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Abstract

A classical inequality of L. C. Young is extended to higher dimensions, and
using this extension sufficient conditions for the existence of integral .['“).IJ,‘ fdg
are given, where both f and ¢ are functions of finite higher variations.
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In this paper we consider the existence of the mtegqu fdg, wheref andg

are functions of bounded higher variations. In the sequel we explain the mean-
ing of this integral and we will also define the higher variations of functions of
several variables. Such integrals occur naturally in the study of stochastic differ-
ential equations. In 1935 a paper that appeared in Acta Mathema}jda [C.
Young gave sufficient conditions for the existence of Riemann-Stieltjes integral
fo , Where f is a functlon of boundeg-variation, g is a functions Mulidimensional Extension of
of boundedq -variation, and}g + 1 > 1 (see Theoreni.1). This result of L. L.C. Young's Inequality
C. Young has received considerable attention to understand the Ito map, and to
develop a stochastic integration theory based on his techniques. Using Young’s
integral T. Lyon solved a differential equation drived by rough signals that are

Nasser Towghi

of boundedp-variation withp < 2 [2, 3]. Since almost surely Brownian motion Title Page
paths are not functions of boundgdariation forp < 2, it appears that stochas- e
tic differential equations driven by white noise may be well beyond the setting of

Young’s theory. However, it turns out that a certain set function associated with 4« dd
the Brownian motion process can be viewed as functions of boundeda- < >

tion in two variables4]. Therefore, Young’s ideas can still be used to construct

stochastic integrals with respect to processes with rough sample paths such as
the Brownian motion. In order to construct multiple stochastic integrals simi- Close
lar to the 1-dimensional construction described4h) fn exactm-dimensional

Go Back

analogue of L. C. Young’s result is needed. 2

Although the motivation behind extended L. C. Young’s inequality to higher Page 3 of 30
dimension is to construct multiple stochastic integrals, the extension may be of
independent interest. Interested reader may consui} and [3] for application - Ineq. Pure and Appl. Math. 3(2) Art. 22, 2002
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of L. C. Young'’s inequality in stochastic integration.

The key to Young’s integration theorem is a discrete inequality. On the main
we are interested in extending Young's discrete inequality to higher dimensions.
Using the inequality one can establish an analogous Stieltjes type integration
theorem. In this paper we do not strive to find the most general integration
result, that is, we do not push the integration result to obtain Lebesgue-Stiletjes
type integrals by removing conditions on continuity of the functions. Interested
reader may consult Young's original work][— [2] for further developing or

extending the integration theorems of this paper. Multidimensional Extension of
The main ingredients in the proof afdimensional result are still the tech- L.C. Young's Inequality
niques originally employed by L. C. Young to prove his one dimensional result. Nasser Towghi

However, some modification of his techniques and a judicious choice of ex-
ponents which appear in the proof is required. To underscore this point, we

should mention that, in his 1937 paper L. C. Young gave sufficient conditions G e
for the existence of double Stieltjes integfglllfol f(x,y)dg(z,y) ([8, Theorem Contents
6.3]). However, L. C. Young’s 2-dimensional result is not the exact analogue of <« >
the one dimensional result, in the sense that, the conditions taatlg must p R

satisfy in order for the double integral to exist (in Young-Stieltjes sense), are
somewhat complicated. In the appendix of this paper we have stated a version Go Back
of Young’s theorem in this paper (see Theorarin the Appendi®). In par-

ticular, there is no obvious way of generalizing the two-dimensional version of Close
L. C. Young’s result to higher dimensions. Our main result is to prove an exact Quit
n-dimensional version of L. C. Young’'s one dimensional result. We also show Page 4 of 30

that L. C. Young’s 2-dimensional result follows from awdimensional result.
Functions of finite higher variations seem to have been considered for the | T roe o rom vam se) A 22, 2002
first time by N. Wiener. His ideas were developed by L.C. Young and E. R. http://jipam.vu.edu.au
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Love (for a complete detail see,[5, 7] and [3].
L.C. Young considered theth variation of a functiory(z), defined as

