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Abstract

In this paper a fixed point theorem for condensing maps combined with upper
and lower solutions are used to investigate the existence of solutions for first
order differential inclusions with general nonlinear boundary conditions.
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Differential Inclusions with
Nonlinear Boundary Conditions
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This paper is concerned with the existence of solutions for the boundary multi-
valued problem:

(1.1) y'(t) € F(t,y(t)), forae.t € J=[0,T]

_ The Lower and Upper Solutions
(1-2) L(y(()), y<T)) =0 Method for First Order

. . Differential Inclusions with
where F : J x R—2% is a compact and convex valued multivalued map and  Nonlinear Boundary Conditions

L : R?—R is a continuous single-valued map.
The method of upper and lower solutions has been successfully applied to
study the existence of multiple solutions for initial and boundary value problems

M. Benchohra and S.K. Ntouyas

of first and second order. Title Page
This method has been used only in the context of single-valued differential Contents

equations. We refer to the books of Bernfeld-Lakshmikanth&mHeikkila-

Lakshmikantham T3], Ladde- Lakshmikantham-Vatsalad], to the thesis of b dd

De Coster ], to the papers of Carl-Heikkila- Kumpulainef][ Cabada ], < >

Frigon [2], Frigon-O’Regan [(], Heikkila-Cabada 7], Lakshmikantham -

Leela [ 7], NkashamaZ(] and the references therein. SolEatk
Using this method the authors obtained Hh §nd [3] existence results for Close
differential inclusions with periodic boundary conditions, for first and second Quit
order respectively.
Page 3 of 20

In this paper we establish an existence result for the problefiy € (1.2).
Our approach is based on the existence of upper and lower solutions and on a

fixed point theorem for condensing maps due to Marteiii.[ e namnodua
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We will briefly recall some basic definitions and facts from multivalued analysis
that we will use in the sequel.
AC(J,R) is the space of all absolutely continuous functigns/—R.
Condition

y<y ifandonlyif y(t) <gy(t) forall te.J

defines a partial ordering iIAC(J,R). If a, § € AC(J,R) anda < 3, we
denote
la, 8] ={y € AC(J,R) : a < y < }.

Wh1(J R) denotes the Banach space of functigns J—R which are abso-
lutely continuous and whose derivatiye(which exists almost everywhere) is
an element of.!(J, R) with the norm

lyllwes = llyllze + 1yl forally € WH(JR).

Let (X, |-]) be a normed space. A multivalued méap: X —2% is convex
(closed) valued ifG(x) is convex (closed) for alk € X. G is bounded on
bounded sets i7(B) = U,esG(x) is bounded inX for all bounded subsets
B of X (i.e. sup,cp{sup{ly| : y € G(x)}} < o0). G is called upper semi-
continuous (u.s.c.) oX if for eachz, € X the set7(z) is a nonempty, closed
subset ofX, and if for each open sét of X containingG(x,), there exists an
open neighbourhootl of x, such thatz(U) C V.

G is said to be completely continuousi{ B) is relatively compact for every
bounded subset C X.
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If the multivalued mag~ is completely continuous with nonempty compact
values, thert7 is u.s.c. if and only ifG has a closed graph (i.e,—z., y,—y.,
Yn € G(x,) imply y, € G(z.)).

G has a fixed point if there i8 € X such thatr € G(x).

In the followingC'C'(X') denotes the set of all nonempty compact and convex

subsets ofX.

An upper semi-continuous map : X —2%~ is said to be condensing ] if
for any bounded subsét C X, with u(B) # 0, we haveu(G(B)) < u(B),
wherep, denotes the Kuratowski measure of noncompactenés$\fe remark

The Lower and Upper Solutions
Method for First Order
Differential Inclusions with

that a compact map is the easiest example of a condensing map. For more detailghonlinear Boundary Conditions

on multivalued maps see the books of Deimlii§jgnd Hu and Papageorgiou

[15].
The multivalued mag”’ : J—CC(R) is said to be measurable, if for every
y € R, the functiont — d(y, F'(t)) = inf{|]y — z| : z € F(t)} is measurable.

