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ABSTRACT. The present paper is devoted to the stability analysis of a general class of hemi-
variational inequalities. Essentially, we present two approaches for this class of problems. First,
using a general version of Minty’s Lemma and the convergence result of generalized gradients
due to T. Zolezzi [23], we prove a stability result in the spirit of Mosco’s results on the variational
inequalities [14]. Second, we provide a quite different stability result with an estimate for the
rate of convergence of solutions when the given perturbed data are converging with respect to an
appropriate distance. Illustration is given with respect to a hemivariational inequality modelling
the buckling of adhesively connected von kármán plates.
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1. I NTRODUCTION

The theory of inequalities has received remarkable developments in both pure and applied
mathematics as well as in mechanics, engineering sciences and economics. This theory has
been a key feature in the understanding and solution of many practical problems such as market
price equilibria, traffic assignments, monetary policy setting and so on. In this context, varia-
tional inequalities have been the appropriate framework for studying some of these problems
during the last forty years. More recently, new and efficient mathematical inequalities, called
hemivariational inequalities, have facilitated the solution to many challenging open questions
in mechanics and engineering. This class of problems has been pioneered by the work of Pana-
giotopoulos [18] who introduced a variational formulation involving nonconvex and nonsmooth
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2 MOHAMED A IT MANSOUR

energy functions. Subsequently, it has been developed from the point of view of existence re-
sults by many authors, we refer to [5, 6], [10], [17], [16], [20] and references therein.

In this paper, we attempt to investigate stability results for the following generalized hemi-
variational inequalities: for anyn ∈ N, find un ∈ X such that for allv ∈ X

(GHIn) Φn(un, v) + Ψn(un, v) + J0
n(un; v − un) + ϕn(v)− ϕn(un) ≥ 0.

holds.
Here,X is a Banach space,(Φn)n≥0, (Ψn)n≥0 are sequences of real valued bifunctions de-

fined onX ×X, (ϕn)n≥0 a sequence of extended real valued functions and(Jn)n a sequence of
real locally Lipschitz functions;J0

n is the Clarke’s derivative ofJn. The main question is then
the following : under what conditions do the solutionsun to (GHIn) converge to a solution of
the initial problem(GHI0)?
The remainder of the paper is organized as follows. In Section 2, we discuss a concrete me-
chanical example that has motivated our study. Section 3 is devoted to our main stability results.
We present two approaches. Namely, we first propose a general version of Minty’s Lemma and
proceed by the epi-convergence method, Theorem 3.2. Further, we define a “distance” between
two bifunctions and present a stability result with an estimate for the rate of convergence of so-
lutions in terms of the given data rate of convergence: Theorem 3.20 is first stated in equilibrium
problems formulation and Corollary 3.21 is then derived for(GHI0). In Section 4, we illustrate
the abstract results by an application to a hemivariational inequality that models the buckling of
adhesively connected von kármán plates allowing for delamination. Finally, we conclude with
some comments.

2. M ECHANICAL EXAMPLE

To illustrate the idea of hemivariational inequalities and explain how important this class of
inequalities is, we suggest the following model1 summarized from [15], further details and
similar models can be found in [16, 17, 18, 20]. The model is concerned with the buckling
of adhesively connected von kármán plates allowing for delamination. Roughly speaking, it
consists of characterizing the position on equilibrium of the plates and lead to research of so-
lution to special problem formulated as a hemivariational inequality. Let us now formulate the
problem. Consider a plateΩ and the binding material onΩ′. In the undeformed state, the mid-
dle of the plate occupies an open, bounded and connected subsetΩ of R2, referred to a fixed
right-handed Cartesian coordinate systemOx1x2x3. Let Γ be the boundary of the plate:Γ is
assumed to be appropriately regular. Let also the binding material occupy a subsetΩ′ such that
Ω′ ⊂ Ω andΩ̄′

⋂
Γ = ∅. We denote byζ(x) the vertical deflection of the pointx ∈ Ω of the

plate, and byf = (0, 0, f3(x)) the distributed vertical load. Further, letu = {u1, u2} be the
in-plane displacement of the plate. We assume that the plate has constant thicknessh. More-
over, we assume that the plate obeys the Von kármán theory, i.e. it is a thin plate having large
deflections. The von kármán plates verify the following system of differential equations:

K44ζ − h(σαβζ,β),α = f in Ωj,(2.1)

σαβ,β = 0 in Ωj,(2.2)

σαβ = Cαβγδ(εγδ(u) +
1

2
ζ,γζ,δ) in Ωj.(2.3)

Here the subscripts,α, β, γ, δ = 1, 2 correspond to the coordinate directions:{σαβ}, {εαβ} and
Cαβγδ denotes the stress, strain and elasticity tensors in the plane of the plate. The components

1We have recalled in details this model as it was stated in [15] in concern with existence of solutions, here we
deal with stability issue under data perturbation for hemivariational inequalities modelling such problems.
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STABILITY OF GENERALIZED HEMIVARIATIONAL INEQUALITIES 3

of C are elements ofL∞(Ω) and have the usual symmetry and ellipticity properties (further
explanations and figures can be found in [15]). Moreover,K = Eh3

12(1−ν2)
is the bending rigidity

of the plate withE the modulus of elasticity andν the Poisson ratio. For the sake of simplicity,
we consider here isotropic homogeneous plates of constant thickness. In laminated and layered
plates, the interlaminar normal stressσ33 is one of the main cause for delamination effects. Note
that this is a simplification of the problem. In order to model the action ofσ33, f is split into
a vectorf̄ , which describes the action of the adhesive andf ∈ L2(Ω), which represents the
external loading applied on the plate:

f = f + f in Ω.