P

CE W,(f,[a,b]):vpm:[sgp{Dﬂtj)—f@j_lnp}] ,

wherer denotes the partition = ¢, < t; < --- < t,, = b of [a, b]. Existence
proof of Riemann-Stieltjes integralj%1 fdg where bothf and g are functions
of finite higher variations, was given by Young]{

Theorem 1.1 (L.C. Young’s Theorem/Inequality). If V,(f) < oo, V,(g) <
o0, >+ 2 > 1, and f andg have no common discontinuities, then the Riemann-

Stieltjes integralfo1 fdg exists and

(1.2)

/olf dg' = (1+< (}9 + 3)) £+ Vo(£)]Val).

where((s) = >>7 nl

Multidimensional extension of Young’s theorem is the main result of this
paper. The multidimensional integral will be defined as limitStéltjessums,
and the integral will be referred to as tieung-Stieltjes integral.

For the sake of clarity we define Young-Stieltjes integral of functions of two
variables. Leff andg be functions defined 00, 1]* andr =: {;}; o x {y;}7>,
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be a partition of0, 1]*. Thatis,m =: {z;}j_y x {y;}]-, with (x4, ;) € [0,1].
Let

n m

(1.3) L(f,g,7) =YY fniv) A7 (9),

=1 j=1

Where(ni, I/i) € [fﬂi,l, 1’1] X [yjfla yj], and

Ai,jﬂ(g) - g(%, yj) - g(xi*b yj) - g(-Tiv yjfl) + g(:vi,l, yjfl)' Multidimensional Extension of
L.C. Young’s Inequality
Note that the above sum depends on the choice of intermediate yalues.
We say that th&oung-Stieltjes integral of f with respectd@xists, if there is a

scalarl(f, g) such that

Nasser Towghi

Title Page
(1-4) i [Eg,7) = 1, 9)] = 0. Contents
Here [|7|| = supjicicy<jen {max{le: — zioal, |y, = y;-1[}}. Thatis, the AL 44
Young-Stieltjes integral exists if and only if there exists a scéldt g), such < >
that|L(f, g, m)—I(f,g)| < e for any given positive, provided that the partition
7 has norm||x|| < 4, whereé depends only on. If (1.4) holds, we say that Go Back
I(f, g) is the Young-Stieltjes integral gf with respect tg;. Close
To state the 2-dimensional version of our result, we need to introduce the Quit
notion ofp-variation and mixeg — ¢ variation of functions of two variables.
Page 6 of 30

Henceforth, whenever we deal with-variation or mixedp — g-variations,
we always assume thak andg’s are never smaller than 1. Letq > 1, then
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the L(p — ¢)— variation of a functionf(z, y) on [0, 1]? is defined to be

L8) LV (011 = LV (F)

W [m ®)1°
—od S [Slsier| |
g i=1 Lj=1
wherer =: {O = To < z1 S-S Tn = 1} X {0 =% < h S s Ym = 1} Multidimensional Extension of
is apartition of [O, 1]2, and L.C. Young's Inequality
N T hi
A?,ﬂ(f) = f(zs, yj) - f(xz',yj—l) — f(@i, Z/j) + f(@io1, Z/jq)- seser R
Similarly R(p — ¢)-variation of a functionf(z, y) on|[0, 1]? is defined to be Title Page
2 2 Contents
x6)  RVZ (£,00.1%) =RVE (/)
()4 < >
—od S Slsier| | <
j=1 L=l Go Back
We define the left and right Wiener clags- ¢ to be the space of functions Close
defined as follows, Quit
Page 7 of 30

LW ={f:[0,1> = C: LV ()
+ ‘/;y(f(, O), [0, 1}) + Vq(f(O, -), [0, 1]) < OO}7 J. Ineq. Pure and Appl. Math. 3(2) Art. 22, 2002
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whereV,(f(-,0), [0, 1]) is the p-th variation of the function — f(z,0) as
defined by {.1). Similarly

