J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 3, Issue 2, Article 28, 2002

TWO REMARKS ON THE STABILITY OF GENERALIZED HEMIVARIATIONAL
INEQUALITIES

MOHAMED AIT MANSOUR

CADI AYYAD UNIVESITY
SEMLALIA FACULTY OF SCIENCES
DEPARTMENT OFMATHEMATICS ,
B.P. 2390, 40 000-MRRAKESH,
MoRoOCCQ
mansour@ucam.ac.ma
URL: http://www.angelfire.com/nb/mansour/

Received 5 March, 2001; accepted 30 January, 2002.
Communicated by Z. Nashed

ABSTRACT. The present paper is devoted to the stability analysis of a general class of hemi-
variational inequalities. Essentially, we present two approaches for this class of problems. First,
using a general version of Minty’s Lemma and the convergence result of generalized gradients
due to T. Zolezzi[23], we prove a stability result in the spirit of Mosco’s results on the variational
inequalities[[14]. Second, we provide a quite different stability result with an estimate for the
rate of convergence of solutions when the given perturbed data are converging with respect to an
appropriate distance. lllustration is given with respect to a hemivariational inequality modelling
the buckling of adhesively connected von karman plates.
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1. INTRODUCTION

The theory of inequalities has received remarkable developments in both pure and applied
mathematics as well as in mechanics, engineering sciences and economics. This theory has
been a key feature in the understanding and solution of many practical problems such as market
price equilibria, traffic assignments, monetary policy setting and so on. In this context, varia-
tional inequalities have been the appropriate framework for studying some of these problems
during the last forty years. More recently, new and efficient mathematical inequalities, called
hemivariational inequalities, have facilitated the solution to many challenging open questions
in mechanics and engineering. This class of problems has been pioneered by the work of Pana-
giotopoulos([13] who introduced a variational formulation involving nonconvex and nonsmooth
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2 MOHAMED AIT MANSOUR

energy functions. Subsequently, it has been developed from the point of view of existence re-
sults by many authors, we refer to [5, 6], [10], [17],[16],[20] and references therein.

In this paper, we attempt to investigate stability results for the following generalized hemi-
variational inequalities: for any € N, find u,, € X such that for alb € X

(GHI,) D, (U, v) + Uy (up,v) + Jg(un; v —Up) + on(v) — on(u,) > 0.

holds.

Here, X is a Banach spacé®,,),.>o, (V,.).>0 are sequences of real valued bifunctions de-
fined onX x X, (v,).>0 @ sequence of extended real valued functions(dpy, a sequence of
real locally Lipschitz functions;/° is the Clarke’s derivative of,,. The main question is then
the following : under what conditions do the solutiansto converge to a solution of
the initial problem(GH I,)?
The remainder of the paper is organized as follows. In Sefiion 2, we discuss a concrete me-
chanical example that has motivated our study. Seffion 3 is devoted to our main stability results.
We present two approaches. Namely, we first propose a general version of Minty’s Lemma and
proceed by the epi-convergence method, Thegrein 3.2. Further, we define a “distance” between
two bifunctions and present a stability result with an estimate for the rate of convergence of so-
lutions in terms of the given data rate of convergence: Theprem 3.20 is first stated in equilibrium
problems formulation and Corollary 3]21 is then derived(f&f7 I). In Sectior} 4, we illustrate
the abstract results by an application to a hemivariational inequality that models the buckling of
adhesively connected von karman plates allowing for delamination. Finally, we conclude with
some comments.

2. MECHANICAL EXAMPLE

To illustrate the idea of hemivariational inequalities and explain how important this class of
inequalities is, we suggest the following modesummarized from[[15], further details and
similar models can be found in [16, /17,118, 20]. The model is concerned with the buckling
of adhesively connected von kdrméan plates allowing for delamination. Roughly speaking, it
consists of characterizing the position on equilibrium of the plates and lead to research of so-
lution to special problem formulated as a hemivariational inequality. Let us now formulate the
problem. Consider a plate and the binding material of?’. In the undeformed state, the mid-
dle of the plate occupies an open, bounded and connected sulo$ék?, referred to a fixed
right-handed Cartesian coordinate systé@m z,z3. Let I' be the boundary of the platé’ is
assumed to be appropriately regular. Let also the binding material occupy a Qubseh that
Q' c Qand’NT = 0. We denote by () the vertical deflection of the point € ) of the
plate, and byf = (0,0, f3(z)) the distributed vertical load. Further, let= {u;,u,} be the
in-plane displacement of the plate. We assume that the plate has constant thickiviess-
over, we assume that the plate obeys the Von karman theory, i.e. it is a thin plate having large
deflections. The von karman plates verify the following system of differential equations:

(2.1) KAANC = hoasCp)a = [ INCY;,
(22) OaBpB = 0 in Qj,

1 .
(23) OaB = Ca575(675(u)+§c7.yc75) n Qj.

