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Abstract

In this paper we extend an inequality of Littlewood concerning the higher varia-
tions of functions of bounded Fréchet variations of two variables (bhimeasures)
to a class of functions that are p-bimeasures, by using the machinery of vector
measures. Using random estimates of Kahane-Salem-Zygmund, we show that
the inequality is sharp.

2000 Mathematics Subject Classification: Primary 26B15, 26A42, Secondary

28A35, 28A25.
Key words: Inequalities, Bimeasures, Fréchet variation, p-variations, Bounded vari-

ations.

Contents

1 Introduction. . ... e
1.1 Littlewood’s Inequalities. . .....................
2 Proof of Theorenl.1....... ... ... ... ...
2.1 4-level Radamacher System. .. ................
3 Functions of Boundeg-Variations and Related Function

References

Littlewood’s Inequality for
p—Bimeasures

Nasser Towghi

Title Page

4« 44
< >
Go Back
Close
Quit
Page 2 of 15

J. Ineqg. Pure and Appl. Math. 3(2) Art. 19, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:Nasser_M_Towghi@res.raytheon.com
http://jipam.vu.edu.au/
http://www.ams.org/msc/

Let i be a set function defined on the produci3;) x o(B;) of 2 o-fields,
such that it is a finite complex measure in each coordinate. More precisely, for
each fixedA € o(B;) the set functionu(A4, -) is a complex measure defined on
o(B,). Similarly for eachB € ¢(B,), the set function: gives rise to a measure
in the first coordinate. Such set functions dublbétieasuresy Morse and
Transue were studied extensively by these and other authorsi(sge}] 5, 6,

, 10,11, 17)). 1tis well known that such set functions need not be extendible to

Littlewood’s Inequality for

a measure on the—Algebra generated by(3;) x o(B). Now suppose that p—Bimeasures
is a set function defined an(B;) x o(B3), such that it has finiteemi-variation —
that is,
Title Page
(1.1) Il = sup < | (A x Bi)ry @y, < 00, Contents
jak o

_ 3 <4 >

wheresup is taken over all measurable partitiofid; }, {B;} of ; and (s, p R

respectively. Herdr;} is the usual system of Rademachers, realized as func-
tions on the interval0, 1]. By a partition of(2, we mean a finite collection of Go Back
mutually disjoint measurable sets whose uniof2ig” in || - || is for Fréchet.

It is clear that a set functiop with finite semi-variation is also a bimeasure. Close
It is interesting that the converse also holds. That is, a bimeasure has finite Quit
semi-variation. This follows easily from the machinery of vector measure the- Page 3 of 15

ory. On the other hand, it is well known that a set function which has finite
semi-variation need not have finite total variation (in the sense of Vitali), hence | Frr—————————————",
it may not be extendible to a measure{]. However, all is not lost, in his 1930 http://jipam.vu.edu.au
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paper, Littlewood showed that a bimeasure has finite 4/3-variation. To make
this precise we first introduce the notion of mixed variation.ot et p, ¢ > 0,
and define the mixep, ¢)-variation ofy to be

ASES]
Q=

(1.2) liall g = sup 4 { D (Z (A5 % BN’) ,
B\

where thesup is taken over all finite measurable partitiond; } and{ By} of
2, and(), respectively. In the case that= ¢, we simply write||x
[ll, = [lell,,,,- We now state Littlewood’d /3 inequalities.

. Littlewood’s Inequality for
p that is p—Bimeasures

Nasser Towghi

Title Page

(1.3) lellgy Ml o+ Hlellays < e lliell Contents

wherec is a fixed universal constant. The result is sharp in the sense that, there « dd
existsy € such that|ul|, and ||, ,,, are infinite for allp < 4/3 and for all < 4
q < 2. Extension of Littlewood’s inequality to a larger class of functions of two

variables is the main result of this paper. Go Back
I . . . cl
Definition 1.1. A set functioru defined on product of two algebrds x5, is ose
called a prep-bimeasure, if it is finitely additive in each coordinate, and for Quit
each fixedd €B3,, the quantity Page 4 of 15

BV;)(/L(A, )) = sup {Z |/1,(A X Bk|p} J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002
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is finite, and for each fixed €B,, BV, (u(-, B)) is finite. Heresup is taken
over all finite measurable partitions 6.

If the set function is defined on the product of twealgebras with above
properties, then it is calledabimeasure.

