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ABSTRACT. In this paper, using Steffensen’s inequality we prove several inequalities involving
Taylor’s remainder. Among the simplest particular cases we obtain lyengar’s inequality and one
of Hermite-Hadamard’s inequalities for convex functions.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper, using Steffensen’s inequality we prove several inequalities (Theoréms 1.1 and
[1.2) involving Taylor’'s remainder. In Sections 3 and 4 we give several applications of Theorems
1.1 and I.2. Among the simplest particular cases we obtain lyengar's inequality and one of
Hermite-Hadamard’s inequalities for convex functions. We prove Theofems 1. gnd 1.2 in
Sectior 2.

In what followsn denotes a non-negative integérC R is a generic interval, anff is the

interior of I. We will denote byR,, ((c, z) the nth Taylor's remainder of functiorf (x) with
centere, i.e.

k) (¢
Roster) = f0) - 3 00w o

The following two theorems are the main results of the present paper.

Theorem 1.1.Letf : I — Randg : I — R be two mappings;, b € I° with a < b, and let
feC™ ([a,b]), g € C([a,b]). Assume thatr < f"D(z) < M, m # M, andg(z) > 0 for
all x € [a,b]. Set

——— [F"0) — f" (@) — m(b—a)].
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Then
0] o j_ 0 /bb/\(x — b+ N)"g(z)dx
S [R o) -l gl
< 1)' / (& — )™ — (x —a— )™ gla)de
R o
and
(i) - - 5 /am(a A= 2) (o) de

IN

(J\;ll";/a {Rmf(b,x)—m% g(x)dx

b
;1)! / [(b— )™ — (b— A — )] g(a)da

(n +
_1\n+1 b
<(n2 1:! /b_)\(a: — b4+ \)"g(x)dz.

Theorem 1.2.Letf : I — Randg : I — R be two mappingsg,b € I° witha < b,
and letf € C""'([a,b]), g € C([a,b]). Assume thaf"*!(z) is increasing onfa,b] and
m < g(z) < M,m # M, forall z € [a,b]. Set

IN

+

1 b m b—a
)\ — o n+1 d . .
! (M —m)(b— "+1/ YTM—m nt2
1 b m b—a
A _ n+1 d _ . .
2 (M —m)(b— ”+1/ YT M —m 2

Then

O - 0w < e [ R ot - mis

< fO ) = f™ (b= \y);
and

@) £fatda) = 1) < (1 e R b)) - m) o

< fO0) = F (b = Xo).

Remark 1.3. Itis easy to verify that the inequalities in Theorgmg 1.1[anf 1.2 become equalities
if f(z) is a polynomial of degree n + 1.

2. PROOFS OF THEOREMS [I.IAND [I.2

The following is well-known Steffensen’s inequality:
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Theorem 2.1.[4]. Suppose th¢ andg are integrable functions defined ¢a, b), f is decreas-
ing and for each: € (a,b), 0 < g(z) < 1. Set\ = fabg(ac)dx. Then

b b a+A
- f(z)dx < / f(x)g(x)dx < / f(x)dz.

Proposition 2.2. Let f : I — Randg : I — R be two mapsg,b € I° witha < b and
let f € C""' ([a,b]), g € C[a,b]. Assume that < f"*(z) < 1 forall x € [a,b] and
[Pt — x)g(t)dt is a decreasing function afon [a, b]. Set\ = () (b) — f™)(a). Then

1 ’ n+1
(2.1) CEI] /b_A(a: — b+ \)"g(z)dz

b
< / R, f(a,z)g(x)dx

<t [ o= = - gloi
+ [ Ay gt
Proof. Set
Re) = [ t-argo

ThenF,(z), G,(z), and\ satisfy the conditions of Theorgm 2.1. Therefore

2.2) /b " ) < / ()G () < / " F ().

—A

It is easy to see thdt (z) = —F,,_;(z). Hence

/a ' ()G () dr = / () ()

= f(")(x)Fn(x)
)

n!

b b
+ / ) () Fp_q(z)dx

/ab(ﬂs —a)"g(z)dz + /ab Fyy ()G (z)da
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n!

— o — f(a) /abg(a:)dx - /abf(a:)g(x)dx

Thus

(2.3) /b Fo(2)G,(z)dx = /b R, x)
In addition '
/: dx__/““</ —_— (t)dt)da:.

Changing the order of integration, we obtain

M) (g) [? (=1 (q) [?
— _f—()/ (x —a)"g(x)dx — Jznfi)')/ (z —a)"'g(z)dx

s(a,2)9(x)da.