@ _ o002 @
RW(p’q)_{ f:10,17 = C: RV ()

+Vf]<f(7 O)? [07 1]) + %(f(ov ')7 [07 1]) < OO}

We define the left and right — g-Wiener norm off € LW¢,  or f € RW(, )
as follows:

@) 1L, = LV () V00, [0, 1) 4V, (£(0, ), [0, 1)) +1/(0,0)

and

L8) 11f gy,
= RV () + V(£ (00, [0,1]) + V,(£(0, ), [0,1]) + |£(0,0)].

We also define the Wiener clagsf functions of one variable, that is,

(1.9 W,l0,1] ={f :]0,1] = C: V,(f,[0,1])) < oo}.
Whenp = ¢ thenLV,,,) = RV,,,), consequently we writél,, V, and p-
variation instead oL. W, ,,), LV, etc.

Before we can state our main result (Theore), we need to define the no-
tion of jump pointof functions of several variables. We stay in a two-dimensional
setting.
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Let f(z,y) be a function such thdt;(2)(f) < oo. Forz = (z1,22) and
J = (y1,42), we let

(1.10) d(Z,y) = max{|zy — p1, [v2 — y2l},

(1.11) A f(@) = f(z1,22) — f(z1,92) — f(y1,22) + f(y1,92)-
For? € [0,1]%, we let
(112) J(f,7) = limsup{Agf (7) - d(7,§) < 6},

We say thatf has gump atz if J(f,Z) > 0. It can be shown that N‘/}f”(f) <

oo then f has at most a countable number of jump points: i§ continuous at
Z then® cannot be a jump point of, but the converse is not true. Our main
resultis

Theorem 1.2 (a).Let f € W2, V@ (g) < o0 and! +1 > 1.1If fandg do
not have any common jump points then the Young-Stieltjes integrainith
respect tqy exists, and

1 1
aw [ [ et < o I, 0,

where

(1.14) c(p.q) <2 <1 +¢ (% " é>)

+inf{(1+§(a)) (1+C(aip+aiq)>ail<a<%+%}.
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We also have the following result.

Theorem 1.2 (b).Let f € RW , RV,

ppz qlqz()<ooandforz':12

pi + L > 1. If f andg do not have any common jump points then the Young-

Stleltjes integral off with respect tgy exists, and

(1.15)

1 1
i /0 f(x,y)dg(w7y)‘SC||f|IRW(p1,p2) RV (9),

where

o5 (30 2) + (0o(22)
+ min {1<airg+;2} {(1 +¢(a)) (1 +¢ (aipl + O%ql))a1}
+inf{(1+((a)) (1+< (aim +aiq2>)a

1 1}}
l<a< —+ — .
P1 q1

The theorem holds if we repla¢dV and RV with LW and LV throughout.

Note that, whem, = p, andg; = ¢», 1.2(b) reduces td..2(a). And finally
to state then-dimensional version, we define the correspondiiig and V'
classes of functions of-variables.
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Letp > 1 andf be a function defined o}, 1]". Let

1/p
> Zﬁi:‘.;;ii"flp) .

11,02, in

Vi (£,10,1]") = ( sup

T yeees T

oo s the n-difference of f. The

1500y in

duced prior to the statement of Theoréra. Let W™ ([0, 1]") = W™ denote

the class of functiong on [0, 1]*, such that,V,™(f, [0,1]") < oo, and for
each positive integel less tham; the function on0, 1]"~* obtained by keep-
ing any k£ coordinates of arguments g¢f to the fixed value of 0, belongs to
Wr=%(]0,1]*%). For instance when = 3, f € W ([0,1)?) if and only if

||f”Wp5 = ‘/p(S)(f7 [07 1]3) + ‘/;)(2)(f(07 ) ')7 [07 1]2) + ‘/p@)(f('v 0, ')7 [07 1]2)
+ Vp(Q)(f(U E O)’ [07 1]2) + V;J(f(v 0, 0)7 [O’ 1]) + V;?(f(ov K 0)7 [07 1])
+ ‘{D(f(0707 ')’ [07 1]) + ’f(0,0, O)’

is finite. Stated below is the-dimensional version of Theorein2(a).