We introduce now a phenomenological law connectingf̄ with the corresponding deflection of
the plate describing the action of adhesive material. We assume that:

(2.4) −f ∈ β(ζ) in Ω
′
,

whereβ is a multivalued function defined as in [19] (by filling in the jumps in the graph of
a functionβ ∈ L∞loc(R)). We note here that cracking as well as crushing effects of either a
brittle or semi-brittle nature can be accounted for by means of this law. The following relation
completes in a natural way the definition off :

f = 0 in Ω− Ω′.

In order to obtain a variational formulation of the problem, we express relation (2.4) in a super-
potential form. Ifβ(ξ ± 0) exists for everyξ ∈ R then, from [7] and [19] a locally Lipschitz
(nonconvex) functionJ : R → R can be determined up to an additive constant such that

β(ξ) = ∂J(ξ),

where∂ is the generalized gradient of Clarke1. Moreover, we suppose the following boundary
condition on the plate boundary:

ζ = 0 onΓ.

Now, let us denote byn the outward normal unit vector toΓ and bygα (α = 1, 2) the self-
equilibrating forces and assume for the in-plane action the boundary conditions

(2.5) σαβnβ = gα onΓ α = 1, 2.

Notice that in [15], (2.5) involves an eigenvalueλ such thatσαβnβ = λgα. Here we takeλ = 1.
For the moment we assume thatgα = 0 α = 1, 2. We can now derive the variational formulation
of the problem. From (2.1), by assuming sufficiently regular functions, multiplying byz(j) −
ζ(j), integrating and applying the Green-Gauss theorem, we obtain the expression(E):

α(ζ, z − ζ) +

∫
Ω

hσαβζ,α(z − ζ),βdΩ =

∫
Γ

hσαβζ,βnα(z − ζ)dΓ +

∫
Ω

f(z − ζ)dΩ

+

∫
Γ

Kn(ζ)(z − ζ)dΓ−
∫

Γ

Mn(ζ)
∂(z − ζ)

∂n
dΓ.

Here,α, β = 1, n denotes the outward normal unit vector toΓ,

(2.6) α(ζ, z) = K

∫
Ω

[(1− ν)ζ,αβz,αβ + ν4ζ4z]dΩ, 0 < ν < 0.5,

(2.7) Mn(ζ) = −K
[
ν4ζ + (1− ν)

(
2n1n2ζ,12 + n2

1ζ,11 + n2
2ζ,22

)]
1For the convenience of the reader we recall (see [8]) that∂j is defined by∂j(x) = {ζ ∈ Z∗ : 〈ζ, v〉 ≤

j0(x; v) for all v in Z} andj0(x; v) := lim sup
y→x
t↘0

1
t (j (y + tv)− j (y)).
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4 MOHAMED A IT MANSOUR

and

(2.8) Kn(ζ) = −K

[
∂4ζ

∂n
+ (1− ν)

∂

∂τ

[
n1n2(ζ,22 − ζ,11) + (n2

1 − n2
2)ζ,12

]]
,

whereτ is the unit vector tangential toΓ such thatν.τ and theOx3-form a right-handed system.
A similar argument applied to (2.2) leads to the following expression

(2.9)
∫

Ω

σαβεαβ(v − u)dΩ =

∫
Γ

σαβnβ(vα − uα)dΓ. α, β = 1, 2.

Further, the following notations are introduced:

(2.10) R(m, k) =

∫
Ω

CαβγδmαβkαβdΩ. α, β, γ, δ = 1, 2.

and

(2.11) P (ζ, z) = {ζ,αz,β}, P (ζ, ζ) = P (ζ),

wherem = {mαβ} andk = {kαβ}, α, β = 1, 2 are2× 2 tensors.
Let us also introduce the functional framework. We assume thatu.v ∈ [H1(Ω)]2 and that

ζ, z ∈ Z, where
Z = {z|z ∈ H2(Ω), z = 0 on Γ}.

