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sions with general nonlinear boundary conditions.
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1. INTRODUCTION

This paper is concerned with the existence of solutions for the boundary multivalued problem:

(1.1) y'(t) € F(t,y(t)), fora.e.t € J=[0,T]

(1.2) L(y(0),y(T)) =0
where F : J x R—2% is a compact and convex valued multivalued map &AndR>—R is a
continuous single-valued map.

The method of upper and lower solutions has been successfully applied to study the existence
of multiple solutions for initial and boundary value problems of first and second order.

This method has been used only in the context of single-valued differential equations. We
refer to the books of Bernfeld-Lakshmikantham [4], Heikkila-Lakshmikantham [13], Ladde-
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Lakshmikantham-Vatsala [16], to the thesis of De Coster [7], to the papers of Carl-Heikkila-
Kumpulainen [[6], Cabada [5], Frigon I[9], Frigon-O’'Regan |[10], Heikkila-Cabada [12],
Lakshmikantham-Leela [17], Nkashamal[20] and the references therein.

Using this method the authors obtained(ih [2] and [3] existence results for differential inclu-
sions with periodic boundary conditions, for first and second order respectively.

In this paper we establish an existence result for the proklern (1[1)]- (1.2). Our approach is
based on the existence of upper and lower solutions and on a fixed point theorem for condensing
maps due to Martelli [19].

2. PRELIMINARIES

We will briefly recall some basic definitions and facts from multivalued analysis that we will
use in the sequel.
AC(J,R) is the space of all absolutely continuous functigns/—R.
Condition
y<y ifandonlyif y(t)<gy(t) forall teJ
defines a partial ordering iIAC'(J, R). If o, 8 € AC(J,R) anda < 3, we denote
o, B] = {y € AC(J,R) : a <y < B}.

Wh1(J,R) denotes the Banach space of functigns./—R which are absolutely continuous
and whose derivativg’ (which exists almost everywhere) is an element.6f./, R) with the
norm

[yllwre =yl + [/ forally € WH(J,R).

Let (X,]|-|) be a normed space. A multivalued m&p: X—2% is convex (closed) valued if
G(z) is convex (closed) for alt € X. GG is bounded on bounded setgif B) = U,cG(2) is
bounded inX for all bounded subset8 of X (i.e. sup,cz{sup{ly| : y € G(x)}} < ). G
is called upper semi-continuous (u.s.c.) 8nf for eachx, € X the setG(xz() is a nonempty,
closed subset ok, and if for each open sét of X containingG(z,), there exists an open
neighbourhood’ of z, such thatz(U) C V.

G is said to be completely continuousif B) is relatively compact for every bounded subset
B C X.

If the multivalued ma= is completely continuous with nonempty compact values, théen
u.s.c. if and only ifG has a closed graph (i.e,—z., yn—V«, yn € G(z,) iIMply y. € G(x.)).

G has a fixed point if there i8 € X such thatr € G(x).

In the following C'C'(X') denotes the set of all nonempty compact and convex subsats of

An upper semi-continuous map : X —2% is said to be condensing [19] if for any bounded
subsetB C X, with u(B) # 0, we haveu(G(B)) < u(B), whereu denotes the Kuratowski
measure of noncompacteness [1]. We remark that a compact map is the easiest example of a
condensing map. For more details on multivalued maps see the books of Deimling [8] and Hu
and Papageorgiol [15].

The multivalued mapf’ : J—CC(R) is said to be measurable, if for evegyc R, the
functiont — d(y, F'(¢)) = inf{|y — z| : = € F({)} is measurable.

Definition 2.1. A multivalued mapF : J x R—2% is said to be ard.'-Carathéodory if

(i) t — F(t,y) is measurable for eache R;
(i) y — F(t,y) is upper semicontinuous for almost ak J;
(iii) For eachk > 0, there exists, € L'(J,R,) such that

|F(t,y)|| = sup{|v| : v € F(t,y)} < hi(t) forall |y| <k andforalmostallt € J.
So let us start by defining what we mean by a solution of probfem (1[I) |- (1.2).
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Definition 2.2. A functiony € AC(J,R) is said to be a solution of (1.1) - (1.2) if there exists
a functionv € L'(J,R) such thatw(t) € F(t,y(t)) a.e. onJ, 3/(t) = v(t) a.e. onJ and
L(y(0),y(T)) = o.