Here the subscriptsy, 5,v,6 = 1,2 correspond to the coordinate directiofs;, s}, {c.s} and
Cap4s denotes the stress, strain and elasticity tensors in the plane of the plate. The components

lWe have recalled in details this model as it was stated in [15] in concern with existence of solutions, here we
deal with stability issue under data perturbation for hemivariational inequalities modelling such problems.
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of C are elements of.>(2) and have the usual symmetry and eIIipticity properties (further
explanations and figures can be found in [15]). Moreo¥ek- 12(1 |s the bending rigidity

of the plate withE the modulus of elasticity angdthe Poisson ratio. For the sake of simplicity,

we consider here isotropic homogeneous plates of constant thickness. In laminated and layered
plates, the interlaminar normal stresg is one of the main cause for delamination effects. Note

that this is a simplification of the problem. In order to model the actionsef f is split into

a vector f, which describes the action of the adhesive gnd L?(€2), which represents the
external loading applied on the plate:

F=F+finq.
We introduce now a phenomenological law connectingith the corresponding deflection of
the plate describing the action of adhesive material. We assume that:

(2.4) ~feBQ) ing,
where§ is a multivalued function defined as in [19] (by filling in the jumps in the graph of
a functiong € L2 (R)). We note here that cracking as well as crushing effects of either a
brittle or semi-brittle nature can be accounted for by means of this law. The following relation
completes in a natural way the definition ff

f=0inQ—-Q.
In order to obtain a variational formulation of the problem, we express relétion (2.4) in a super-
potential form. If3(¢ + 0) exists for everyt € R then, from [7] and([19] a locally Lipschitz
(nonconvex) function/ : R — R can be determined up to an additive constant such that

B(€) = 0J(8),

whered is the generalized gradient of ClafkeMoreover, we suppose the following boundary
condition on the plate boundary:
¢=0onl.

Now, let us denote by the outward normal unit vector  and byg, (o = 1,2) the self-
equilibrating forces and assume for the in-plane action the boundary conditions

(2.5) TapNp = go ONI' @ =1, 2.

Notice that in[15],[(2.p) involves an eigenvaldesuch thatr,sng = Ag,. Here we take\ = 1.
For the moment we assume that= 0 o = 1, 2. We can now derive the variational formulation
of the problem. Frol), by assuming sufficiently regular functions, multiplying‘dy-—
¢ integrating and applying the Green-Gauss theorem, we obtain the expregsion

a(C,z—¢) + /Q hoasCa(z — ) pdd = /Fh%ﬁC,ﬁna(Z —Q)dl’ + /Q?(Z — ()d<2

+/FKn(§)(z—C)dF—/FMn(()%dF.

Here,a, 3 = 1, n denotes the outward normal unit vectorto

(2.6) a(C,z) = K/Q[(l —V)CapZap + VACAZAQ, 0 < v < 0.5,

(27) Mn(C) =-K [VAC + (1 — V) (2711712(712 + n%Qn + n%C}zg)]

!For the convenience of the reader we recall (§ée [8]) dhais defined bydj(z) = {¢ € Z* : (¢,v) <
7°(z;v) forallv in Z} and;jO(z;v) := limsups (j (y + tv) — j (y)).
y—z
t\.0
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and

HAC

(2.8) K.(¢) =~ [W +(1 - V)% [n1n2(Co2 — Cu1) + (nf — n3)Caal |

wherer is the unit vector tangential 0 such that.7 and theDx3;-form a right-handed system.
A similar argument applied t¢ (3.2) leads to the following expression

(2.9) / OapEap(V — u)dQ = /aaﬁng(va —up)dl. a, B =1, 2.
Q r

Further, the following notations are introduced:

(210) R(m, k) = / Caﬁ’yémaﬁkaﬁd9~ Oé,ﬁ,’)/, o= 1,2
Q

and

(2.11) P(¢;2) = {Cazp}, PG Q) = P(Q),

wherem = {m,z} andk = {k.s3}, o, 0 = 1,2 are2 x 2 tensors.