Definition 1.2. A prep-bimeasureg: defined on product of two algebr&s x 5,,
is said to be bounded, if there exists a positive constasuch thatBV, (u(A, -))+
BV, (u(-, B)) < M, for all A €B; and for all B €8,.

We prove the following result.

Theorem 1.1.Suppose that eitheris ap-bimeasure defined an(3,) x o (B,),
or that it is a bounded pre-bimeasure defined o, xB,. If 1 < p < 2 then

(1.4) el p + llially o + Nlaall 2o < 00
In the case thap > 2, then
(15) Il < oc.

Furthermore, the result is sharp, in the sense that, there exigtbimmeasure
such that| |, = oo, forall ¢ < 7.

To prove Theoreni.1 we collect some definitions and results about vector
measures. Much of the following can be found in Chapter Xpf [

Definition 1.3. A functiony from a field3 of a sef(2 to a Banach space is called
a finitely additive vector measure, or simply a vector measure, if whengver
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and A, are disjoint members 0B thenu (A, |J Az) = p(A1) + p(A2). The
variation of a vector measure is the extended nonnegative functiphwhose
value on the seF is given by

() = sup Y [[u(A)]],

T Aer

where the sup is taken over all partitionsof A into a finite number of disjoint
members oB. If |¢|(€2) is finite, theny will be called a measure of bounded
variation.

A different type of variation related to a vector measpures the so called
semi-variation of ;. More precisely, the semi-variation gfis the extended
nonnegative functiofjy|| . whose value on a measurable det given by

l1all g (A) = sup {[z" () [(A) : 2™ € X, 27| < 1},

where|z*(u)| is the variation of the real-valued measure (finitely additive mea-
sure)z*(p). If |||z (2) is finite, theny will be called ameasure of bounded
semi-variation.
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1.1

We now prove Theoreri.1. Suppose that < p < 2. Let X; be the space of
finitely additive set functions defined ar{3;), which have finitep-variations.
Similarly let X, be the set finitely additive functions defined @(3,) which
have finitep-variations. It can be shown that equipped witlariation norm,
X; and X, are Banach spaces. Létbe the X;-valued function defined on
o(B,) as follows: L(A) = (-, A), whereA € o(B;). Let R be theX,-valued
function defined o (B,) as follows: R(A) = (A, ), whereA € o(B;). If u
is ap-bimeasure then by the Nikodym Boundedness Theorem {s@agorem
1, page 14]),L. and R have finite semi-variations. If is a bounded pre-
bimeasure then by general properties of vector measures (seeleRropo-
sition 11, page 4])L and R have finite semi-variations. L€tA,,} be a finite
measurable partition ¢, and{ B } be a finite measurable partitionQf, then

(2.1) oo > |[L[r(£22)

> 1BV, (zn: it (An, -))
>

k

o0
1
P>p

Zrn(x),u(An, By) dx)

v

Z Tn,U/(Ana Bk)

n

D=

AV
S~
(]
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[N4S)
3=

(Khinchin's inequality) => ¢ [ (Z |,u(An,Bk)|2>
k

n

Similarly,
» 1
b p
22)  co>|[[Rllp(u) 2z e (Z \u(An,BkW)
n k Littlewood’s Inequality for
p—Bimeasures
(2.2 and @.3) imply that, |||, , is finite. Applying Minkowski's inequality Nasser Towghi
we obtain|[ul,, < [[ull,, < oo. We now show that|u|| 4 is finite. Let
s P 2+p
an s = ((An, By). Applying Holder's inequality with exponents2 and 72, TR
we obtain
Contents
4p 2p_ 2p_
23) D lansl® =) lansl7]ans|> «“« b
n,k n,k
. 2 | 4
2+p p+2
<> [Z |an,kr2] [Z ran,krp] Go Back
n k k
T Close
% % 2+p
p Quit
=) 30 SIEE I o] Dol
n ok n k Page 8 of 15
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This proves inequalityl(5). If p > 2 thenp/2 > 1, consequently

p 1
)

(2.4)

IRIlr() 2 e | 3 (Z 1(An, By)| )

n

<ol

Ll (@) > c(z (;m A ) ))

k

Similarly

This proves inequalityd.1).

We now show that the exponeﬁ% is sharp. We only consider the case
1 < p < 2. Sharpness of Theorem 1 for the casep = 1 is known [)].
Sharpness of Theoreinlfor p > 2 is trivial.

