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ABSTRACT. Every convex set in the plane gives rise to geometric functionals such as the area,
perimeter, diameter, width, inradius and circumradius. In this paper, we prove new inequalities
involving these geometric functionals for planar convex sets containing zero or one interior lat-
tice point. We also conjecture two results concerning sets containing one interior lattice point.
Finally, we summarize known inequalities for sets containing zero or one interior lattice point.
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1. INTRODUCTION

Let K2 denote the set of all planar, compact, convex sets. K dte a set inkC? with area
A = A(K), perimeterp = p(K), diameterd = d(K), width w = w(K), inradiusr = r(K)
and circumradiug? = R(K). Let K° denote the interior of. LetI" denote the integer lattice.
The lattice point enumeratdr(K°, ') is defined to be the number of pointslottontained in
K°. Inthe case wher&'(K°,T") = 0, we say thatX is lattice-point-free.

In this article, we prove new inequalities involving the geometric functiodajs d, w, r and
R for setsK € K? with G(K°,T) = 0 andG(K°,T) = 1. These may be found in Sections
[2 and[ 3 respectively. In Secti¢h 4, we conjecture two results concernind<setskC? with
G(K°,T) = 1. Finally, in Section§]5 arld 6, we summarize known inequalities in one and two
functionals for setd{ € K2 with G(K°,T) = 0 andG(K°,T") = 1 respectively (see [26] for
a summary of inequalities involving two and three functionals for séts K2 without lattice
constraints). Although there are extensive bibliographies for lattice constrained convex sets
[8,10,[11] 12 24], this article attempts to organise the numerous results fdt set&? with
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2 POH WAH HILLOCK AND PAuL R. ScoTT

G(K°T') = 0andG(K°TI) = 1. Although these results are rather special, they are a natural
starting point for problems in the area and have in fact served as a springboard for many new
and interesting problems.

In the statements of the theorems and the conjecture, each inequality is followed by a set for
which the inequality is sharp.

2. SOME ELEMENTARY RESULTS FOR LATTICE -POINT-FREE SETS

Theorem 2.1.Let K € K2 with G(K°,T") = 0. Let A = 2v/2sin¢/2, ¢ being the unique
solution of the equatiosin § = 7/2 — 6, (¢ ~ 0.832 ~ 47.4°). Then

(2.1) r < ?, Co (Figure[5.1a),

(2.2) % < 2\~ 2.288, H, (Figure[5.1c)

(2.3) % > % (1 + ?) ~ 0.309, & (Figure[5.1b)
(2.4) (2r —1)p < %(\/5 —1), S, (Figure[5.1e)

Proof. To prove [2.1), we use the following lemma from [3]:

Lemma 2.2. Suppose thal' € K? and G(K°,T') = 0. Then there is a sek, € K? with
G(K.,’,T) = 0 satisfying the following conditions:

(@) r(K) < r(K.),

(b) K, is symmetric about the lines= 3,y = 3.

From the lemma, it suffices to prove (R.1) for séfswhich are symmetric about the lines
z = 1 andy = 1. To fully utilise the symmetry of¢ about the lines: = 1 andy = , we move
the origin to the point3, 5). If » < 3, then (2.1) is trivially true. Hence we may assume that
r > 1. SinceK* does not contain the poinf3 (3, 3), Po(—1, 1), Ps(—3, —3) and Py (3, —1), it
follows by the convexity of that for each =1, ..., 4, K is bounded by a liné through the
point P; with [; andl; having negative slope arig andl, having positive slope. Furthermore,
since K is symmetric about the coordinate axés,is contained in a rhombu9 determined
by the linesl;,i = 1,...,4. SinceK C Q, r(K) < r(Q). Clearlyr(Q) < v/2/2. Hence
r(K) < v/2/2 and ) is proved. An example of a set for which the inequality is sharp is the
circleC, (Figure5.1a).

) follows easily from a result by Scoftt[18], thatiAf € £ with G(K°,T) = 0, then

A
(2.5) = < A& 1.144,

where) is as defined in Theorem 2.1. The result is best possible with equality when and only
whenK = H, (Figure[5.1c). Using < 2R and [2.5), it follows immediately that

4 < 2)\ =~ 2.288
R=-TT T
with equality when and only wheR = H,, (Figure[5.1c).

