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ABSTRACT. In this paper, we utilize a variant of the Grüss inequality to obtain some new per-
turbed trapezoid inequalities. We improve the error bound of the trapezoid rule in numerical
integration in some recent known results. Also we give a new Iyengar’s type inequality involv-
ing a second order bounded derivative for the perturbed trapezoid inequality.
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In the literature [2], [4] – [8], [11], [12] on numerical integration, the following estimation is
well known as the trapezoid inequality:

(1.1)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b))

∣∣∣∣ ≤ 1

12
M2(b− a)3,

where the mappingf : [a, b] → R is supposed to be twice differentiable on the interval(a, b),
with the second derivative bounded on(a, b) by M2 = supx∈(a,b) |f ′′(x)| < +∞. In [5], the
authors derived the error bounds for the trapezoid inequality (1.1) by different norm of mapping
f . In [2, 7, 11], the authors obtained the trapezoid inequality by the difference of sup and inf
bound of the first derivative, that is,∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b))

∣∣∣∣ ≤ 1

8
(Γ1 − γ1)(b− a)2,

whereΓ1 = supx∈(a,b) f ′(x) < +∞ andγ1 = infx∈(a,b) f ′(x) > −∞.
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For the perturbed trapezoid inequality, S. Dragomir et al. [5] obtained the following inequality
by an application of the Grüss inequality:

(1.2)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

12
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ 1

32
(Γ2 − γ2)(b− a)3,

wheref is supposed to be twice differentiable on the interval(a, b), with the second derivative
bounded on(a, b) by Γ2 = supx∈(a,b) f ′′(x) < +∞ andγ2 = infx∈(a,b) f ′′(x) > −∞. The
constant1

32
is smaller than 1

6
√

5
given in [11] and 1

18
√

3
given in [2].

In this note we first improve the constant1
32

in the inequality (1.2) to the best possible one
of 1

36
√

3
. Then we give two new perturbed trapezoid inequalities for high-order differentiable

mappings. We need the following variant of the Grüss inequality:
Theorem 1.1. Let h, g : [a, b] → R be two integrable functions such thatφ ≤ g(x) ≤ Φ for
some constantsφ, Φ for all x ∈ [a, b], then

(1.3)

∣∣∣∣ 1

b− a

∫ b

a

h(x)g(x) dx− 1

(b− a)2

∫ b

a

h(x) dx

∫ b

a

g(x) dx

∣∣∣∣
≤ 1

2

(∫ b

a

∣∣∣∣h(x)− 1

b− a

∫ b

a

h(y)dy

∣∣∣∣ dx

)
(Φ− φ).

Proof. We write the left hand of inequality (1.3) as∫ b

a

h(x)g(x) dx− 1

b− a

∫ b

a

h(x) dx

∫ b

a

g(x) dx =

∫ b

a

(h(x)− 1

b− a

∫ b

a

h(y) dy)g(x) dx.

Denote

I+ =

∫ b

a

max(h(x)− 1

b− a

∫ b

a

h(y) dy, 0) dx

and

I− =

∫ b

a

min(h(x)− 1

b− a

∫ b

a

h(y) dy, 0) dx.

ObviouslyI+ + I− = 0. Forφ ≤ g(x) ≤ Φ, then∫ b

a

(h(x)− 1

b− a

∫ b

a

h(y) dy)g(x) dx ≤ I+Φ + I−φ

and

−
∫ b

a

(h(x)− 1

b− a

∫ b

a

h(y) dy)g(x) dx ≤ −I+φ− I−Φ

and hence the obtained result (1.3) follows. �

Theorem 1.2. Let f : [a, b] → R be a twice differentibale mapping on(a, b) with Γ2 =
supx∈(a,b) f ′′(x) < +∞ andγ2 = infx∈(a,b) f ′′(x) > −∞, then we have the estimation

(1.4)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

12
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ 1

36
√

3
(Γ2 − γ2)(b− a)3,

where the constant 1
36
√

3
is the best one in the sense that it cannot be replaced by a smaller one.
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Proof. We choose in (1.3),h(x) = −1
2
(x− a)(b− x) andg(x) = f ′′(x), we get

1

2

∫ b

a

∣∣∣∣h(x)− 1

b− a

∫ b

a

h(y)dy

∣∣∣∣ dx =

∣∣∣∣∫ x2

x1

(
h(x) +

1

12
(b− a)2

)
dx

∣∣∣∣
=

1

36
√

3
(b− a)3,

wherex1 = a + 3−
√

3
6

(b− a) andx2 = a + 3+
√

3
6

(b− a). Thus from (1.3), we derive∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

12
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
=

∣∣∣∣∫ b

a

−1

2
(x− a)(b− x)f ′′(x) dx− 1

b− a

∫ b

a

−1

2
(x− a)(b− x) dx

∫ b

a

f ′′(x) dx

∣∣∣∣
≤ 1

36
√

3
(Γ2 − γ2)(b− a)3.