Taking into account expression(E), (2.9), the boundary conditions and the inequalities defining
the multivalued operator∂ we obtain the following problem: findu ∈ [H1(Ω)]2 andζ ∈ Z such
as to satisfy the hemivariational inequality(HI):

α(ζ, z− ζ) + hR(ε(u) +
1

2
P (ζ), P (ζ, z− ζ)) +

∫
Ω′

J0(ζ, z− ζ)dΩ ≥
∫

Ω

f(z− ζ)dΩ. ∀z ∈ Z

and the variational equality(V E) :

R(ε(u) +
1

2
P (ζ), ε(v − u)) = 0, ∀v ∈ [H1(Ω)]2.

Further we shall eliminate the in-plane displacement of the plate. To this end we note first that
R(., .) as defined in (2.10) is a continuous symmetric, coercive bilinear form on[L2(Ω)]4 and
that P : [H2]2 → [L2(Ω)]4 of (2.11) is a completely continuous operator (see [20] p. 219).
Thus the equality(V E) and the Lax-Milgram theorem imply that to every deflectionζ ∈ Z,
there corresponds a plane displacementu(ζ) ∈ [H1(Ω)]2. Indeed, due to Korn’s inequality
R(ε(u), ε(v)) is a bilinear coercive form on the quotient space[H1(Ω)]2/R̄, whereR̄ is the
space of in-plane rigid displacements defined by

(2.12) R̄ = {r̄/r̄ ∈ [H1(Ω)]2, r̄1 = α1 + bx2, r̄2 = α2 − bx2, α1, α2, b ∈ R}.

From(V E) it results that

(2.13) ε(u(ζ)) : Z → [L2(Ω)]4

is uniquely determined and is completely quadratic function ofζ, sinceε(u(ζ)) is a linear
continuous function ofP (ζ). We also introduce the completely continuous quadratic function
G : Z → [L2(Ω)]4 which is defined by

(2.14) ζ → G(ζ) = ε(u(ζ)) +
1

2
P (ζ)

and satisfies the equation

(2.15) R(G(ζ), ε(u(ζ))) = 0.
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STABILITY OF GENERALIZED HEMIVARIATIONAL INEQUALITIES 5

We now define the operator:A : Z → Z andC : Z → Z such that

(2.16) α(ζ, z) = (Aζ, z)

and

(2.17) hR(G(ζ), P (ζ.z)) = (C(ζ), z).

A is a continuous linear operator,C a completely continuous operator and(·, ·) denotes the
scalar product inZ. Thus the following problem results:

find ζ ∈ Z, so as to satisfy the hemivariational inequality

(2.18) a(ζ, z − ζ) + (C(ζ), z − ζ) +

∫
Ω

′
j0(ζ, z − ζ)dΩ ≥

∫
Ω

f(z − ζ)dΩ ∀z ∈ Z.

The last hemivariational inequality characterizes the position of equilibrium of the studied prob-
lem. Note that the second member of (2.18) can be expressed by means of a linear, self-adjoint
and compact operatorB. For the explicit form ofB, we refer to [20] (equation 7.2.13).

Therefore, this problem can be viewed as, and actually is, a particular case of(GHI0).

Remark 2.1. Notice that if we takeJ = 0, (GHI0) covers the Generalized variational and
quasi variational inequalities. Some other mathematical problems contained in(GHI0) can be
found in [4].

3. M AIN CONVERGENCE RESULTS

In this section, we present our stability results. By means of a general version of the cele-
brated Minty’s Lemma, we proceed first by the epi-convergence method. In the sequel, unless
another framework is specified, the spaceX is a Banach space with dualX∗ equipped with the
weak∗ topology denoted byw∗. The symbols→ will stand for the strong convergence both in
X andX∗. We first recall the following definitions:

Definition 3.1. A sequencefn : X → (−∞, +∞) is said to be equi-lower semidifferentiable
iff for every x ∈ X there exists a ballB aroundx such that for everyε > 0 we can findδ > 0
so as

(3.1) fn(z) ≥ fn(y) + 〈u, z − y〉 − ε‖z − y‖
for everyy ∈ B, everyn, everyu ∈ ∂−fn(y) and everyz such that‖z − y‖ ≤ δ. Where
∂− denotes the lower semigradient given for some functiong andx ∈ X by: u ∈ ∂−g(x) iff
u ∈ X∗ and

lim inf
y→x

(g(y)− g(x)− 〈u, y − x〉)/‖y − x‖ ≥ 0.

Definition 3.2. A sequencefn : X → (−∞, +∞) is called strongly epi-convergent tof :
X → (−∞, +∞) iff vn → v impliesf(v) ≤ lim infn fn(vn), and for everyv ∈ X there exists
a sequencevn → v such that:lim supn fn(vn) ≤ f(v).