We need the following result, which is a consequence of Kahane-Salem-

Zygmund estimates (se&,[Theorem 3, p. 70]).

Lemma 2.1. Let X,,, ,.,..», D& @ subnormal collection of independent random
variables. Given complex numbets ., . ..., where the multi-inde:,, no, ..., ng)
satisfiegni| + |na| + - -+ + |ns| < N, then

i(n1t1+-~~nsts)

ni,ne,. nécnl na,....ns €

77777
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Z C [3 Z |Cn1,n2 ----- s

whereC' is an independent constant.

2logN] 2} < N72%e7%,

To apply Lemma2.1, we will need to construct an appropriate sequence of
independent subnormal random variables. We will construct a Radamacher type
of system, which we will call the 4-level Radamacher system.

Littlewood’s Inequality for
p—Bimeasures

4-level Radamacher system is the sequence of independent random variables,
{w;(z)}32,, defined on the unit intervdD, 1], such that eachy; takes on 4
discrete valueg2, —2, 1, —1}, each with probability}l. Such a system can be _
constructed similar to the usual Radamacher system. Observe/fhéadevel Title Page
Radamacher system generadté distinct vectors of lengthl/. On the other Contents
hand the sef1, 2, ..., M} has2" distinct subsets.

By Lemma2.1, for j,k = 1,..., M, there exists a vectar = (t,t,) and « dd
choice of scalergb;; }_; (approximately as many gd — 1) 4M° — 27°), < >

M?2
such thab;;, € {2,—-2,1,—1}, and for any subset of {1,2, ..., M},

Nasser Towghi

Go Back
(2.6) S ettt < O4M log(2M)]2, Close
JjEA Quit
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Let
(2.8) (a) = {aji}jn = {b; eZ(jtl+kt2)}jk r

Let A, B C {1,2,..., M} and define

(2.9) a(A,B) =) ag,

JEA keB
: : . Littlewood's Inequality f
then by virtue of inequalities2(7) and @.9), =
(2-10) ||a||F S OPM%—&-% log(ZM). Nasser Towghi
On the other hand for any> 0, Title Page
M M 7 Contents
g
(2.11) lall, = [ZZ il ] > M- «“« b
j=1 k=1
| 4
We see that if- < -2,
Go Back
) |
(2.12) tim el _ o =
M—oo ||al|p Quit
This shows that*Z is sharp. The proof for the case thais a bounded-pre- Page 11 of 15
pt2
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Letp > 1 andf be a function defined o), 1]2. Let
1/p
V(10,17 = <sup > _1a7 ’WV’) .
T1,7T2 ij

Herem; = {0 =2p < 21, < - < xp, =1}, andm = {0 =y < y1,< -+ <
y, = 1}, are partitions of0, 1] and

f(x'nyj) - f(%‘,yj—l) -
Let W% (]0,1]%) = W,?) denote the class of functiorfson [0, 1]2 such that,

1£1lwz = V2 (£,[0,11) + V2 (£(0,),[0,1])
+ ‘/;9(1)(f('70)’ [07 H) + |f(07070)|

< Q.

ATV (f) = f(@ic1,y5) + f(wim1,y5-1).

Let? = (z1,72), ¥ = (y1,92) € [0,1]%, andf be a function defined ojt, 1.

Let
f7(@) = f(z1,22) — f(21,92) — f(y1, 22) + f(y1, v2)-
We say thatf is aLipschitz function of ordet of first type,if there exists a
constantC such that for allz andy in [0, 1)?,

(3.1) £ (@) = f(@)] < Cl|7 — gl
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Here|| - ||, refers to the usudj-norm. The class of Lipschitz functions of order
« of first type is denoted by ! (2). We say thaff is aLipschitz function of order
« of second typef there exists a constaiit such that for allz andy in [0, 1]?,
(3.2) |f3(@)] < Cll7 = 715

The class of Lipschitz functions of orderof second type is denoted by (2).
If f e AL(2)then

|f5(Z)] < 4Cmin{lz; —y;|* -1 <j <2} <Gf|7 - 93}
Therefore Al (2) € A%(2). Using Theoremi.1we obtain

Corollary 3.1. Let f be a function defined oft), 1]>. Suppose that for any
1 < j < nand for any fixed partitions; and, of the intervall0, 1], we have

D AT

i?j

1/p

(3.3) sup + sup

™

1/p
> \A?,f?ﬂp] <M < o0,

/[:7.]'

thenf e Wﬁ.

2+p
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