/aaMFn(x)dx

sl (femerae)ace s [ ([ oo )a

— [ S [ e ST

- /aa“os—a)”“ <>d—(n+1>! / [(t = a =A™ = (¢ — )] gt)d

(2.4) /aa F,(x)dx = m/a [(z —a)"™ = (z —a—N)"""] g(z)dz

(1t
(n+1)!

at+A
/ (a+X—z)"g(z)dr.
Similarly we obtain
b 1 b ol
(2.5) /b_)\ F,(z)dx = m/b )\(3: — b+ \)""g(z)dx
Substituting[(2.8)[(2]4), anfl (2.5) info (.2), we obtain|(2.1). O

Proposition 2.3. Letf : I — Randg : I — R be two mapsg,b € I° witha < b and let
f€C™ ([a,b]),g9 € C([a,b]). Assume thatr < f+1)(x) < M forall 2 € [a, b] andf;(t—
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x)"g(t)dt is a decreasing function afon[a, b]. Seth = -1 [f™(b) — f™ (a) — m(b — a)].
Then

1 ’ n+1
(2.6) CES] /b/\(x —b+\)""g(x)dx

1 b (x —a)"*!
<5 [ [uten - mE =B g

;1)'/ [(z —a)"™ = (z —a—\"")] g(x)da

~ (n+
i E; 1+)nl+)! / (a4 A — ) g

Proof. Set

Then0 < f"+)(z) < 1 and

1 n n r(n r(n
A= ——— [[P0) - [ (a) —m(b— a)] = [V ) - [ (a).
Hencef(z), g(x), and) satisfy the conditions of Propositipn 2.2. Substitutjf{g;) instead of
f(z) into (2.3), we obtain (2]6). O
Proof of Theorern I]1(i)lf g(x) > 0 for all z € [a, ], thenfb(t — x)"g(t)dt is a decreasing
function ofz on [a, b]. Hence Proposition 2.3 implies Theor 1.1(J). O

Proof of Theorems T].1(ii), 1.2(i), afd 1.2(iiproofs of Theorems 1.1(ii), 1.2(i), apd [L.2(ii) are
similar to the above proof of Theordm [L.1(i). For the proof of Thedrein 1.1(ii) we take

Fae) = = [ o= 0790t Gulo) = 17 (0)
For the proof of Theorein 11.2(i) we take

Fu(x) = —f"(2), Gule) =~ / (L~ 2y gty
For the proof of Theorein 1.2(ii) we take

Fole) =~ (@), Gola) = o [ (= 0g(o)e

3. APPLICATIONS OF THEOREM [1.1

Theorem 3.1.Let f : I — R be a mappingg,b € I° witha < b, and letf € C" ([a, b]).
Assume thatr < f"+Y(z) < M, m # M, for all x € [a, b]. Set

(£ () = £ (a) = m(b—a)] .
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Then
() o - g1 [mlb =)™ (0 —m)x
< / R, ;(a,x)dz
1 n+2 —-m —a— n+2
< gy (MO = @™ = (M = m)(b - a = 2
and
(i) 0 - g1 [mlb = )" (=)
< (1" [ Ruglbi)ds
1 n+2 n+2
SM[M(b—a) — (M =m)(b—a—X)""].
Proof. Takeg(z) = 1 on|a, b] in Theorenj 1.11. O

Two inequalities of the formd < X < BandA <Y < B imply two new inequalities
A< i(X+Y)<Band|X —Y| < B— A. Applying this construction to inequalities (i)
and (ii) of Theorenj 3]1, we obtain the following two more symmetric with respectaiodb
inequalities:

Theorem 3.2.Let f : I — R be a mappingg,b € I° witha < b, and letf € C™"" ([a,b]).
Assume thatr < f"l(z) < M, m # M, for all z € [a, b]. Set

1 n n
A= A~ £a) ~ m(b - a)].

Then
O Gy m— @ Q1 —m

< / 5 [Rusa) + (<1 R b, 2)] do

1 19 n+2
< g (MO = 0 = (1 = )0 - a = A7
and
b
@ | (Buslasa) + (<1 Raglb,)] do
M —m n+2 n+2 n+2
gm[(b—a) — X" —(b—a—N)"].

We now consider the simplest cases of inequalities (i) and (ii) of Theprgm 3.2, namely the
cases when = 0 or 1.
Casel.n=0
Inequality (i) of Theorem 3]2 for. = 0 gives us the following result.
Theorem 3.3.Let f : I — R be a mappinga,b € I° witha < b and letf € C' ([a,b]).
Assume thatn < f'(z) < M, m # M, forall z € [a,b]. Set

1
o F(0) = fla) =m(b—a)].