Let us also introduce the functional framework. We assumerthat [H'(€2)]? and that
(,z € Z, where

7 ={z|z € H*(Q),z=0o0nT}.
Taking into account expressidf), (2.9), the boundary conditions and the inequalities defining
the multivalued operata? we obtain the following problem: find € [H'(2)]* and¢ € Z such
as to satisfy the hemivariational inequaliti / ):
1

a(C,Z—C)+hR(6(U)+§P(C),P(C72—C))+//JO(C,Z—C)dQZ/Q?(Z—C)dQ- Ve Z

and the variational equality/ ) :
Rle(u) + %P(g), (v —u)) =0, Vv € [H Q).

Further we shall eliminate the in-plane displacement of the plate. To this end we note first that
R(.,.) as defined in[(2.10) is a continuous symmetric, coercive bilinear forid(f)]* and

that P : [H?)> — [L*(Q2)]* of ) is a completely continuous operator (see [20] p. 219).
Thus the equalityf V' £') and the Lax-Milgram theorem imply that to every deflectior Z,

there corresponds a plane displacemefd) € [H'(f2)]*. Indeed, due to Korn’s inequality
R(e(u),e(v)) is a bilinear coercive form on the quotient spaée (2)]%/R, where R is the

space of in-plane rigid displacements defined by

(212) R = {77/77 € [Hl(Q)]Q,fl =oq + be,FQ = Qg — bxg,ozl,ag,b € R}
From(V E) it results that
(2.13) e(u(Q)) : Z — [LA(Q)*

is uniquely determined and is completely quadratic functiorf,afinces(u(()) is a linear
continuous function ofP(¢). We also introduce the completely continuous quadratic function
G : Z — [L*(92)]* which is defined by

(2.14) ¢ G(O) = =(u(O) + 3P(©)

and satisfies the equation

(2.15) R(G(C),e(u(¢))) = 0.
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We now define the operatost : 7 — Z andC : Z — Z such that

(2.16) (¢, z) = (A¢, 2)
and
(2.17) hR(G(C), P(¢.2)) = (C(¢), 2).

A is a continuous linear operatdf;, a completely continuous operator afid-) denotes the
scalar product ir¥. Thus the following problem results:
find { € Z, so as to satisfy the hemivariational inequality

@18) (= O+ (€=t [ PGr-0mz [Fe-gavez

The last hemivariational inequality characterizes the position of equilibrium of the studied prob-
lem. Note that the second member|of (2.18) can be expressed by means of a linear, self-adjoint
and compact operatds. For the explicit form ofB3, we refer to[[20] (equation 7.2.13).

Therefore, this problem can be viewed as, and actually is, a particular c&Sé/df).

Remark 2.1. Notice that if we take/ = 0, (GH,) covers the Generalized variational and
quasi variational inequalities. Some other mathematical problems contaig@d{in,) can be
found in [4].

3. MAIN CONVERGENCE RESULTS

In this section, we present our stability results. By means of a general version of the cele-
brated Minty’s Lemma, we proceed first by the epi-convergence method. In the sequel, unless
another framework is specified, the spacés a Banach space with dudl* equipped with the
weak topology denoted by*. The symbols— will stand for the strong convergence both in
X and X™*. We first recall the following definitions:

Definition 3.1. A sequencef,, : X — (—o0,+00) is said to be equi-lower semidifferentiable
iff for every x € X there exists a balB aroundz such that for every > 0 we can findj > 0
So as

for everyy € B, everyn, everyu € 0~ f,(y) and everyz such that||z — y|| < §. Where

0~ denotes the lower semigradient given for some functi@mdx € X by: v € 0 g(x) iff
u € X* and

lim inf(g(y) — g(z) = {u,y —2))/lly — 2| = 0.

Definition 3.2. A sequencef,, : X — (—oo,+00) is called strongly epi-convergent to :
X — (=00, +0) iff v, — vimplies f(v) < liminf, f,(v,), and for everyy € X there exists
a sequence,, — v such thatlimsup,, f,,(v,) < f(v).