3.1. Epi-convergence approach.Having our applications in mind, we make the following
assumptions:

(H0) X is separable and has a equivalent norm that is Fréchet differentiable off0;
(H1) i) Φ0 is monotone, that is for eachu, v ∈ K, Φ0(u, v) + Φ0(v, u) ≤ 0;

ii) Φ0 is upper hemicontinuous i.e., for allu, v, w ∈ X, the mapt ∈ [0, 1] 7→ Φ0(tu +
(1− t)v, w) is upper semicontinuous;

iii) Φ0 is convex on the second argument andΦ0(u, u) = 0 for all u ∈ X;
(H2) Ψ0 is convex on the second argument andΨ0(u, u) = 0 for all u ∈ X;
(H3) ϕ0 is proper and convex;
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(H4) Φn is monotone for eachn and(Φn) lower-converges toΦ0 : ∀ u ∈ X, v ∈ X, ∀un → u
and∀(vn)n → v it resultsΦ0(u, v) ≤ lim infn Φn(un, vn) ;

(H5) (Ψn) upper-converges toΨ0 : ∀ u ∈ X, v ∈ X, ∀un → u and∀vn → v for a subse-
quencenk one haslim supk Ψnk

(unk
, vnk

) ≤ Ψ0(u, v) ;
(H6) the sequence(ϕn)n is strongly epi-convergent toϕ0;
(H7) The sequenceJn is locally equi-Lipschitz, that is for every ballB in X there exists

M > 0 such that

|Jn(u)− Jn(v)| ≤ M‖u− v‖
for all u, v ∈ B and alln;

(H8) (Jn)n is equi-lower semidifferentiable and strongly epi-convergent toJ0;

Remark 3.1. We should notice that we do not need to make appeal to the assumption(H1) i)
since it is included in(H4). Indeed, for anyu, v ∈ X and for someun → u andvn → v, let us
remark that

Φ0(u, v) + Φ0(v, u) ≤ lim inf
n

Φn(un, vn) + lim inf
n

Φn(vn, nn)

≤ lim inf
n

[Φn(un, vn) + Φ(vn, un)]

≤ 0 .

In the following theorem we denote bySn the set of solutions to (GHIn).

Theorem 3.2.Suppose that assumptions(H0)− (H8) are verified. Then, we have

s− lim inf
n

Sn ⊂ S0.

Remark 3.3. The result of Theorem 3.2 means that whenever a sequenceun of solutions to
(GHIn) is strongly converging tou, u is a solution to(GHI0).

To prove this theorem, we first collect some lemmas.

Lemma 3.4. [8] Let g be a real Lipschitz function of rankk nearx. Then, the functionv →
g0 (x; v) is positively homogeneous and subadditive (thus convex), continuous and Lipschitz of
rankk onX.

Lemma 3.5(Minty’s). Letf be an extended real-valued bifunction such thatf is convex in the
second argument andf(v, v) = 0 for eachv ∈ X. Assume moreover that(H1) hold, then the
following statements are equivalent.

a) There existsu ∈ X such that for everyv ∈ X,

Φ0(u, v) + f(u, v) ≥ 0 .

b) There existsu ∈ X such that for everyv ∈ X,

Φ0(v, u) ≤ f(u, v).

Proof. a) ⇒ b) Let u ∈ X such thata) is satisfied. Thus we have

−Φ0(u, v) ≤ f(u, v).

sinceΦ0 is monotone, it follows thatΦ0(v, u) ≤ −Φ0(u, v), ∀v ∈ X. Therefore, for every
v ∈ X we have

Φ0(v, u) ≤ f(u, v),

which means thatb) is verified.
b) ⇒ a) Let u be a solution inb) and fixv ∈ X andt ∈]0, 1[. Then, using(H1) iii) and the
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convexity off(u, .), for wt = tu + (1− t)v, we have

0 = Φ0(wt, wt) ≤ (1− t)Φ0(wt, v) + tΦ0(wt, u)

≤ (1− t)Φ0(wt, v) + tf(u, wt)

≤ (1− t)Φ0(wt, v) + t(1− t)[f(u, v)].

Becausef(u, u) = 0. Therefore,

−t[f(u, v)] ≤ Φ0(wt, v).

Hence, by upper hemicontinuity ofΦ0, we end at

−[f(u, v)] ≤ lim sup
t→1

Φ(wt, v) ≤ Φ0(u, v)

which leads to
0 ≤ Φ0(u, v) + f(u, v).

Finally, v being arbitrary chosen inX, the last inequality means thata) is satisfied �

Remark 3.6. Notice that a particular case of Lemma 3.5 is the variational Minty’s Lemma
given in [13, p. 249] as follows:

find u ∈ X such that: 〈l, v − u〉 ≤ 〈A(u), v − u〉 for all v ∈ X

is equivalent to

find u ∈ X such that: 〈l, v − u〉 ≤ 〈A(v), v − u〉 for all v ∈ X

whereA is an hemicontinuous and monotone operator from a Banach spaceX into its topolog-
ical dualX∗, andl ∈ X∗.

Lemma 3.7. [8] Letg be as stated in Lemma 3.4. Then,∂g(x) is a nonempty, convex, week∗−compact
subset ofX∗ and‖ζ‖ ≤ k for eachζ ∈ ∂g(x).

Lemma 3.8.Assumption(H7) holds. Then, the sequence of set-valued map(∂Jn)n is uniformly
bounded.

Proof. Let un be a bounded sequence.(un)n is then contained in a ballB = B(0, r) where
r > 0. Let alsoM be a positive constant such that

|Jn(u)− Jn(v)| ≤ M‖u− v‖ for all u, v ∈ B and all n.