A\ =
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Then ) ,
(M —m)A* _ f(b) — f(a) (M —m)(b—a—A)
< <M —
A (b—a)?

Remark 3.4. Theore is an improvement of a trivial inequality< w < M.

Forn = 0, inequality (ii) of Theorem 3]2 gives the following result:
Theorem 3.5.Let f : I — R be a mappinga,b € I° witha < b, and letf € C* ([a,b]).
Assume thatn < f’( ) < M,m # M forall z € [a,b]. Then

f( )( a>‘ < [F0) = fla) =m(b = a)] [M(b—a) = f(b) + f(a)]
- 2(M —m) '

Theoren@ is a modification of lyengar’s inequality due to Agarwal and Dragomir [1]. If
|f'(x)] < M, then takingm = —M in Theorenj 3.5, we obtain

+ fla) + f(b) M(b—a)* 1 2
[ e - LOTIO | MO ) o
This is the original lyengar’s mequahty [2]. Thusequality (ii) of Theorerp 3]2 can be consid-
ered as a generalization of lyengar’s inequality.
Case2.n=1
In the case: = 1, inequality (i) of Theorerm 3]2 gives us the following result:

Theorem 3.6.Let f : I — R be a mappinga,b € I° witha < b and letf € C?([a,b]).
Assume thatn < f"(z) < M, m # M, forall z € [a,b]. Set

<

1 / /
A= [P~ f(a) — (b a)].
Then

§6[M(b—a) (M — m)(b—a—)\)ﬂ.
In the casen = 1, inequality (i) of Theorenf 3]2 implies that jf € C?([a,b]) andm <
f"(x) < M, then
f(b) = fla)  f'(a) + ['(b) ‘ < ') = fla) =m(b—a)] [M(b—a) — f'(b) + f'(a)]
b—a 2 - 2(b—a)(M —m) ‘
This result follows readily from lyengar’s inequality if we takéx) instead off (x) in Theorem

B.5.

4. APPLICATIONS OF THEOREM [1.2
Takeg(w) = M onfa,b] in Theorenj L. Then, = \, = &

Theorem 4.1.Let f : I — R be a mappingg,b € I° witha < b, and letf € C"" ([a,b]).
Assume thaf"™!(z) is increasing orja, b]. Then

0 S o (o4 8) - 1)

(n+ 1! n+2

</ Rogla, ) < L. - (v- 222

J. Inequal. Pure and Appl. Math3(2) Art. 26, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 HILLEL GAUCHMAN

and
(ii) % {f(”) (a+ z:;) — f(”)(a)}
< (L1 /ab R s(b, z)dz < % {f(”)(b) — (b - 213)] -

The next theorem follows from Theor¢ém 4.1 in exactly the same way as Thgorem 3.2 follows
from Theoreni 311.

Theorem 4.2.Let f : I — R be a mappingg,b € I° witha < b, and letf € C" ([a, b]).
Assume thaf"!(x) is increasing orja, b]. Then

o (k)
< b [ Tuslom) + () R0 o

<S5 - -3)]

b
0 / (R (a2) + (=1)" Ry 4 (b, z)]

(b—am {fm)(b) _ ) (b i a) — <a+ b_—a> +f(")(a)] :

— (n+1)! 2 n+2

We now consider inequalities (i) and (ii) of Theorem|4.2 in the simplest casesavhehmor
1.

Case 1.n = 0.
Inequality (i) of Theorem 4|2 gives a trivial fact: Jf(z) increases therf (25%) < [2H®),
Inequality (ii) of Theorem 42 gives the following result: if(z) is increasing, then

wn () < [ o< s sm -7 (450,

The left inequality[(2.]) is a half of the famous Hermite-Hadamard’s inequality [3](#f is
convex, then

4.2) f (a;b> < bia/abf(w)dxg M

Note that the right inequality (4.1) is weaker than the right inequality (4.2). Theguality (ii)
of Theoren 4]2 can be considered as a generalization of the Hermite-Hadamard’s inequality

f(e) <= ff f(x)dz, wheref(x) is convex.

Case 2.n = 1.
In this case Theorem 4.2 implies the following two results:
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Theorem 4.3.Let f : I — R be a mappinga,b € I° witha < b, and letf € C?([a,b]).
Assume that”(z) is increasing ora, b]. Then

o (o +bT) + 7'
< [ o - L0y SO=L

4
<O o -r (b;“)] ;

fb) = fla)  f(a) +f’(b)‘
b—a 2

S%[f’(a)—f’ (a+b;“) _y (b—b;“> +f’(b)]-
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