Definition 2.1. A multivalued mapF : JxR—2" is said to be ati.'-Carathéodory
if

(i) t — F(t,y) is measurable for eaghe R;

(i) y — F(t,y) is upper semicontinuous for almost ak J;
(iii) Foreachk > 0, there existd;, € L'(J,R,) such that

| E(t, y)|| = sup{|v] :v € F(t,y)} < hy(t) forall |y| <k
and for almost allt € J.

M. Benchohra and S.K. Ntouyas

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 5 of 20

J. Ineq. Pure and Appl. Math. 3(1) Art. 14, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:benchohra@yahoo.com
mailto:sntouyas@cc.uoi.gr
http://jipam.vu.edu.au/

So let us start by defining what we mean by a solution of probler) ¢
(1.2.
Definition 2.2. A functiony € AC(J,R) is said to be a solution ofi(1) — (1.2)
if there exists a functiom € L'(J,R) such that(t) € F(t,y(t)) a.e. onJ,
y'(t) = v(t) a.e. onJ and L(y(0),y(T)) = 0.

The following concept of lower and upper solutions forl) — (1.2) has been
introduced by Halidias and Papageorgiou ir][for second order multivalued

The Lower and Upper Solutions

boundary value problems. It will be the basic tools in the approach that follows. Method for First Order
- . . . . Differential Inclusions with
Definition 2.3. A functiona € AC(J,R) is said to be a lower solution of (1) Nonlinear Boundary Conditions

— (1.2 if there existsy; € L!'(J,R) such thatv,(t) € F(t,a(t)) a.e. onJ,
o/ (t) <wvy(t)a.e. onJ andL(«(0),a(T)) < 0.
Similarly, a functiong € AC(J,R) is said to be an upper solution of.()

M. Benchohra and S.K. Ntouyas

— (1.2 if there existsv, € L'(J,R) such thatw,(t) € F(t,3(t)) a.e. onJ, Title Page
B'(t) > vqo(t) a.e. onJ and L(3(0), B(T)) > 0. Contents
For the multivalued mag’ and for eachy € C(J,R) we defineSy., by <« >
Sk, ={ve L'(JR):v(t) € F(t,y(t)) foraet e J}. < »
Our main result is based on the following: Go Back
Lemma 2.1.[15]. Let I be a compact real interval and be a Banach space. Close

LetF': I x X—CC(X); (t,y) — F(t,y) measurable with respect tdor any _
y € X and u.s.c. with respect tg for almost eacht € I and S}qy # () for Quit
anyy € C(I,X) and letT" be a linear continuous mapping frof' (7, X) to Page 6 of 20
C(I, X), then the operator
J. Ineq. Pure and Appl. Math. 3(1) Art. 14, 2002
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is a closed graph operator i6'(/, X) x C(I, X).
Lemma2.2.[19. LetG : X—CC(X) be an u.s.c. condensing map. If the set

M :={ve X : e G(v) for some\ > 1}

is bounded, ther has a fixed point.
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We are now in a position to state and prove our existence result for the problem

(1.1) - (1.2),

Theorem 3.1.Supposé : J x R—CC(R) is anL'-Carathéodory multivalued
map. In addition assume the following conditions

(H1) there existv and 3 in W11(J,R) lower and upper solutions respectively
for the problem {.1) — (1.2) such thata < (3,

(H2) Lisacontinuous single-valued map(in y) € [«(0), 5(0)]x [a(T"), 5(T)]
and nonincreasing iy € [«(T), 3(T)],

are satisfied. Then the problerh.{) — (1.2) has at least one solution €
Wh(J,R) such that

a(t) <y(t) < p(t) forall t e J.

Proof. Transform the problem into a fixed point problem. Consider the follow-
ing modified problem (se&])
(3.1) Y (1) +y(t) € Fulty(t), ae.tel,

(3.2) y(0) = 7(0,4(0) = L(y(0), y(T)))

whereFy(t,y) = F(t,7(t,y) + (t,y), T(t,y) = max{a(t), min{y, B(t)}}
andy(t) = 7(t,y(t)).
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Remark3.1 (i) Notice thatF; is an L!-Carathéodory multivalued map with
compact convex values and there exists L'(J, R, ) such that

2t y(8)]] < ¢(t) + max(sup |a(t)], sup [5(¢)])
teJ teJ
fora.e.t € J andally € C(J,R).
(i) By the definition ofr it is clear thatw(0) < y(0) < 3(0).