To explain the best constant1
36
√

3
in the inequality (1.4), we can construct the functionf(x) =∫ x

a

(∫ y

a
j(z) dz

)
dy to attain the inequality in (1.4),

j(x) =



γ2, a ≤ x < x1 = a +
3−

√
3

6
(b− a),

Γ2, x1 ≤ x < x2 = a +
3 +

√
3

6
(b− a),

γ2, x2 ≤ x ≤ b.

The proof is complete. �

Theorem 1.3. Let f : [a, b] → R be a third-order differentibale mapping on(a, b) with Γ3 =
supx∈(a,b) f ′′′(x) < +∞ andγ3 = infx∈(a,b) f ′′′(x) > −∞, then we have the estimation

(1.5)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

12
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ 1

384
(Γ3 − γ3)(b− a)4,

where the constant1
384

is the best one in the sense that it cannot be replaced by a smaller one.

Proof. We choose in (1.3),h(x) = 1
12

(x− a)(2x− a− b)(b− x), g(x) = f ′′′(x), to get

1

2

∫ b

a

|h(x)− 1

b− a

∫ b

a

h(y) dy| dx =

∫ a+b
2

a

h(x) dx =
1

384
(b− a)4,

Thus from (1.3) in Theorem 1.1, we can derive the inequality (1.5) immediately. Finally, we
construct the functionf(x) =

∫ x

a

(∫ y

a

(∫ z
j(s) ds

)
dz
)

dy, wherej(x) = Γ3 for a ≤ x < a+b
2

andj(x) = γ3 for a+b
2
≤ x ≤ b, then the equality holds in (1.5). �
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Theorem 1.4. Let f : [a, b] → R be a fourth-order differentibale mapping on(a, b) with
M4 = supx∈(a,b) |f (4)(x)| < +∞, then

(1.6)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

12
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ 1

720
M4(b− a)5,

where 1
720

is the best possible constant.

Proof. We may write the remainder of the perturbed trapezoid inequality in the kernel form

(1.7)
∫ b

a

f(x) dx− 1

2
(b−a)(f(a)+f(b))+

1

12
(b−a)2(f ′(b)−f ′(a)) =

∫ b

a

f (4)(x)k4(x) dx,

wherek4(x) = 1
24

(x− a)2(b− x)2. Then we get

(1.8)
∫ b

a

|k4(x)| dx =
1

24

∫ 1

0

x2(1− x)2 dx =
1

720
.

Then (1.7) – (1.8) imply (1.6). The equality holds forf(x) = x4, a ≤ x ≤ b in inequality (1.6).
�

Remark 1.5. We also can prove Theorem 1.2 and 1.3 in the kernel form

(1.9)
∫ b

a

f(x) dx− 1

2
(b−a)(f(a)+f(b))+

1

12
(b−a)2(f ′(b)−f ′(a)) =

∫ b

a

f (n)(x)kn(x) dx,

wherek2(x) = −1
2
(x − a)(b − x) + 1

12
andk3(x) = 1

12
(x − a)(2x − a − b)(b − x). By the

formula (1.7) and (1.9), and derive the perturbed trapezoid inequality for different norms as
shown in [5].

Now we present the composite perturbed trapezoid quadrature for an equidistant partitioning
of interval[a, b] into n subintervals. Applying Theorems 1.2 – 1.4, we obtain∫ b

a

f(x) dx = Tn(f) + Rn(f),

where

Tn(f) =
b− a

2n

n−1∑
i=0

[
f

(
a + i

b− a

n

)
+ f

(
a + (i + 1)

b− a

n

)]
− (b− a)2

12n2
(f ′(b)− f ′(a)),

and the remainderRn(f) satisfies the error estimate

(1.10) |Rn(f)| ≤



(b− a)3

36
√

3n2
(Γ2 − γ2), if γ2 ≤ f ′′(x) ≤ Γ2, ∀x ∈ (a, b),

(b− a)4

384n3
(Γ3 − γ3), if γ3 ≤ f ′′′(x) ≤ Γ3, ∀x ∈ (a, b)

(b− a)5

720n4
M4, if |f (4)(x)| ≤ M4, ∀x ∈ (a, b).

Then we can use (1.10) to get different error estimates of the composite perturbed trapezoid
quadrature.
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As in [5], we may also apply the Theorems 1.2, 1.3 and 1.4 to special means. In this case we
may improve some of the bounds related to inequalities about special means as given in [5, p.
492-494].