Therefore by Lemma 3.7 we deduce that:‖∂Jn(un)‖ ≤ M, that is wheneverξ ∈ ∂Jn(un) we
have‖ξ‖ ≤ M. This means that∂Jn is uniformly bounded. �

Lemma 3.9. [8] Considerg as stated in Lemma 3.4. Then, For everyv in X, one has

g0(x; v) = max{〈ζ, v〉 : ζ ∈ ∂g(x)}.

Lemma 3.10. Under(H0), (H7) and(H8) , for anyu, v ∈ X and anyun → u, vn → v there
exists a subsequence(nk)k such that

lim sup
k

J0
nk

(unk
; vnk

) ≤ J0
0 (u; v).

Remark 3.11. To simplify the notation we consider, without loss of generality, the inequality
of Lemma 3.10 as:

lim sup
n

J0
n(un; vn) ≤ J0

0 (u; v).
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Proof. Let un → u, ξn ∈ ∂Jn(un) and letvn → v. As, for eachn, ∂Jn(un) is weakly compact,
there exists a mapξn : X → X∗ defined, for eachw ∈ X, as follows:ξn(w) ∈ ∂Jn(un) such
that

(ξn(w), w) = max
ξ∈∂Jn(un)

(ξ, w) = J0
n(un; w).

Sinceun is bounded, by Lemma 3.8 it results that(ξn(vn))n is bounded. Therefore,(ξn(vn))n

has a weakly converging subsequence also denoted by(ξn(vn))n. Let ξ(v) ∈ X∗ be the weak∗

limit of ξn(vn). On the other hand,(H7) implies that(Jn)n is locally equi-bounded. Then, by
(H0) and(H8), we apply [23, Theorem 1] and obtain

lim sup
n

gph ∂Jn ⊂ gph ∂J0 in (X, s)× (X∗, w∗),

which implies thatξ(v) ∈ ∂J0(u). Hence, taking Lemma 3.9 into account, we end at

lim sup
n

J0
n(un; vn) = lim sup

n
max

ξ∈∂Jn(un)
〈ξ, vn〉

= lim sup
n

〈ξn(vn), vn〉

= 〈ξ(v), v〉
≤ max

ξ∈∂J0(u)
〈ξ, v〉 = J0

0 (u; v).

�

Proof of Theorem 3.2.Let un ∈ s− lim inf Sn andu be the strong limit ofun. We wish to prove
thatu ∈ S0. To this end, fixv ∈ X. By (H6) there exists a sequence(vn)n such thatvn → v and
lim supn ϕn(vn) ≤ ϕ0(v). As un is a solution to(GHIn), by monotonicity ofΦn it follows:

Φn(vn, un) ≤ Ψn(vn, vn) + J0
n(un; vn − un) + ϕn(vn)− ϕn(un).

hence, taking into account(H4)− (H6) and Lemma 3.10, there exists(nk)k such that

Φ0(v, u) ≤ lim inf
k

Φnk
(vnk

, vnk
)

≤ lim sup
k

J0
nk

(unk
; vnk

− unk
)− lim inf

k
ϕnk

(unk
)

+ lim sup
k

ϕnk
(vnk

) + lim sup
k

Ψnk
(vnk

, vnk
)

≤ Ψ0(u, v) + J0
0 (u; v − u) + ϕ0(v)− ϕ0(u).

therefore,
Φ0(v, u) ≤ Ψ(u, v) + J0

0 (u; v − u) + ϕ0(v)− ϕ0(u).

Sinceϕ0 is proper, it follows thatu ∈ dom(ϕ). Hence, asJ0
0 (u; .− u) is convex (Lemma 3.4),

we can takef = Ψ0(u, v) + J0
0 (u; v − u) + ϕ0(v)− ϕ0(u) in Lemma 3.5 and obtain

0 ≤ Φ0(u, v) + Ψ0(u, v) + J0
0 (u; v − u) + ϕ0(v)− ϕ0(u).

Now, v being arbitrary chosen, we conclude thatu is a solution to(GHI0). The proof is there-
fore complete. �

Remark 3.12. Let us mention that, if we takeJ0 = 0 in (GHI0), this result is not affected if
the sequence of solutions is weakly converging. In this case we shall obtain:

w − lim inf Sn ⊂ S0.

In fact, we have made recourse to strong convergence in(H8) because of the presence of
Clarke’s derivative in(GHI0).

From Theorem 3.2 we deduce the following variant of the stability results in [12, 14].
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Corollary 3.13. LetT andTn, for eachn ≥ 1, be operators fromX to X∗. Suppose that:

a) T is hemicontinuous onX;
b) Tn is monotone;
c) (Tn)n converges toTn in the sense that: for anyu ∈ X, any sequenceun strongly

converging tou we haveTnun ⇀ Tu;
d) (H6) is satisfied.

Then, if a sequence(un) of solutions to the variational inequality:

(V In) find u ∈ X such that(Tnu, v − u) + ϕn(v)− ϕn(u) ≥ 0 ∀v ∈ X

converging to a pointu, u is a solution to the variational inequality:

(V I) find u ∈ X such that(Tu, v − u) + ϕ(v)− ϕ(u) ≥ 0 ∀v ∈ X.