Clearly a solution tog.1) — (3.2) is a fixed point of the operata¥ : C'(J,R)
—2CUR) defined by

N(y) := {h € C(J,R) : h(t) = y(0) +/0 [v(s) +7(s) —y(s)]ds, v € S},y}

where

Shy={v € Spy 1 v(t) > vi(t) a.e. onA; and v(t) < vy(t) a.e. on Ay},

Sky={ve L' (JR):v(t) € F(t,y(t)) fora.et € J},
Ar={teJ:ylt) <alt) <pt)}, A2={t € J:alt)<B(t) <y()}.

Remark3.2 (i) For eachy € C(J,R) the setS;, is nonempty (see Lasota
and Opial [.9]).

(i) Foreachy € C'(J,R) the setS‘},@ iIs nonempty. Indeed, by (i) there exists
v € Sk, Set

W = v1X4, + V2 X Ay + VX Az,
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where
As={te J:at) <yt) <p()}.
Then by decomposability € S}
We shall show thatV is a completely continuous multivalued map, u.s.c.
with convex closed values. The proof will be given in several steps.
Step I N(y) is convex for eacly € C(J,R).
The Lower and Upper Solutions

Indeed, ifh, h belong toN (y), then there exist € S} andv € S}, such that ethod for it Ordlor

Differential Inclusions with
Nonlinear Boundary Conditions

ht) = y(0) + / [o(s) +7(s) — y(s))ds, 1€

M. Benchohra and S.K. Ntouyas

and
_ L B Title Page
(1) =3(0) + [ [005)+3(5) ~ y()ds, t€ I
0 Contents
Let0 < k£ < 1. Then for eacht € J we have <« >
- ! < >
[kh + (1 — k)R](t) = y(0) +/ [kv(s) + (1 — k)o(s) +7(s) — y(s)]ds.
0 Go Back
Sinceg}p@ is convex (becausg has convex values) then Close
Quit

kh + (1 —k)h € G(y). e 1001 a0
age 10 0

Step 2 N sends bounded sets into bounded sets(if, R).

J. Ineq. Pure and Appl. Math. 3(1) Art. 14, 2002
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Let B, := {y € C(JR) : [lylloo < 7}, (lyllo = sup{ly(®)] - t € J})
be a bounded set i'(/,R) andy € B,, then for eacth € N(y) there exists
v € Spy such that

Thus for eacht € J we get

ol

IN

1y(0)] + / [o(s)] + [5()] + Jy(s) s

< max(a(0), 8(0)) + 6, 2 + Tmax(r,sup a(t)]sup |3(O)) + Tr.

Step 3 N sends bounded setsdr(J, R) into equicontinuous sets.

Letuy,up € J, uy < ug, B, :={y € C(J,R) : [Jy|lc < r} be abounded setin
C(J,R) andy € B,. For eachh € N(y) there exists € S}, such that

) = y(0) + [ 0(s) +706) — u(s)ds, 1€ .
We then have
|h(ug) — h(uy)]
< [ i) + 3] + (o) s

ul

< /u2 |p-(8)|ds + (ug — up) max(r,sup |a(t)|,sup |5(¢)|) + r(uz — uq).
u1l teJ ted
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As a consequence of Step 2, Step 3 together with the Ascoli-Arzela theorem
we can conclude thalv : C(J,R)—2°/R®) is a compact multivalued map, and

therefore, a condensing map.

Step 4 N has a closed graph.

Let y,—vo, Iy € N(y,) andh,—ho. We shall prove thak, € N(yo).
h, € N(y,) means that there exists € Sry such that

t
a(®) = y0) + [ [on(s) 4 7,(5) = (o), te
0
We must prove that there existg € S}WU such that

ho(t) = 5(0) + / fools) + To(5) — yo(s)]ds, ¢ € J.

Consider the linear continuous operafor L*(J,R)—C(J, R) defined by

(Fv)(t):/o v(s)ds.

We have

H (hn —v(0) - /Ot[yn(s) — Yn(5)] ds>

~ (b= + [ 0(s) ~ (o) s

’ o0

—0.