3.1. Epi-convergence approach.Having our applications in mind, we make the following
assumptions:

(Hp) X is separable and has a equivalent norm that is Fréchet differentialote off
(Hy) i) ®ois monotone, thatis for eachv € K, ®y(u,v) + $o(v,u) < 0;
ii) @, is upper hemicontinuous i.e., for allv,w € X, the mapt € [0, 1] — Pg(tu +
(1 —t)v,w) is upper semicontinuous;
iif) &, is convex on the second argument @ndu, ) = 0 for all u € X;
(Hy) ¥, is convex on the second argument andu, u) = 0 for all u € X;
(Hs3) o is proper and convex;
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(Hy) ®,, is monotone for each and(®,,) lower-convergestd®, : vV u € X,v € X, Vu,, — u
andv¥(v,), — v itresults®q(u,v) < liminf, @, (u,,v,) ;

(Hs) (V,,) upper-converges t&, : V v € X,v € X, Vu, — u and¥v,, — v for a subse-
quencer, one hasim sup, U, (U, , Un, ) < Yo(u,v) ;

(Hg) the sequencép,,), is strongly epi-convergent tgy;

(H;) The sequencd,, is locally equi-Lipschitz, that is for every balp in X there exists
M > 0 such that

| Jn(u) = Jn(v)] < Mu— vl

forall u,v € B and alln;
(Hs) (Jn)n is equi-lower semidifferentiable and strongly epi-convergenkto

Remark 3.1. We should notice that we do not need to make appeal to the assumptipn)
since itis included if{H,). Indeed, for any:, v € X and for some.,, — « andv,, — v, let us
remark that

Do (u,v) + Pg(v,u) < liminf &, (u,,v,) + liminf &, (v,, n,)
< lminf[®,, (un, v,) + P (v, uy)]
0.

In the following theorem we denote I8}, the set of solutions t¢{H ).
Theorem 3.2. Suppose that assumptiof,) — (Hs) are verified. Then, we have

IN

s — liminf S,, C Sp.
Remark 3.3. The result of Theorem 3.2 means that whenever a sequenoé solutions to
(G HI,) is strongly converging ta, v is a solution to G H I)).
To prove this theorem, we first collect some lemmas.

Lemma 3.4. [8] Let g be a real Lipschitz function of rank nearz. Then, the function —
¢° (x;v) is positively homogeneous and subadditive (thus convex), continuous and Lipschitz of
rank & on X.

Lemma 3.5(Minty’s). Let f be an extended real-valued bifunction such th& convex in the
second argument anfi(v, v) = 0 for eachv € X. Assume moreover that{,) hold, then the
following statements are equivalent.

a) There exists € X such that for every € X
Do (u,v) + f(u,v) >0 .
b) There exists € X such that for every € X,
Po(v,u) < flu,v).
Proof. a) = b) Letu € X such that) is satisfied. Thus we have
—®o(u,v) < f(u,v).

since®, is monotone, it follows tha®,(v, u) < —®dy(u,v), Yo € X. Therefore, for every
v € X we have

(I)O(Uau) S f(u,v),

which means that) is verified.
b) = a) Letwu be a solution irb) and fixv € X andt¢ €]0, 1[. Then, using(H,) i) and the
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convexity of f(u, .), for w, = tu + (1 — t)v, we have
0=Dg(wy,wy) < (1 —1)Pg(wy,v) + tPy(wy, u)
< (1 —=8)Po(wy,v) +tf (u, wy)
< (1 =1)@o(wy, v) + (1 = 1)[f(u, v)].
Becausef (u, u) = 0. Therefore,
—t[f (u,v)] < Pg(wy,v).

Hence, by upper hemicontinuity @f,, we end at

~[f(u,0)] < limsup ®(wy, v) < Bo(u,v)

t—1
which leads to
0 S @O(U,U) + f(U,U).
Finally, v being arbitrary chosen iX, the last inequality means thal is satisfied O

Remark 3.6. Notice that a particular case of Lemia|3.5 is the variational Minty’s Lemma
given in [13, p. 249] as follows:

findu € X suchthat (I,v —u) < (A(u),v —u) forallv e X
is equivalent to
findu € X suchthat (l,v —u) < (A(v),v —u) forallv e X

whereA is an hemicontinuous and monotone operator from a Banach spate its topolog-
ical dual X*, andl € X*.

Lemma 3.7.[8] Letg be as stated in Lemma B.4. Thég(z) is a nonempty, convex, weelcompact
subset ofX* and||(|| < k for each( € dg(x).

Lemma 3.8. Assumptiori H;) holds. Then, the sequence of set-valued (0aR),, is uniformly
bounded.

Proof. Let u,, be a bounded sequencéu,),, is then contained in a balB = B(0,r) where
r > 0. Let alsoM be a positive constant such that

| Jn(u) — Ju(v)| < M||u—v]|| forall u,v € B andall n.