The proof of [2.B) follows easily by combining two known results. The first is that of all
sets ink? with a given width, the equilateral triangle has the least &rea [27, p. 68]. Hence
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A > (1/4/3)w?. We also recall from [17] that if¢ € KC? with G(K°,T") = 0, then
V3

<1l4+ —
w_+2,

with equality when and only wheR = &, (Figure[5.1b). Hence

1
A AN 1 _ 1 V3
= (uﬂ)w—\/g(H 2) 0.309
Equality holds when and only wheii = &, (Figure]5.1b).
To prove [2.4), we use a result frofii [3]: & € K2 with G(K°,T) = 0, then
(2.6) (2r —1)A<2(vV2-1),

with equality when and only whei™ = S, (Figure[5.1e). We also note from the same paper,
that if K is a convex polygoni may be partitioned into triangles by joining each vertex:of
to an in-centre of{. Summing the areas of these triangles gives

1
A>—
= 2p7”,

with equality when and only when every edgefoftouches the unique incircle. Since any set

in K% is either a convex polygon, or may be approximated by a convex polygon, this inequality
is valid for all sets inC2. By combining this inequality witt{ (26), we haye (2.4), with equality
when and only whet = S, (Figure[5.1e). O

3. SOME ELEMENTARY RESULTS FOR SETS CONTAINING ONE INTERIOR LATTICE
POINT

Theorem 3.1.Let K € K? with G(K°,T') = 1, . Let) be as defined in Theorgm P.1. Then

(3.1) r < 1, ¢ (Figure[6la)

(3.2) % < 2v2\~ 3232, H, (Figure[6.1d)
(3.3) Aw-V3) < gu?, T (Figure[sde)

(3.4) 2 —Vop < S(2-V3). S (Figure[dg)

-
We note that[(3]1)[ (3]2) anfl (3.4) are the results for séts K> havingG(K°,T) = 1

corresponding td (2/1)[ (2.2) and (R.4) respectively. Furthermore, we recall from [22] that if
K € K*with G(K°,T) = 0, then

(3.5) Alw—-1) < %wQ,

with equality when and only wheiA™ = 7; (Figure[5.1f). We observe thdt (3.3) is the result
corresponding td (3]5) for sef§ € K2 havingG(K°,T) = 1.

In fact, (3.3) has been proved in [14], where the method of proof is an adaptation of the
method in[22]. In this paper we present a short and different proof for (3.3). We will see that
all the inequalities of Theorem 3.1 follow immediately from their corresponding inequalities
for lattice-point-free sets by using a simple sublattice argument.

Proof. Let
I"={(z,y) :x+y =1 mod 2)}.
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Figure 3.1: The latticd".

Suppose that{ € K2, with G(K°,T') = 1. Then clearlyG(K°,I") = 0 (Figure[3.1). We
also observe thdt’ is essentially an anticlockwise rotationidfaboutO through an angle /4
and scaled by a factor af2. Now let A’, ¢/, d’ w’, r', and R’ be the area, perimeter, diameter,
width, inradius and circumradius respectively Igf measured in the scale &f. Then since

G(K°,T") = 0, the inequalitieq (2]1)] (2.2), (3.5), and (2.4) apply, from which we have

2
r < §7 Co’
A/
ﬁ S 2A7 HOI
1
Al(w/—l) S i(w/)Q’ 76/

4
2r—1)p < P(ﬁ_ 1), &,
whereCy', Ho', 7o', andS,’ are the set€, Hy, 7, andS, respectively rotated anticlockwise
aboutO through~ /4 and scaled by a factor af2. HenceC,’ = C; (Figurea)ﬂo’ = H;
(Figure[6.1d).7,' = 7, (Figure[6.1e), and)’ = S, (Figure[6.1g). Furthermore, siné2is a
rotation of" scaled by a factor of/2, we have

A/ ( ]‘ >2 A / 1 / 1 / 1 R/ 1 R
= —= , = —p, W = —F7=w, r = —=T, = —nR.
vz) PR TR T TR T T
Substituting these into the above inequalities, we obfain (3.1}, (8.2), (3.3), apd (3.4) respec-
tively. O

4., CONJECTURES FOR SETS CONTAINING ONE INTERIOR LATTICE POINT

Conjecture 4.1. Let K € K2 with G(K°,I") = 1. LetO be the circumcentre ok in (4.2).
Then

(4.1) A ! 1

@ 7 BVRGVB)
(4.2) A < a=4.05 O (Figure[6.1f)

~ 0.243, & (Figure[6.1Db)
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The problem which occurs i (4.1) is that for a géte K* with G(K°,T) = 1, w <
1 + V2 ~ 2.414, with equality when and only wheR = T, (Figure) [2]. Since this set
of largest width is not an equilateral triangle, the method used to grove (2.3) cannot be applied.
A simple calculation shows that the width&f (Figurd 6.1b) isiv/2(5++v/3) ~ 2.38. Hence
if 0 <w < %;\/5(5 ++/3), an equilateral triangle containing one interior lattice point may be
constructed. Sincel > (1/4/3)w? with equality when and only whef is an equilateral
triangle, for this range oy we have

A_(A>1>1 4 ~ 0.243
W \w?)w T BV VE)
with equality when and only wheR = &; (Figure[6.1b).