The Lower and Upper Solutions
Method for First Order
Differential Inclusions with
Nonlinear Boundary Conditions

M. Benchohra and S.K. Ntouyas

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 12 of 20

J. Ineq. Pure and Appl. Math. 3(1) Art. 14, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:benchohra@yahoo.com
mailto:sntouyas@cc.uoi.gr
http://jipam.vu.edu.au/

From Lemma2.1], it follows thatI" o 5’; is a closed graph operator.
Also from the definition of” we have that

(ha®0 =900 = [ 5,0~ wlolas) € (31,)

Sincey,, —yq it follows from Lemma2.1 that
t
alt) =9(0) + [ len(s) + (s) ~ (s, t€ 7
0

for someuv, € S} .
Next we shall show tha¥ has a fixed point, by proving that
Step 5: The set
M :={v e C(J,R): \ve N(v)forsome\ > 1}

is bounded.

Lety € M then\y € N(y) for some\ > 1. Thus there exists € 5‘;@ such
that

) = X70) +37 [ o)+ 505) — u(s)ds. ¢ €
Thus ,
0] < O)1+ [ 1069 +7() ~y(olds, e
From the definition of- there exists) € L'(J,R*") such that
|F ()| = sup{Je] : v € F(t, 7))} < o(t) for eachy € C(J,R),
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ly()] < maX(Oé(O),ﬂ(o))JrH(ﬁHLlJrTmaX(ilely |a(t)], sup |5(¢)

/ ly(s)|ds.

20 = max(a(0). 5(0)) + ¢ + Tmax(sup|a(t)]sup | 5(0)).

teJ

Set

Using the Gronwall's Lemma {[, p. 36]) we get for eache J

t
ly(t)] < z0+zo/ e ~ds
0
< zp+ z(e’ = 1).

Thus
[Ylloe < 20 + 20" — 1).

This shows thafl/ is bounded.

Hence, Lemm&.2 applies andV has a fixed point which is a solution to
problem 3.1 — (3.2).

Step 6: We shall show that the solutignof (3.1)-(3.2) satisfies

a(t) <y(t) < p(t) forall t e J.

Lety be a solution t03.1) — (3.2). We prove that

a(t) <y(t) forall t € J.
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Suppose not. Then there existt, € J, t; <ty such thatx(¢;) = y(¢;) and
a(t) > y(t) forall ¢t € (tq,1s).
In view of the definition ofr one has
y'(t)+yt) € F(t,a(t)) + a(t) a.e.on (t,ts).

Thus there exists(t) € F(t,a(t)) a.e. onJ with v(t) > vy (t) a.e. on(ty, t2)
such that
y'(t) +y(t) =v(t) +a(t) ae.on (t,t).

An integration on(ty, t], with ¢ € (¢4, t,) yields

y(t) —y(t)) = / [0(s) + (o — )(s)]ds

t1

> /tltv(s)ds.

Sincex is a lower solution to1.1) — (1.2), then

a(t) —a(ty) < / vi(s)ds, t € (t1,ta).

t1

It follows from the factgy(t;) = a(t1), v(t) > vy (t) that

a(t) < y(t) forall t € (t,ts)
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which is a contradiction, sincg(t) < «(t) forall ¢ € (t1,t2). Consequently
a(t) <y(t) forall t € J.

Analogously, we can prove that
y(t) < p(t) forall t € J.

This shows that the problem.(l) — (3.2) has a solution in the intervéd, 53].
Finally, we prove that every solution a3 (1) — (3.2) is also a solution tol(. 1)
—(1.2). We only need to show that

a(0) < y(0) — L(y(0),y(T)) < B(0).
Notice first that we can prove that
a(T) < y(T') < B(T).
Suppose now that(0) — L(y(0),5(T)) < «(0). Theny(0) = «(0) and
y(0) = L((0),5(T)) < (0).
SinceL is nonincreasing iy, we have
a(0) < a(0) — L(a(0), (7)) < a(0) — L((0),7(T)) < a(0)

which is a contradiction.
Analogously we can prove that

y(0) = L(7(0), 7(T")) < 5(0).
Theny is a solution to {.1) — (1.2). O
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Remark3.3. Observe that if.(x, y) = ax — by — ¢, we obtain that Theorerd.1
gives an existence result for the problem

y'(t) € F(t,y(t)), forae.t € J=10,T]

ay(0) — by(T) = ¢

with a, b > 0, a + b > 0 which includes the periodic case £ b = 1, ¢ = 0)
and the initial and the terminal problem.
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