Therefore by Lemmp 3.7 we deduce thi#J,, (u,)|| < M, that is whenevet € 9.J,(u,) we
have||¢|| < M. This means that.J,, is uniformly bounded. O

Lemma 3.9. [8] Considerg as stated in Lemnja 3.4. Then, For evern X, one has

9°(z;v) = max{((,v) : ¢ € dg(x)}.

Lemma 3.10. Under (H,), (H;) and (Hyg) , for anyu,v € X and anyu,, — u, v, — v there
exists a subsequenc¢ey, ), such that

limksup Iy (U 0n, ) < J5 (us0).

Remark 3.11. To simplify the notation we consider, without loss of generality, the inequality
of Lemm&3.1D as:

lim sup J? (un; vn) < J3(u;0).
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Proof. Letu,, — u, &, € 0J,(u,) and letv,, — v. As, for eachn, 0.J,(u,,) is weakly compact,
there exists a mag, : X — X* defined, for eaclw € X, as follows:¢, (w) € 9J,(u,) such
that

(6a(w),w) = max (§w) = IO (un; w).

Sinceu, is bounded, by Lemma 3.8 it results th&f(v,,)),, is bounded. Thereforés,(v,)),
has a weakly converging subsequence also denotéd, by, ))... Let{(v) € X* be the weak
limit of &, (v,). On the other hand,H~) implies that(.J,),, is locally equi-bounded. Then, by
(Hp) and(Hs), we apply [23, Theorem 1] and obtain

lim sup gph 0.J,, C gph 0Jy In (X,s) x (X*, w"),

which implies that (v) € d.Jy(u). Hence, taking Lemma 3.9 into account, we end at

limsup J%(u,,; v,) = limsup ma , Un
n P n( ) n pfeajn(xun)<£ >

= limsup (&, (v,), vp)

{€(v), v)

< max (&,v) = JO(u;v).
< nax (§v) = Jo(uiv)

O

Proof of Theorer 3]2Letu,, € s—liminf S,, andu be the strong limit of:,,. We wish to prove
thatu € Sy. To this end, fixo € X. By (Hg) there exists a sequen¢s,),, such thav,, — v and
lim sup,, n(vn) < wo(v). AS u, is a solution toGH I,,), by monotonicity of®,, it follows:

q)n(vna Un) S \I}n(vna Un) + JS(Um Up — un) + Qpn(vn) - (pn(un)
hence, taking into accoufil,) — (Hs) and Lemma 3.70, there exigs;,),, such that

Dy(v,u) < limkinf(bnk(vnk,vnk)

< limsup Jgk (Uny; Vny, — Uny ) — limkinf Ony (Uny,)
k

+ lim sup ¢, (v, ) + limsup ¥y, (vp, , Un,)
k k

IN

Wo(u,v) + JY(u;v — u) + @o(v) — @olu).
therefore,
Oo(v,u) < W(u,v) + J3(u;v —u) + wo(v) — @olu).
Sincey, is proper, it follows that: € dom(y). Hence, as/{(u;. — u) is convex (Lemma 3]4),
we can takef = Wo(u,v) + J9(u;v — u) + ¢o(v) — @o(u) in Lemmg 3.5 and obtain
0 < ®(u,v) + Wo(u,v) + J§ (u;v — u) + wo(v) — @o(u).

Now, v being arbitrary chosen, we conclude thés a solution to/ G H I,). The proof is there-
fore complete. O

Remark 3.12. Let us mention that, if we také, = 0 in (GH,), this result is not affected if
the sequence of solutions is weakly converging. In this case we shall obtain:

w — liminf S,, C Sp.

In fact, we have made recourse to strong convergendd{ly) because of the presence of
Clarke’s derivative iNGH ).

From Theorem 3]2 we deduce the following variant of the stability results in [12, 14].
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Corollary 3.13. LetT andT,,, for eachn > 1, be operators fromX to X*. Suppose that:

a) T is hemicontinuous oX’;

b) T,, is monotone;

¢) (T,,)., converges tdl,, in the sense that: for any € X, any sequence,, strongly
converging tau we havel, u,, — Tu;

d) (Hg) is satisfied.

Then, if a sequendg:,,) of solutions to the variational inequality:
(V1,) findu € X suchthat(Z,u,v —u) + ¢,(v) — p,(u) >0 Vv € X
converging to a point;, @ is a solution to the variational inequality:
(VI) findu € X suchthat(Tu,v —u) + ¢(v) —¢(u) >0 Yv € X.