Theorem 1.2 (c).Let f € W™, V" (¢) < and > + o > L. If fandg do
not have any common jump points then the Young-Stieltjes integrainath
respect tqy exists, and

(1.17) flar, - wa)dg(ay, - xa)| < e(poa) | fllw, Vi (9),

L
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where

(1.18)  c(p,q) < 2" (1 ¢ (119 i %))

+ 22 [(1 + ((a1)) (1 +¢ (%p + o%q))al]

g [(1 +¢(an))(1 + Claz))
% (1 6 (041;22? " 0412426]))6”&2}

+
+ {(1 + Cla)) (14 Clag))™ -+ (1 + C(ay_q))™on-2

1
X (1 +C(
Q10 -+ - Q1P

1 Q1O Qn—1
- )]
Q100+ Op_14q

where foreach < j <n—1, 1<aj,andajay---a,1 <+ ¢.

Multidimensional Extension of
L.C. Young’s Inequality

Nasser Towghi

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 12 of 30

J. Ineq. Pure and Appl. Math. 3(2) Art. 22, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:Nasser_M_Towghi@res.raytheon.com
http://jipam.vu.edu.au/

In this section we will prove a discrete version of Theorerd We define the
p-th variation of sequence of scalars.

Letd =: {k;}!", be a increasing sequence of positive integergakition
of 6 denoted byr(0) is an increasing sequence of mtegéys} ", such that
{jitry € {ki}q, jo = ko @andj,, = k,. We note that iff =: {k;}I, is a
increasing sequence of integers ar{d) is partition ofé, then any partition of
7(0) is also a partition of. If § =: {0, 1,2, ..., n}, then we writer(n) instead of
7(0). Thatis,7(n) denotes a partition of0, 1,2, ...,n}. For a given sequence
a = {a;}, and a partitionr =: {j;}/*, of {0,1,2,...,n}, m(a) denotes the
sequencda;, }™,.

Leta =: {a;}!, be afinite sequence of scalars. For any partitica m(n) =
{5}, where{j;}, C {0,1,2,...,n}, we definer(a) to be the sequence
{a; Y, andA;(w(a)) = a;, — aj,_,. Let An(a) denote the sequende;, —
a; Yo, Letp > 0andV,(a,m) = [, |Ai(r(a))P]>. We define thep-
variation of{q; } to beV,,(a) = sup, V,(a, 7).

We now consider the variation of two-dimensional sequences.
Definition 2.1. Lett =: {k;}72, x {I;}}_y, where{k;}7>, and{l;}}_, are two
increasing sequences of positive integers A partitiod dénoted byr(0) is
a two-dimensional sequengé’ }7>, x {I’}7 0 such that{ £} } 7 ¥, is a partition

of {k;}7-, as defined above ia. land {5 15= ", IS a partition of{l Yo 1f0 =
{0,1,...,n} x {0,1,...,m}, then a partition of) will be denoted byr(n X m).
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Leta = {ai,j}jjgjjgl be a two dimensional sequence of scalars ang-:
{k; Yo% {1;}7, be a partition. Them(a) denotes the sequentey, ;, }=r 7"
In particular,m(a); ; = ax,., -