Furthermore, we discuss the Iyengar’s type inequality for the perturbed trapezoidal quadra-
ture rule for functions whose first and second order derivatives are bounded. In [1, 3, 9, 10] they
proved the following interesting inequality involving bounded derivatives.

If f is a differentiable function on(a, b) and|f ′(x)| ≤ M1, then∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b))

∣∣∣∣ ≤ M1(b− a)2

4
− (f(b)− f(a))2

4M1

.

If |f ′′(x)| ≤ M2, x ∈ [a, b] for positive constantM2 ∈ R, then∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

8
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ M2

24

(
(b− a)3 −

(
|∆|
M2

)3
)

,

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

8
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ M2

24
(b− a)3 − ∆2

1(b− a)

16M2

,

where

(1.11) ∆ = f ′(a)− 2f ′
(

a + b

2

)
+ f ′(b), ∆1 = f ′(a)− 2

(f(b)− f(a))

b− a
+ f ′(b).

We will prove the following inequality.

Theorem 1.6.Letf : I → R, whereI ⊆ R is an interval. Suppose thatf is twice differentiable

in the interior
◦
I of I, and leta, b ∈

◦
I with a < b. If |f ′′(x)| ≤ M2, x ∈ [a, b] for positive

constantM2 ∈ R. Then

(1.12)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

8
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ 1

24
M2(b− a)3 −

√
|∆1|3(b− a)3

72M2

,

where∆1 is defined as (1.11).

Proof. Denote

Jf =

∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

8
(b− a)2(f ′(b)− f ′(a)).

It is easy to see that

Jf =

∫ b

a

1

2

(
x− a + b

2

)2

f ′′(x) dx,

and

(1.13) ∆1 = f ′(a)− 2(f(b)− f(a))

b− a
+ f ′(b) =

1

b− a

∫ b

a

2

(
x− a + b

2

)
f ′′(x) dx.
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For any|ε| ≤ 1
8
, we get for|f ′′(x)| ≤ M2, x ∈ [a, b],

Jf + ε(b− a)2∆1 =

∫ b

a

(
1

2

(
x− a + b

2

)2

+ 2ε(b− a)

(
x− a + b

2

))
f ′′(x) dx

≤ F (ε)M2(b− a)3,

where

F (ε) =
1

(b− a)3

∫ b

a

∣∣∣∣∣12
(

x− a + b

2

)2

+ 2ε(b− a)

(
x− a + b

2

)∣∣∣∣∣ dx

=

∫ 1

0

∣∣∣∣∣12
(

x− 1

2

)2

+ 2ε

(
x− 1

2

)∣∣∣∣∣ dx.

For the case0 ≤ ε ≤ 1
8
, we have

F (ε) =

∫ 1

0

∣∣∣∣∣12
(

x− 1

2

)2

+ 2ε

(
x− 1

2

)∣∣∣∣∣ dx

=

{∫ 1
2
−4ε

0

(
1

2

(
x− 1

2

)2

+ 2ε

(
x− 1

2

))
dx

−
∫ 1

2

1
2
−4ε

(
1

2

(
x− 1

2

)2

+ 2ε

(
x− 1

2

))
dx

+

∫ 1

1
2

(
1

2

(
x− 1

2

)2

+ 2ε

(
x− 1

2

))
dx

}
=

1

24
+

32

3
ε3.

For the case−1
8
≤ ε ≤ 0, we have similarly

F (ε) =
1

24
− 32

3
ε3.

We can prove|∆1| ≤ 1
2
(b− a)M2 easily from (1.13). Thus we choose the parameter

ε∗ = sign(∆1)

√
|∆1|

32(b− a)M2

, |ε∗| ≤
1

8
.

By the above inequalities, we obtain

Jf ≤ F (ε∗)M2 − ε∗(b− a)2∆1 ≤
1

24
(b− a)3M2 −

√
(b− a)3|∆1|3

72M2

.

Replacingf with −f , we have

J−f = −Jf ≤
1

24
(b− a)3M2 −

√
(b− a)3|∆1|3

72M2

.

Thus we obtain bounds for|Jf | and prove the inequality (1.12). �
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Remark 1.7. As |∆1| ≤ 1
2
M2(b− a), we have√

|∆1|
M2

≥
√

2

b− a

|∆1|
M2

,

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b)) +

1

8
(b− a)2(f ′(b)− f ′(a))

∣∣∣∣
≤ M2

24
(b− a)3 − ∆2

1(b− a)

6M2

.

For the casef ′(a) = f ′(b) = 0, we have

(1.14)

∣∣∣∣∫ b

a

f(x) dx− 1

2
(b− a)(f(a) + f(b))

∣∣∣∣ ≤ M2

24
(b− a)3 − 2

3

|f(b)− f(a)|2

M2(b− a)
.

The inequality (1.14) is sharper than that stated in [9, p. 69].
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