Proof. It suffices to take, foreach v € X, ®(u,v) = (Tu,v—u) and®, (u,v) = (T,,u,v—u).
The result is hence an easy consequence of Theorém 3.2. O

The paragraph below presents a stability result without recourdéqtoand (Hs).

3.2. Distances approach.In this paragraph, we first present the stability result for the equilib-
rium problem. Further, we derive the result {6t H I,). In this respect, we suppose thitis a
normed vector space with norj|| and assume that, = 0. We shall also consider a sequence
of bifunctionsF,, : X x X — R and the following equilibrium problems: for amy > 0 find

u, € X such that:

(EPR,) F,(u,,v)>0forall veX

To carry out our stability analysis, we need the following monotonicity assumption:

(A1) Fo(u,v) + Fy(v,u) < —M||lu —v||*for all u,v € X, n > 1, whereM > 0.

F,, will be said— M -monotone.
Remark 3.14. LetC' : X — X* be ar-Lipschitz operator, (where > 0) andB : X — X* be
a linear bounded operator. Let us define the bifunctioaadh; given by

h(u,v) = (Cu,v — u) andhy(u,v) = (Bu;v — u).

It is easily shown thak is r-monotone and, is || B||-monotone.

Let us give now an-essential-example of bifunction satisfying a relaxed monotonicity as-
sumption of(A;). Let X = H be a Hilbert space] the identity mapping orf/ and.J, a real
locally Lipschitz function onX.

Lemma 3.15. Suppose that, for some € R, 0.J; + ol is monotone. Then, the bifunctign
defined, for allu, v € H, by g(u,v) = J(u; v — u) iS a-monotone.
Proof. Straightforward. O

Remark 3.16. Let us remark that in lemma 3]15, we can easily check &¥tis strongly
monotone ifa < 0, monotone ifa = 0 and weakly nonmonotone it > 0. It is known from
convex analysis that the monotonicity @f, leads to convexity of/y. Then, whenevetr < 0
the problem(G H I,) comes back to the generalized variational inequality, since in this.kase
is a convex , whereas if > 0 the functionJ, is not necessarily convex.

Remark 3.17. A special case of, is when it is defined as follows:

Jou) = / j(u(z))da
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Here, the spacé is supposed imbedded it?(€2) with 2 an open bound subset &f*, and

j(t) = / B(s)ds; B e LE(R).

Notice that in[[1], the authors provided some conditiontso as to satisfy the monotonicity
condition of Lemma 3.15. Precisely, they considered the following property:
(3.2) t1 <t = BT (0) < B (t2) +(t2 — 1),
wherev,r > 0 ands* and_ are given by
+ _ . . . .
BT (t) = (151—I>n0 ess sup B(s), - (t) = (lslir(l) e|§§t@f B(s) for somet € R.

Using this assumption, it is argued in [1] th&atis K-monotone for some constafit > 0.

Remark 3.18. The condition of Lemmpa 3.15 is nothing else than a relaxed form of monotonic-
ity for 0.J, but it keeps the nonconvex framework for the energy functignAfter we have
finished this work we have realized that a such condition was used by Naniewicz and Pana-
giotopoulos in[[16] ( Chapter 7) for existence results.

Before stating the main result of this paragraph, we introduce the following "distance” be-
tween two bifunctiong andg as follows:

—g)(u,v
po(fig)i= sup 9]
uztv,||ul|<r |u —
wherer > 0.
Remark 3.19. Let A and B be two operators fronX toX*. We associate tol and B two
bifunctions as follows:
falu,v) = (Au,v —u); fp(u,v) = (Bu,v — u).

It is readily shown that

pT(A>B) = pT(anfB> < dT<A7 B)
whered. is the classical "distance” defined by

d;(A, B) := max ||A(u) — B(u)||.