We dEfineA1,i7j7T(a) = Qg l; — My 05 AQ,@'JT((G) = Qg l; — Myl g and

2
Ai,j’”<a) = Qg l; — kgl — k154 + Alo; 1,051+
Let A*m(a) denote the sequend@\? ;m
quence

{Ay;;m(a)}™,, and Ay,m(a) denote the sequenc{eﬁm m(a)}",. For
p > 0, we defineV;* (a,7) = [, ; |AZ((a)) )7
We define the-variation of{a; ;};=5:/=;" to beV,?(a) = sup, V,\?(a, ),

i=n,j=m

and thep-variation normof {a; ;},—;=," to be

(a)}iigf}’iﬁ”', A ;7 (a) denote the se-

(2.1) lally, = V;P(a) + Vo({aos},) + Vo{aio}i) + laogl-

Given two partitionsr andf, we sayd refinesr, if 7 is a partition of¢, and we
write 0 < 7. Let

(22) Ve (@) = sup V(a,7).

o<r<m

= {ai Y= 73" is asequence of scalars anek {k;}1_x {1}
n} x {0,1,2,....,m}. Letd < m, then every subd|V|S|on

Supposéa)
a partition of{0, 1, ...,
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point of 7 is also a subdivision point af. Therefore,# can be viewed as a
product of two, two-dimensional sequences, that is,

_. i=n,j=r; i=m,j=s;
0 =: {Ci,j}izo,jzo X {di,j}izo,jzo 3
where for each fixed > 1,

kiii=cio<ci1 < <cip =k

liiy=dip < diy <--- < dis, =1;.
We now prove a discrete version of Theorérfia).

Theorem 2.1. Leta =: {a;;};=07=" andb =: {b;;};=’—y" be two sequences
of scalars. Lep,¢ > 0,1 +1 > 1. Let

(23) L(CL, b) = zn: zm: CLi?injb.

i=1 j=1

Then

(24) |L<a7 b) - a0,0(bn,m - bO,m - bn,O + b0,0)| S C(pv q) ||aHI/Vp ‘/q@)(b)u

wherec(p, q) < inf{(l + (()) (1 +¢ (O%p + %q))a l<a< %#— é}
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Proof. By consecutive application of summation by parts we obtain

(2.5)

i: i a; ;]

i=1 j=1

<.

%

i > AL aA}b

i=1 j=1 k=1 I=1

n

™=

+ Z (a0 — aj—1,0)(bim — bio — bi—1.m + bi—10)
=1 =i
+ Z Z(ao,z —a0,1-1)(bnj — boj — bpj—1+boj-1)
=1 i=j
+ a0,0(bnm — bo.m — bno + boo)
=1+I1I+1I1+1V.

We now estimatd. For eachl < < n, let

(2.6)

2.7)

Choose with 1 < 75 < n — 1 so that for each < n — 1, the following holds:

(2.8)

ZZAH—IZ b)v

=1 I=1

Q(0,i0)| < |Q(0,7)].
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Foreachl <i<n—1,let

1 |fZ<ZO

—

(2.9) ¢, =

~

i1 if dg<i<n-—1.

Letm =: {c}}=y x {j}", be a partition 0f0,1,...,n} x {0,1,2,...m} and
let

n—1 m 1 J Multidimensional Extension of
L.C. Young'’s Inequali
(2.10) SM=>> > AL mi(a) A7 (b). g's Inequalty
i=1 j=1 k=1 I=1 Nasser Towghi

Title Page
. . 1 1
We now estimatéQ (0, io)|. Letl < a < it By (2.9 <« Y
1 < 4
n—1
1Q(0, )| < (H (0, z‘)l) - Go Back
i#io Close
An application of geometric-arithmetic mean inequality gives us Quit
1 a a Page 17 of 30
. N L
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Foreachl < j,letU(0,i,7) = A}, ;. mi(a)A jm(b). Forl <j <n—1,let

1

W(aapaj> = <Z |Aij+17'r1(a)|p> ) b q, ] (Z |A
and
(2.13) U(0,7) = W(b,q,/)W(a,p, ).