The following concept of lower and upper solutions for [1.1)) —|(1.2) has been introduced by
Halidias and Papageorgiou in [14] for second order multivalued boundary value problems. It
will be the basic tools in the approach that follows.

Definition 2.3. A functionw € AC(J,R) is said to be a lower solution df (1.1) - (.2) if there
existsv; € L'(J,R) such thatv,(t) € F(t,a(t)) a.e. onJ, o/(t) < v(t) a.e. onJ and
L(a(0), a(T)) < 0.
Similarly, a function3 € AC(J,R) is said to be an upper solution ¢f (IL.1)[= (1.2) if there
existsv, € L'(J,R) such thatwy(t) € F(t,((t)) a.e. onJ, §'(t) > vy(t) a.e. onJ and
L(5(0), B(T)) > .

For the multivalued map’” and for eacly € C(J,R) we defineSt,, by

Sk, ={ve L' (JR):v(t) € F(t,y(t)) fora.et e J}.
Our main result is based on the following:
Lemma 2.1. [18]. Let] be a compact real interval and be a Banach space. Lét : [ x
X—CC(X);(t,y) — F(t,y) measurable with respect tofor anyy € X and u.s.c. with
respect toy for almost eacht € I and S}?,y # () foranyy € C(I,X) and letT" be a linear
continuous mapping from!(7, X') to C(I, X), then the operator
I'oSp:C(I,X)—CC(C(I,X)), y— (Lo SE)(y) :=T(Sk,)
is a closed graph operator i6'(1, X') x C(1, X).
Lemma 2.2.[19]. LetG : X—CC(X) be an u.s.c. condensing map. If the set
M = {ve X : e G(v) for somex > 1}

is bounded, ther has a fixed point.

3. MAIN RESULT

We are now in a position to state and prove our existence result for the prgblem (1.1) — (1.2).

Theorem 3.1. SupposeF' : J x R—CC(R) is an L!-Carathéodory multivalued map. In
addition assume the following conditions

(H1) there existvand3in Wh1(J R) lower and upper solutions respectively for the problem

(T.7) - [1.2) such thatx < 33,
(H2) L is a continuous single-valued map(in, y) € [«(0), 3(0)] x [a(T"), 5(T)] and nonin-

creasing iny € [«(T), B(T)],
are satisfied. Then the problein (1.1)]— (1.2) has at least one solytioriV!(J,R) such
that
a(t) <y(t) < p(t) forall t e J.

Proof. Transform the problem into a fixed point problem. Consider the following modified
problem (se€ [5])

(3.1) y'(t) +y(t) € Fi(t,y(t)), ae.teJ,

(3.2) y(0) = 7(0,3(0) — L(g(0),y(T)))
w(herc(ef;l(t,y) = F(t,7(t,y)) + 7(ty), 7(t.y) = max{a(t),minfy, 5(t)}} andy(t) =
T(t,y(t)).
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Remark 3.2. (i) Notice thatF) is anL!-Carathéodory multivalued map with compact con-
vex values and there existse L'(J, R, ) such that

| F1(t, y(t))]| < ¢(t) + max(sup |a(t)|,sup |B(t)|) fora.e.t € J andally € C(J,R).
te] ted

(if) By the definition ofr it is clear thatw(0) < y(0) < 3(0).
) Clearly a solution tl) .2) is a fixed point of the operafor C(.J, R)—2¢/®) defined
y
V() o= {1 e CURY b0 = 0+ [ 1o16) 450~ (o)l v € S}

where ’

Shy={v € Shy 1 v(t) > vi(t) a.e. onA; and v(t) < vs(t) a.e. on Ay},

Spy ={ve L'(JR):v(t) € F(t,7(t)) fora.et € J},
Ai={teJ ylt) <alt) <pt)}, As={te J:alt) <p(t) <y(t)}.