[ull<7

Assume that the set of solutions(t P, ), also denoted by, is nonempty and bounded and
let 7 > 0 such thatS, C B(0, 7). We claim the following:

Theorem 3.20. Assume that assumptignl; ) holds and the sequendg, converge, following
p-, to F. Then, whenever the solutiar) to (FP,) exists it must be unique and strongly con-
vergent to the unique solutian to (£ F,) and we have

1
[t — ol < MPT(FW Fp).
Proof. Let us first establish, for eagh> 1, the following estimation:
1
T — || < —pr(Fiy Fy).
I — ol < 5700(Fis Fo)

Let: > 1. Since, forj = 0, ¢, u; is a solutions tq £ P;), we have
F;(uj,v) >0 forall ve X

thus, we make ifEP;), v = @, form = 0,7 andm # j, and adding the two relations we
obtain:
Fi(u;, o) + Fo(uo, u;) > 0.
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Therefore
Fi(a;, wo) — Fo(u,, o) + Fo(u;, wo) + Fo(To, w;) > 0.
Taking into accountA; ), we deduce that
M|u; —uo|)* < Folto, w) — Fi(uo, u;)
< p-(Fy, Fo)l[w; — |

which leads to
(3.3) Mu; — ol < p-(Fi, Fo).
Now forn > 1, the uniqueness of solutiar, to (E'P,) comes). Furthermore, we have

. . 1
|t — o || < M/OT(FWF)

therefore, we conclude that

e(Uy, S) :=sup ||u, — w| — 0 asn goes to+ co.
weS
Henceu, strongly converges to somewhich must be the unique solution¢&' 7). The proof
is then finished. O

We are now in a position to derive a result with estimation of solutiori& /). We hence
claim the following:

Corollary 3.21. Assume thak is Hilbert space, for each > 1 ®,, is —y-monotone for some
v > 0, dJ,, + al is monotone for some > 0, (V,,), is c-monotone and > « + c¢. Then, if
7 > 0is such thatS, C B(0, 7), whenever the solution, to (GHI),, exists is unique and the
following estimation holds:

|, — || < [pT(@m@()) + pr (U, ¥y) +pr(gn,go)]-

(y—a—-0
If moreover, the sequencés,,), (V,,) and(g,,) converge with respect to., thenwu,, strongly
converges tai,.

Here we have adopted the notation:
Gn(u,v) == J2(u;v — ).
Proof. Let us take:
Fo(u,v) = &, (u,v) + J2(u,v — u) + ¥, (u,v).

Using Lemmad 3.15, we see tha}, is (v — a — ¢)-monotone. The result is hence direct from
Theoreni 3.20. O

4. APPLICATION

4.1. Equilibrium of the von karman plates. We treat here a mathematical problem which
simply models the equilibrium problem of the von karman plates presented In Sgfction 2. In
this way, letl” be a Hilbert space with scalar prodyet-) and the associated norijrj|. Space

V' is supposed densely and compactly imbedded @2, R) for somep > 2. Here(Q) is

a bounded domain ifR". We shall consider a bilinear form : V x V — R, a nonlinear
operatorC' : V. — V, a functiong € L72 (R) and the locally Lipschitz function defined

by: j(t) = f(f B(s)ds, t € R. The problem is formulated as a hemivariational inequality: find
u € V so as to satisfy:

(EVKP) a(u,v) + (Cu,v) + /Qjo(u(m);v(x))dx >0VveV
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which is equivalently expressed as

(EVKP)equi)  a(u,v —u)+ (Cu,v —u) + /Qjo(u(x); v(x) —u(x))de > 0Vv e V.

Indeed, suppose thatis a solution to[£'V K P)) and letv € V. By makingv” = v — u in
(E'V K P) we see that, Solves(EV K P).qu;. If u solves(EV K P).q.i, for anyv € V' we take
v' = v + u to see that, is a solution to[E'V K P).

Remark 4.1. The solutions to this problem have been provided in [15] by use of critical point
theory and other results are also established for a similar forf®TH P) by means of Ky
Fan’s minimax inequality in J1].

Let us remark that if we sef : LP(Q) — R defined byJ(u) = [, j(u(z))dz u € V, the
problem can be regarded in the form @ ). Moreover, it is possible to prove that
these two problems are equivalent under suitable assumptions. The following lemma argue the

passage from({H [)) to (EV K P).

Lemma 4.2. Assume that for some, € R andasy > 0, we have
(H) 1B(s)| < oy + ag|s|Pt, Vs € R.
Then every solution to

(GHI) a(u,v) + (Cu,v) + J°(u;v) > 0Vv € V
is also a solution toEFV K P).

Proof. We should first mention that, in view of assumpti@))( ./ is well defined and locally
Lipschitz onLP(Q2) (see[[7]). Now letu be a solution to@ H I)). Let us remark that, following
Examplel in [[7], the assumptiorif) ensures that

Vs €R, VE€Aj(t), €] < ay+ 2P Tay|s|Pt.