Choosegjp with 1 < jy < m—1 so that for each < m — 1, the following holds:

(2.14) T(0, jo)| < |U(0,7)].
For0<j<m-—1,let

1 J if 7 < o
(2.15) d = |
1l ifj<j<m-—1.

Now my =: {c;}iy x {d}}7-', is a partition which refines;. Let

m—1

(2.16) Q(1,i) = ZAH”m )AZ i (D).

j=1 [l=1

The following equation can be verified:

(2.17) Q(la Z) = Q<O’ Z) - U<Oa i>j0)'
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Therefore, by Minkowski’s inequality and the fact that> 1, we obtain

—1 n—I1
(2.18) Z@u%sz QL= + Y |U(0,4, 5o, )7
=1 1=1

We now estimaté " L U(0, 1, jo, )| By (2.13 and Hoélder’s inequality with
exponentsyp andag, We obtain

1 Multidimensional Extension of

n
Z ‘U(Oa iaj(); E Z H—l j0+17T1 )Al o™l (b)’ - . L.C. Young's Inequality

. Nasser Towghi

1
ap aq

Z ‘Ai+1,j0+1ﬂ-1( )‘p] [Z |Az g™ ]

Title Page
= 1U(0, jo)!. Contents
Therefore, by 2.14) <4 >»
1 < 4
m—1
(2.19) Z|U (0,4, 70)| (HUO] > Go Back
i#do Close

= (H W(b,q,j)> - (H W(a,p,j)> o 22

o o Page 19 of 30
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inequality, we obtain

n—1

S 1000, 5o) =

=1

730 J#jo
Now Multidimensional Extension of
L.C. Young’s Inequality
(:giq m—1n—1 o%q
N é Nasser Towghi
[wa, | < [ mtmon| < 0
E) 7=1 =1
. Title Page
Similarly
a Contents
1
[Z(W(a,p,j))“” < (V2(a)™ . «“ >
J#jo P >
Combining @.19 and the last three inequalities, we obtain
1,1 Go Back
n—1 i S
NS | 1 ap T aq @) 1 @) 1
(2.20) Zl U .50)| < | —— (V2 ®)* (VP(a)) Close
1= Quit

Combining inequalitiesZ.18 and @.20), we obtain Page 20 of 30
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By a similar argument we break up(1,) as the difference of two quantities
(compare with the equation followin@ (L7)), that is

where foreach < j <n — 2,
U(17 Z?]) = A12+1,j+177-2(a)A12,j772<b>7

andj; is chosen so that for eagh< m — 2,

1

n—1 aip n—1 aq
(Z ‘A?,jwl@(a)‘p) <Z ’Aiﬁ@(b)’q)
i=1 i=1
n—1 ocip n—1
< (z |A?,j+17rz(a)|p> (z mzﬂgw)w)
i=1 i=1

(This last inequality is to be compared with {3 and @.14)). By Minkowski’s
inequality

1

aq

—_

n—1 n— n—1
(2.23) SR )= <3 10@ )l + > [U(1,i, =
=1 =1

1

(2

The quantity> "~ |U(1,4, ;| is estimated in exactly the same manner as we
estimated

- . .
S U(0,4, ol #. We obtain

n—1 4
1 1 ("‘p

2.24 E U(l.7. 9= < [ —

( ) i:1‘ ( 7%]1‘ — ( _2)
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Combining @.21), (2.22), (2.23 and @.24) we obtain that,

(225) 37 1Q(0,4)[=

n-l 1 (O%PJralq) 1
<Slelk+ (1) e )
(a5+aq) 1
(o) o)

Continuing this process by breaking up the express§i® i) and so on, we
obtain

(2.26) Z Q(0,4)|« < ¢ (aip - i) VOBV ()] .

aq

Consequently byA.11), (2.12 and @.26), we obtain

(2.27)  |S(0)] < |S(1)| + (L)ac( L, )qu(Q)(b)V;,@)(a).

n—1 ap | ag

Now expressior5(1) is similar to.S(0), thus it can be estimated in the same
manner, i.e., we can write