Proof. It suffices to take, for eachu, v ∈ X, Φ(u, v) = (Tu, v−u) andΦn(u, v) = (Tnu, v−u).
The result is hence an easy consequence of Theorem 3.2. �

The paragraph below presents a stability result without recourse to(H0) and(H8).

3.2. Distances approach.In this paragraph, we first present the stability result for the equilib-
rium problem. Further, we derive the result for(GHI0). In this respect, we suppose thatX is a
normed vector space with norm‖·‖ and assume thatϕ0 = 0. We shall also consider a sequence
of bifunctionsFn : X × X → R and the following equilibrium problems: for anyn ≥ 0 find
un ∈ X such that:

(EPn) Fn(un, v) ≥ 0 for all v ∈ X

To carry out our stability analysis, we need the following monotonicity assumption:

(A1) Fn(u, v) + Fn(v, u) ≤ −M‖u− v‖2 for all u, v ∈ X, n ≥ 1, whereM > 0.

Fn will be said−M -monotone.

Remark 3.14. Let C : X → X∗ be ar-Lipschitz operator, (wherer > 0) andB : X → X∗ be
a linear bounded operator. Let us define the bifunctionsh andh1 given by

h(u, v) = 〈Cu, v − u〉 andh1(u, v) = 〈Bu; v − u〉.

It is easily shown thath is r-monotone andh1 is ‖B‖-monotone.

Let us give now an-essential-example of bifunction satisfying a relaxed monotonicity as-
sumption of(A1). Let X = H be a Hilbert space,I the identity mapping onH andJ0 a real
locally Lipschitz function onX.

Lemma 3.15. Suppose that, for someα ∈ R, ∂J0 + αI is monotone. Then, the bifunctiong
defined, for allu, v ∈ H, byg(u, v) = J0

0 (u; v − u) is α-monotone.

Proof. Straightforward. �

Remark 3.16. Let us remark that in lemma 3.15, we can easily check that∂J0 is strongly
monotone ifα < 0, monotone ifα = 0 and weakly nonmonotone ifα > 0. It is known from
convex analysis that the monotonicity of∂J0 leads to convexity ofJ0. Then, wheneverα ≤ 0
the problem(GHI0) comes back to the generalized variational inequality, since in this caseJ0

is a convex , whereas ifα > 0 the functionJ0 is not necessarily convex.

Remark 3.17. A special case ofJ0 is when it is defined as follows:

J0(u) =

∫
Ω

j(u(x))dx
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Here, the spaceX is supposed imbedded inLp(Ω) with Ω an open bound subset ofRn, and

j(t) =

∫ t

0

β(s)ds; β ∈ L∞loc(R).

Notice that in [1], the authors provided some condition onβ so as to satisfy the monotonicity
condition of Lemma 3.15. Precisely, they considered the following property:

t1 ≤ t2 ⇒ β+ (t1) < β− (t2) + γ(t2 − t1)
r,(3.2)

whereγ, r > 0 andβ+ andβ− are given by

β+(t) = lim
δ→0

ess sup
|s−t|≤δ

β(s), β− (t) = lim
δ→0

ess inf
|s−t|≤δ

β(s) for somet ∈ R.

Using this assumption, it is argued in [1] thatJ0 is K-monotone for some constantK > 0.

Remark 3.18. The condition of Lemma 3.15 is nothing else than a relaxed form of monotonic-
ity for ∂J0 but it keeps the nonconvex framework for the energy functionJ0. After we have
finished this work we have realized that a such condition was used by Naniewicz and Pana-
giotopoulos in [16] ( Chapter 7) for existence results.

Before stating the main result of this paragraph, we introduce the following "distance" be-
tween two bifunctionsf andg as follows:

ρτ (f, g) := sup
u 6=v,‖u‖≤τ

|(f − g)(u, v)|
‖u− v‖

whereτ > 0.

Remark 3.19. Let A andB be two operators fromX toX∗. We associate toA andB two
bifunctions as follows:

fA(u, v) = (Au, v − u); fB(u, v) = (Bu, v − u).

It is readily shown that
ρτ (A, B) := ρτ (fA, fB) ≤ dτ (A, B)

wheredτ is the classical ”distance” defined by

dτ (A, B) := max
‖u‖≤τ

‖A(u)−B(u)‖.

Assume that the set of solutions to(EP0), also denoted byS0, is nonempty and bounded and
let τ > 0 such thatS0 ⊂ B(0, τ). We claim the following:

Theorem 3.20.Assume that assumption(A1) holds and the sequenceFn converge, following
ρτ , to F . Then, whenever the solutionun to (EPn) exists it must be unique and strongly con-
vergent to the unique solutionu0 to (EP0) and we have

‖un − u0‖ ≤
1

M
ρτ (Fn, F0).

