 4.2. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and let
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f ∈ Cn+1 ([a, b]). Assume thatfn+1(x) is increasing on[a, b]. Then

(b− a)n+1

(n + 1)!

[
f (n)

(
a +

b− a

n + 2

)
− f (n)(a)

]
(i)

≤ 1

2

∫ b

a

[
Rn,f (a, x) + (−1)n+1Rn,f (b, x)

]
dx

≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)]
;

(ii)

∣∣∣∣∫ b

a

[Rn,f (a, x) + (−1)nRn,f (b, x)] dx

∣∣∣∣
≤ (b− a)n+1

(n + 1)!

[
f (n)(b)− f (n)

(
b− b− a

n + 2

)
− f (n)

(
a +

b− a

n + 2

)
+ f (n)(a)

]
.

We now consider inequalities (i) and (ii) of Theorem4.2in the simplest cases
whenn = 0 or 1.

Case 4.1.n = 0.
Inequality (i) of Theorem4.2gives a trivial fact: Iff ′(x) increases thenf

(
a+b
2

)
≤

f(a)+f(b)
2

. Inequality (ii) of Theorem4.2 gives the following result: Iff ′(x) is
increasing, then

(4.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)− f

(
a + b

2

)
.
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The left inequality (2.1) is a half of the famous Hermite-Hadamard’s inequality
[3]: If f(x) is convex, then

(4.2) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Note that the right inequality (4.1) is weaker than the right inequality (4.2).
Thus, inequality (ii) of Theorem4.2 can be considered as a generalization of
the Hermite-Hadamard’s inequalityf

(
a+b
2

)
≤ 1

b−a

∫ b

a
f(x)dx, wheref(x) is

convex.

Case 4.2.n = 1.
In this case Theorem4.2 implies the following two results:

Theorem 4.3. Let f : I → R be a mapping,a, b ∈ I◦ with a < b, and let
f ∈ C2 ([a, b]). Assume thatf ′′(x) is increasing on[a, b]. Then

(b− a)2

2

[
f ′

(
a +

b− a

3

)
+ f ′(a)

]
(i)

≤
∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a) +

f ′(b)− f ′(a)

4
(b− a)2

≤ (b− a)2

2

[
f ′(b)− f ′

(
b− a

3

)]
;

(ii)

∣∣∣∣f(b)− f(a)

b− a
− f ′(a) + f ′(b)

2

∣∣∣∣
≤ 1

2

[
f ′(a)− f ′

(
a +

b− a

3

)
− f ′

(
b− b− a

3

)
+ f ′(b)

]
.
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