(2.28) S(1) = 5(2) —Q1,40),
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whereS(2) andQ(1,,) are obtained in the same manners4s$) andQ(0, i)

were obtained front(0). Furthermore each < n — 2, Q(1,14,) satisfies the

following inequality (compare withZ4.8)),

(2.29) |Q(1,i1)] < |Q(1,4)].
Estimating|Q(1,i,)| the way we estimated)(0, i,)|, we obtain

: N (AL DY vegve
@30 el (515) oo+ ) Ve,

Consequently byA.27), (2.28 and .30, we obtain

@31) s0) < I5@1+ (15) ¢(2+ 1) 0K

ap  ag

1 “ 1 1\“
B T 2) 2)
+(n—2> C(QP+CIQ) VO )
Continuing the above process by breakingsp), we obtain
1 1\°
_ < 2= @ (VD (q).
@3 1500 (ot o) VPO

This gives the estimate ah To estimate// and/ /1, we note that / and//]
are one dimensional version 6f It can be shown that (see e.g])|

1 1
(233) 11 < ¢ (]—9 ¥ 5) VO {aro o DV (B — bio}iy),

(2.34) 11T < <<}9+$) VO ({an 3 DV (b — bos}T).
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It is easy to see that

VIO ({bny — boy}imy) < V),

q

Vi ({im = big}imy) < V2 (0).

q

Consequently + 11 + 111 < c(p,q) ||ally, V2(b). This completes the proof
of the Theoren?.1 O

To prove Theoreni.Z(a), a more general version of Theorémi must be
proved, the proof of which parallels the proof of Theor2grh This theorem is
needed to show that the Young-Stieltjes sums approximating the integfal of
with respect tgy form a Cauchy net.

Theorem 2.2. Leta = {a”}j:gj:g” andb =: {b;;},Zy’/=;" be two sequences

of scalars. Letr =: {e;};2, x {f;}}, be a partition of

{0,1,...,n} x{0,1,2,...m}.

Thismeansr =: {0 = ¢y < e < -+ < €, = n} X {O_fo < fl e <
fmi = m}, wheree;'s and f;'s are integers. LeL(a,b) = > i) > ) a; ;A 4(b),

and
L(a,b,7) ZZWH 7(b)).

(Reca"AiJ (W(b)) = bemfj - bei,f]’—1 - bei—hfj + b6¢—1,fj—1 andﬂ-i,j<a) = aei,fj)'
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1 1
If}—o+5>1,then

(2.35)  |L(a,b) — L(a, b, )
< c(p, V2 (a)V, 2 (b)

q,T
ny m
+ Z Z aeiyj(b3i7j - be(ifl)vj - beiJ—l + be(z;l)vj—l)
i=1 j=1
mi n
+ 2 Z; ai g, (big, — bicrg, = big ) + bicigy ) Multdimensional Extension of
j=1 i=
=T+ IT+1II Nasser Towghi
wherec(p, ¢) < inf {(1 + ¢(a)) <1 +¢ (O%p + O%q)) l<a< 110 + é} : Title Page
Using Theoremg.1and?2.2, Theoremsl.2(a) throughl.2(c) can be proved Contents
following closely the proof of L. C. Young's original result. <4< >
< 4
Go Back
Close
Quit
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As it was pointed out, int] Young considered the higher variations of functions
of two variables defined o, 1]? and gave existence proof of the double Young
-Stieltjes integralfol fol fdg. In this appendix we show that Theoren? (by
Theoreml.2we mean Theoremk.2(a) andl.2(b).).

In his paper, Young considered the more general type of variation in terms of
Orlicz functions rather thap or p — ¢ variation and he uses the conceppef
and g—bivariations. However, Young’s generalization of Theorér is not Mutidimensionall Extension of
the exact analogue of Theoreiri. In particular, the condition/p + 1/¢ > 1 L.C. Young's Inequality
in the statement of Theoremsl and1.2 are replaced by a stronger condition,
roughly given byl /p + 1/2¢q > 1. For the precise statement of Young's two
dimensional extension we refer the reader to Theorem 6.3]inBelow we

Nasser Towghi

state a special case of Young'’s 2-dimensional result, so the reader can compare Title Page
the result with Theoremi..2. Young's result can be obtained fron2. We Contents
first define the concept gf and ¢-bivariation of a function of two variables.