Proof. Let us first establish, for eachi ≥ 1, the following estimation:

‖ui − u0‖ ≤
1

M
ρτ (Fi, F0).

Let i ≥ 1. Since, forj = 0, i, uj is a solutions to(EPj), we have

Fj(uj, v) ≥ 0 for all v ∈ X

thus, we make in(EPj), v = um for m = 0, i andm 6= j, and adding the two relations we
obtain:

Fi(ui, u0) + F0(u0, ui) ≥ 0.
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Therefore
Fi(ui, u0)− F0(ui, u0) + F0(ui, u0) + F0(u0, ui) ≥ 0.

Taking into account(A1), we deduce that

M‖ui − u0‖2 ≤ F0(u0, ui)− Fi(u0, ui)

≤ ρτ (Fi, F0)‖ui − u0‖
which leads to

(3.3) M‖ui − u0‖ ≤ ρτ (Fi, F0).

Now for n ≥ 1, the uniqueness of solutionun to (EPn) comes (3.3). Furthermore, we have

‖un − u0‖ ≤
1

M
ρτ (Fn, F )

therefore, we conclude that

e(un, S) := sup
w∈S

‖un − w‖ → 0 asn goes to+∞.

Hence,un strongly converges to someu which must be the unique solution to(EP0). The proof
is then finished. �

We are now in a position to derive a result with estimation of solutions to(GHI0). We hence
claim the following:
Corollary 3.21. Assume thatX is Hilbert space, for eachn ≥ 1 Φn is−γ-monotone for some
γ > 0, ∂Jn + αI is monotone for someα > 0, (Ψn)n is c-monotone andγ > α + c. Then, if
τ > 0 is such thatS0 ⊂ B(0, τ), whenever the solutionun to (GHI)n exists is unique and the
following estimation holds:

‖un − u0‖ ≤
1

(γ − α− c)
[ρτ (Φn, Φ0) + ρτ (Ψn, Ψ0) + ρτ (gn, g0)].

If moreover, the sequences(Φn), (Ψn) and(gn) converge with respect toρτ , thenun strongly
converges tou0.

Here we have adopted the notation:

gn(u, v) := J0
n(u; v − u).

Proof. Let us take:

Fn(u, v) = Φn(u, v) + J0
n(u, v − u) + Ψn(u, v).

Using Lemma 3.15, we see thatFn is (γ − α − c)-monotone. The result is hence direct from
Theorem 3.20. �

4. APPLICATION

4.1. Equilibrium of the von kármán plates. We treat here a mathematical problem which
simply models the equilibrium problem of the von kármán plates presented In Section 2. In
this way, letV be a Hilbert space with scalar product(·, ·) and the associated norm‖.‖. Space
V is supposed densely and compactly imbedded intoLp(Ω, R) for somep ≥ 2. Here Ω is
a bounded domain inRN . We shall consider a bilinear forma : V × V → R, a nonlinear
operatorC : V → V, a functionβ ∈ L∞loc(R) and the locally Lipschitz functionj defined
by: j(t) =

∫ t

0
β(s)ds, t ∈ R. The problem is formulated as a hemivariational inequality: find

u ∈ V so as to satisfy:

(EV KP ) a(u, v) + (Cu, v) +

∫
Ω

j0(u(x); v(x))dx ≥ 0 ∀v ∈ V
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which is equivalently expressed as

((EV KP )equi) a(u, v − u) + (Cu, v − u) +

∫
Ω

j0(u(x); v(x)− u(x))dx ≥ 0 ∀v ∈ V.

Indeed, suppose thatu is a solution to (EV KP ) and letv ∈ V. By makingv′ = v − u in
(EV KP ) we see thatu solves(EV KP )equi. If u solves(EV KP )equi, for anyv ∈ V we take
v′ = v + u to see thatu is a solution to (EV KP ).

Remark 4.1. The solutions to this problem have been provided in [15] by use of critical point
theory and other results are also established for a similar form of (EV KP ) by means of Ky
Fan’s minimax inequality in [1].

Let us remark that if we setJ : Lp(Ω) → R defined byJ(u) =
∫

Ω
j(u(x))dx u ∈ V , the

problem (EV KP ) can be regarded in the form of (GHI). Moreover, it is possible to prove that
these two problems are equivalent under suitable assumptions. The following lemma argue the
passage from (GHI) to (EV KP ).

Lemma 4.2. Assume that for someα1 ∈ R andα2 > 0, we have

(H) |β(s)| ≤ α1 + α2|s|p−1,∀s ∈ R.

Then every solution to

(GHI) a(u, v) + (Cu, v) + J0(u; v) ≥ 0 ∀v ∈ V

is also a solution to (EV KP ).

Proof. We should first mention that, in view of assumption (H), J is well defined and locally
Lipschitz onLp(Ω) (see [7]). Now letu be a solution to (GHI). Let us remark that, following
Example1 in [7], the assumption (H) ensures that

∀s ∈ R, ∀ξ ∈ ∂j(t), |ξ| ≤ α1 + 2p−1α2|s|p−1.