This leaves unresolved those cases for wHigf2(5 + v/3) < w < 1+ /2. We believe that
the set for which4/w? is minimal is congruent to the equilateral triangle(Figure]6.1b).

In [21], Scott conjectures a result concerning the maximal area of &'set X2 with
G(K°,T) = 1 and having circumcentr®. Using a computer run, we discover that the con-
jecture is false. We revise the conjecture as stated i (4.2), with equality when and only when

K = Q, (Figure[6.1f).

5. INEQUALITIES INVOLVING ONE AND TWO FUNCTIONALS FOR
LATTICE -POINT-FREE SETS

Tableg 5.11 anf 6|1 list the known inequalities (including conjectures) involving one and two
functionals for lattice-point-free sets and sets containing one interior lattice point respectively.
The extremal sets referred to in the tables may be found in Figures 5[1 and 6.1 respectively.
Where a starx) appears in the inequality column, no inequality is known for the corresponding
functionals.

Parameters | Inequality Extremal | Reference
Set
A unbounded
P unbounded
d unbounded
w w < %(2 +/3) ~ 1.866 & [17]
R unbounded
r r < \/5/2 Co dZ]l)
A p A<sp Po [6]
A d Ald <\ A=~ 1.144 Ho [18]
A w 1. (w—1)A < Jw? To 20
2.4 > L1+ %) ~ 0309 & 2.9)
AR A/R <2\ A~ 1.144 Ho 2.2)
Ar 1.(2r —1)A<2(v/2—1) ~0.828 So 3]
2.2r—1)JA-1] <2 Po 3]
p,d *
D, W (w—1)p < 3w &o [20]
p, R *
DT 1.(2r-1)p—4[<2 Po 3]
2.(2r —p < 4(vV2-1) So (2.4)
Continued . ..
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Parameters | Inequality Extremal | Reference
Set

d, w (w—1)d-1)<1 7o [19]
d,R 2R—d < &o [4]
d,r 2r—1)d-1)<1 Py 3]
w, R 1. (w—1)R< \/ng & [20]

2.(w—1)2R-1)< ¥ 1 1~1280| & [25]
w,r w—2r < 14 V3~ 0.622 &o [4]
R,r 2r—1)2R-1)<1 Py [25]

Table 5.1: Inequalities for the cage(K°,T") = 0.

L ] [ J
L ] ®
® [ ]
(a) The circleCy (b) The equilateral triangl&,

.\/./'.

The truncated diagonal squak&, ¢ =~ 47.7°

(d) The parallel stripPy

* N7 B
L ] L]
(e) The diagonal squak, (f) The triangleZ,

Figure 5.1: Extremal sets for the caé§ K°,T') = 0
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ONE INTERIOR LATTICE POINT

6. INEQUALITIES INVOLVING ONE AND TWO FUNCTIONALS FOR SETS CONTAINING

Parameters| Inequality Extremal | Reference
Set
A 1. A< 4if Ois centre ofK e.0.5; [16]
2. A< 45if Oisthe C.G. Ehrhart'sA 9l
3. Conjecture
If O is the circumcentre theA = 4.05 Q, (@.2)
D unbounded
d unbounded
w 1.w<1++v2~2414 T, [23]
2. If O is the C.G. themw < 3v/2/2
for the family of triangles Ehrhart'sA [13]
R R < a =~ 1.685 or R unbounded T [2]
r r<l1 Gy (]3]])
Ap Alp <22+ /7)1 ~0.53 U [4,17]
(O is centre ofK)
A, d Ald < V2X\ A~ 1.144 H, ~ [15]
A w 1. A(w — V2) < \/iin T qﬁ), [14]
2. Conjecture: -
%5 2 Jrvaieys < 0243 & 4.1)
AR A/R < 2¢/2) H, 3.2)
Ar A(2r —V/2) < 4(2 —/2) = 2.343 S 3]
p,d *
p,w *
p, R *
pr | p@r—+v2) <:2-+2) S (34
dw | (w—2)(d-Vv2)<2 7 23]
d,R Conjecture:
2R —d < Y2.(7 — 3v/3) ~ 0.425 & 5]
d,r *
w, R *
w, T Conjecture:
w —2r < Y2(5 4 +/3) ~ 0.793 & 5]
R,r *

Table 6.1: Inequalities for the cage(K°,T') =1
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[ °

(a) The circleC, (c) Ehrhart'sA

d

(d) The truncated squark;, (e) The isosceles trianglg
¢~ 47.7°

(f) The truncated quadrilateral (g) The square;
Q1, R =~ 1.593, a = 5.47°,
6~ 20.23°

o —eo— .0
\ : V/:

° . e

(h) The triangleZ; (i) The triangle7, R ~ 1.685 () The rounded squaid,, r ~
0.530

Figure 6.1: Extremal sets for the caé& K°,T") =1
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