We say thatf(z, y) is function of boundeg andg— bivariation if there exists « dd
a pair of constant$’ and @ such that, for each fixed paig,y, € [0, 1], the < >

total p—variation of the function of one variabl&-, 1) — f(-,y2) is less than

P and for each fixed pair;, x5 € [0, 1], the totalg-variation of the function Go Back
f(x1,+) = f(xa,-) is less tharg). Close
Theorem 3.1 (Special version of Theorem 6.3 in3]). Let f be a function of Quit
boundedp;, — andp,—Dbivariation such that for eachr andy in [0, 1] f(z,0) = Page 26 of 30

f(0,y) = 0. And for fixedry, x2, Y1, yo,
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Then the Young-Stieltjes integral ¢fwith respect tog exists, provided that
there exist positive strictly increasing functiolsnd k, such that

) ot =rand () () o2k () () <

To show that Theorerm.2 implies Theoren3.1, we must relate the concept of
p- and ¢g-bivariation to the concept gf — ¢ variation as defined by equations

(1.5 and (1.6). Following theorem is the consequence of the results proven in

[5] (see Theorem 1.4 and Corollary 3.1 if]).

Theorem 3.2.[5]. If fis a function ofp; and p,-bivariation, then
(A2) LV(ZPl)(f) + R‘/(Q,Pz)(f) < Q.

Further more ifp; < 2 thenRV,, »)(s) is finite. Ifp; > 2 thenV,, (f) is finite.
Similarly if p, < 2 thenLV,, o)y is finite. Ifp, > 2 thenV),(f) is finite. If
p1=p2 = p < 2thenV u (f) is finite. Ifp, = p, = p > 2 thenV,(f) is
+p
finite.
W now examine the conditions given in Theor&m. Condition ong, that
is,

1 1
lg(x1, 1) — 9(x1,y2) — (2, y1) + g(22,y2)| < |x1 — T2| 90 |y2 — Y1 |22

implies that
LV(QMD)(Q) + Rv(q1,q2)<g) < 0.
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The fact thatf vanishes on each axis implies that
£l = EVer (D) 1 L, = BV (£),

andHfHW(A) = V(,(f). Sinceh andk are decreasing functions;)(implies that

_1 1 (%_q%z)
(A3) h (n P2> <c|-— :
n
wherec is a fixed universal constant. We also have,
_L 1 <%*q§7§1)
(A4) k (n p1> <c| - ]
n

Sinceh(x)k(x) = z, (*) and the previous set of inequalities imply that,

1 1 P2 _Q) 1 1 P1 _ﬂ)

p1var Trras by p2 Vag Thoar
po  y ()T (L

n=1 n=1

On the other hand theoremZ) implies that
(A6) L‘/'(Z,pl)(f) + RVY(Q,;DQ)(f) < Q.

Consequently, if we want to use Theorédn2 to establish the existence of the
Young-Stieltjes integral of with respect tq;, we must show that either

1 1 1 1
(A7) —+—>1 and -+ —>1;
P1 q1 2 q2
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or

1 1 1 1
(A8) —+—>1 and -+ — > 1.

P2 Qe 2 ¢
Sinceq; > andg, > 1, (A5) implies thatpii +i > 1fori=1,2. If p; > 2
then (A8) holds and ifp, > 2 then (A7) holds. Also if1 + q% > 1, then @8)
holds. Suppose that < 2fori = 1,2 and; + _- < 1. Now (A5) implies that

1 1
(A9) R
P @1 pP1g2 M1

This last inequality and the assumptionsgnp, andqg; (i.e.,1 < p; < 2 and

3 + o < 1), imply that; + - > 1. Therefore A7) holds. This shows that

Theoreml.2implies Theoren3.1
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