Hence, sinceV is dense inLp(Ω) we can apply Theorem 2.7.5 of [8] and Theorem 2.2 of [7] to
conclude that:

∂J/V (u) ⊂
∫

Ω

∂j(u(x))dx.

On the other hand, sinceu is a solution to (GHI), it follows that

−α(u, v)− (Cu, v) ≤ J0(u; v) ∀v ∈ V.

Therefore, by definition Clarke’s gradient, it results that:

−α(u, .)− (Cu, .) ∈ ∂J/V (u) ⊂
∫

Ω

∂j(u(x))dx.

Which is interpreted as:

−α(u, v)− (Cu, v) ≤
∫

Ω

max
z∈∂j(u(x))

z(v(x))dx

≤
∫

Ω

j0(u(x), v(x))dx ∀v ∈ V.

u is henceforth a solution to (EV KP ). �

Now, by varyinga, C andJ we consider the perturbed problem: findun ∈ V so as to satisfy:

(EV KP )n an(un, v) + (Cnun, v) + J0
n(un; v)dx ≥ 0 ∀v ∈ V.

Consequently from Theorem 3.2 we have the following stability result for (EV KP ).

Corollary 4.3. Assume that:
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i) a is positive, that isa(u, u) ≥ 0 ∀u ∈ V and continuous;
ii) an is positive for eachn and for allu, v ∈ V, all un → u and all vn → v it results

a(u, v) ≤ lim inf
n

an(un, vn);

iii) (Cn)n converges toC, that is for allu, v ∈ V, all un → u and all vn → v it results

lim sup
n

Cn(un, vn) ≤ (Cu, v);

vi) Assume that(H0) holds and(Jn)n satisfies assumptions(H7) and(H8) of Theorem 3.2.
Then whenever the sequence(un)n of solutions to(EV KPn)equi strongly converges tou, u

is a solution to(EV KP )equi.

We now apply the result of the second approach.
Corollary 4.4. Assume that

h1) for eachn, an is γ-coercive, that isan(u, u) ≥ γ‖u‖2 ∀u ∈ V ;
h2) for eachn, Cn is Lipschitz of rankc > 0;
h3) ∂Jn + αI is monotone, for eachn, for someα > 0;
h4) the sequences(an)n, (Cn)n and (gn)n ρτ -converges toa, C andg respectively whereτ

is such that the solutions to(EV KP )equi are contained inB(0, τ).

Then, ifγ > α + c, the solutionun to (EV KPn)equi is unique and strongly converging to the
unique solutionu to (EV KP )equi and the following estimation holds:

‖un − u‖ ≤ 1

(γ − α− c)
[ρτ (an, a) + ρτ (Cn, C) + ρτ (gn, g)].

Hereρτ (an, a) := ρτ (fan , fa) with fan(u, v) = an(u, v − u) andfa(u, v) = a(u, v − u).

Remark 4.5. Assume moreover, for eachn, thatan is continuous. Then, thanks to remark 3.19
the estimation of the last corollary leads to

‖un − u‖ ≤ 1

(γ − α− c)
[‖an − a‖+ dτ (Cn, C) + ρτ (gn, g)].

5. COMMENTS

1. The Theorem of Zolezzi [23] has been a crucial argument in our Theorem 3.2. To make
our result more powerful, one should improve the result of [23] in two directions. First
to extend it to the case where the space is equipped with the weak topology instead of
the strong one. Further, to look whether it is possible to delete the assumption of semi-
differentiability on Jn since the hemivariational inequalities do not involve (in their
general formulation) any type of differentiability energy functionsJn.

2. The distance approach was presented for variational inequalities in the paper by Doktor
and Kucera [9], wherein the authors have dealt with the following two monotone vari-
ational inequalities in a Hilbert spaceH: given two operatorsA1, A2 : H → H, two
closed convex subsetsK1,K2 andf1, f2 ∈ H, one seeku ∈ Kn so as to satisfy

(V In) 〈Anu, v − u〉 ≥ 〈fn, v − u〉 for all v ∈ Kn.

They have obtained the following estimate between the solutionsu1 andu2:

(5.1) ‖u1 − u2‖ ≤ c[%(K1,K2) + ‖f1 − f2‖+ a(A1, A2)],

for appropriate distances%, a and a positive constantc. These connection between solu-
tions have been based on the fact that solutions to(V In) are characterized by means of
the projectionPKn intoKn as follows:u solves(V In) if and only if

u = PKn(u− γ(Anu− fn)),
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γ being an arbitrary positive number. Thus, estimate (5.1) has been concluded thanks
to the Lipschitz property ofAn and nonexpansivity of the projection mappingP. This
technique is not valid for hemivariational inequalities because we cannot find a Lipschitz
operatorB : V → V ∗, which satisfies

〈B(u), v〉 :=

∫
Ω

j0(u(x); v(x))dx ∀u, v ∈ K.

It is the case only when the Clarke’s derivative coincides with the Gâteaux derivative
which corresponds to the smooth energy functionalJ as it has been shown in [2].
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