Hence, sincé’ is dense in?(§2) we can apply Theorem 2.7.5 ¢f [8] and Theorem 2.2 °0f [7] to
conclude that:

0Jv(u) C / 0j(u(z))dx.
Q
On the other hand, sineeis a solution to[GH ), it follows that
—a(u,v) — (Cu,v) < J%u;v) Yo € V.
Therefore, by definition Clarke’s gradient, it results that:
—a(u,.) — (Cu,.) € 0Jv(u) C / Jj(u(z))dx.
Q

Which is interpreted as:

—a(u,v) = (Cu,v) < max z(v(x))dx
q #€9j(u(z))
< /jo(u(x),v(:v))dx Yo eV.
Q
u is henceforth a solution tgF{V K P). O

Now, by varyinga, C' and.J we consider the perturbed problem: filagd € V' so as to satisfy:
(EVKP), a,(ty,v) + (Cpliy, v) + J2(tUp;v)dr > 0 Vv € V.

Consequently from Theorem 3.2 we have the following stability resul{fof & P).
Corollary 4.3. Assume that:
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i) ais positive, that isi(u,u) > 0 Vu € V and continuous;
i) a, is positive for eacm and for allu,v € V, all u,, — v and all v,, — v it results

a(u,v) < liminf a, (u,, v,);
n

i) (C,), converges t@’, that is for allu,v € V. all u,, — « and all v, — v it results
lim sup Cy, (tn, vy) < (Cu, v);

vi) Assume thatH,) holds and(.J,,),, satisfies assumptiorié/;) and (Hs) of Theorem 3]2.

Then whenever the sequer(eg ),, of solutions ta( EV K P,).,.; strongly converges ta, u
is a solution to( EV K P) ¢ qui-
We now apply the result of the second approach.
Corollary 4.4. Assume that
h,) for eachn, a, is y-coercive, that isi, (u, u) > v|ju||* Vu € V;
hy) for eachn, C,, is Lipschitz of rank: > 0;
hs) 0J, + oI is monotone, for each, for somex > 0;
h4) the sequenceg,),, (Cr), and(g,). p--converges ta, C' and g respectively where
is such that the solutions &'V K P).,; are contained in3(0, 7).

Then, ify > o+ ¢, the solutioru,, to (EV K P, ).4.; is unique and strongly converging to the
unique solution. to (E'V K P).,.; and the following estimation holds:

Hun—uH < C) [pT(an,a) +pT(Cn>C) +p7—<gn>g)]

(v—a-—
Herep,(a,, a) := p:(fa,, fo) With f, (u,v) = ap(u,v —u) and f,(u,v) = a(u,v — ).

Remark 4.5. Assume moreover, for each thata,, is continuous. Then, thanks to remark 3.19
the estimation of the last corollary leads to

(v—a-c¢
5. COMMENTS

1. The Theorem of ZolezZi [23] has been a crucial argument in our Thgorém 3.2. To make
our result more powerful, one should improve the result of [23] in two directions. First
to extend it to the case where the space is equipped with the weak topology instead of
the strong one. Further, to look whether it is possible to delete the assumption of semi-
differentiability on J,, since the hemivariational inequalities do not involve (in their
general formulation) any type of differentiability energy functiohs

2. The distance approach was presented for variational inequalities in the paper by Doktor
and Kuceral[9], wherein the authors have dealt with the following two monotone vari-
ational inequalities in a Hilbert spadé: given two operatorsi;, A, : H — H, two
closed convex subsets;, K, andf, fo € H, one seek: € K, so as to satisfy

V15, (Ayu,v —u) > (fn,v—u) forall ver,.
They have obtained the following estimate between the solutipasidu:
(5.1) Jur — ua|| < clo(Ky, K2) + (| f1 — fol| +a(Ay, A2)],

for appropriate distances a and a positive constant These connection between solu-
tions have been based on the fact that solutior{$’th,) are characterized by means of
the projectionP,, into C,, as follows:u solves(V' I,,) if and only if

u= PICn(u - ’Y(Anu - fn))7
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v being an arbitrary positive number. Thus, estimpte| (5.1) has been concluded thanks
to the Lipschitz property ofi,, and nonexpansivity of the projection mappifigThis
technique is not valid for hemivariational inequalities because we cannot find a Lipschitz
operatorB : V — V*, which satisfies

(B(u),v) := /Qjo(u(x);v(a:))dx Yu,v € K.

It is the case only when the Clarke’s derivative coincides with the Gateaux derivative
which corresponds to the smooth energy functiohask it has been shown inl[2].
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