Remark 3.3. (i) For eachy € C(J,R) the setS}Qy IS nonempty (see Lasota and Opial
[18]). )
(i) For eachy € C(J,R) the seiS}w is nonempty. Indeed, by (i) there exists S},’y. Set

W = V1XA, T V2XA, T UXAs;

where
As={te J:at) <yt) <p(t)}.
Then by decomposability € S}

We shall show thatV is a completely continuous multivalued map, u.s.c. with convex closed
values. The proof will be given in several steps.

Step I N(y) is convex for eacly € C(J,R).
Indeed, ifh, h belong toN (y), then there exist € S}, andv € S}, such that

ht) = y(0) + / [o(s) + 7(s) — y(s))ds, te€J
and .
E(t) = y(0) —l—/o [0(s) +7(s) —y(s)]ds, t e J

Let0 < k£ < 1. Then for eacht € J we have

[kh + (1 — k)R](t) = y(0) + /0 [ku(s) + (1 —k)u(s) +y(s) — y(s)]ds.
Sinceé}w is convex (becausg has convex values) then
kh+ (1 —k)h € G(y).

Step 2 N sends bounded sets into bounded sets(i, R).
Let B, :={y € C(J,R) : ||ylloo <7}, (|ylloc := sup{|y(t)| : t € J}) be a bounded set in

C(J,R) andy € B,, then for eacth € N(y) there exists € S} such that

ht) = y(0) + / [o(s) + 9(s) — y(s)lds, t € J.
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Thus for eacht € J we get

Ol < w0)] + / [o(s)] + [5()] + ly(s) )ds
< max(a(0). 50)) + |nls + T max(rsup [a(8)sup |3(0)) + v

Step 3 N sends bounded setsd(.J,R) into equicontinuous sets.
Letui,up € J, uy < ug, B, :={y € C(J,R) : |ly|llc <r} be abounded seti@i(J,R) and
y € B,. For eacth € N(y) there exists € S, such that

h(t) = y(0) + / (o(s) +7i(s) — y(s))ds, t € J

We then have

us) = )| < [ llo(s) + )]+ o)l

ul

< [ lon(s)lds + (= ) max(rsup )] sup [ 3(0)) + (e ).
teJ teJ

ul
As a consequence of Step 2, Step 3 together with the Ascoli-Arzela theorem we can conclude
that N : C(J,R)—2°/R) is a compact multivalued map, and therefore, a condensing map.

Step 4 N has a closed graph.
Lety,—vo, hn € N(yn) andh,—ho. We shall prove that, € N (yo).
h. € N(y,) means that there exists € Spy such that

t
hn(t) = y(0) +/ [0n(s) + 7, (s) —yn(s)]ds, teJ.
0
We must prove that there existg € S}WU such that
t
ho(t) = 9(0) + [ [on(s) + ) ~ sn(o)lds. t € 7
0
Consider the linear continuous operalor L'(J,R)—C(J, R) defined by

(Fv)(t):/o v(s)ds.

We have

(1 =00 = [ 1.9 =6 ds) = (0 =0+ [ ) ~mioilas) |~

[e.9]

From Lemma 21, it follows that o S}, is a closed graph operator.
Also from the definition of” we have that

(hal®) =900 = [ 5.05) — (o) as) €7 (8,)
Sincey,,— it follows from Lemmg 2.]1 that

talt) = 0) + [ [ols) + 50(5) ~ (s, ¢ € S
for somev, € 5% .

Next we shall show tha¥ has a fixed point, by proving that
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Step 5: The set
M :={v e C(J,R): lv e N(v)for some\ > 1}
is bounded.
Lety € M then\y € N(y) for some\ > 1. Thus there exists € 5”;@ such that

y(t) = A 1y(0) + A1 /t[ (s) +7(s) —y(s)|ds, te€J.

Thus
WO < 1O+ [ 165+ 70) —u(s)ds, 1€
From the definition of- there exists) € L*(.J. ) such that
HFwMDWJMMMUGF((D}<M)mmmm€CJR>
[y(®)] < max(a(0), 5(0)) + |9z + T max(sup |a(t)], sup | 5() /Iy )|ds.
S
Set

2 = max(0(0), 5(0)) + 6]l + T max(sup ()], sup [5(0)).
S S
Using the Gronwall's Lemmal([11, p. 36]) we get for each J

¢
ly(t)] < z0+zo/ et~ 3ds
0

< 29+ 20(ef = 1).

Thus
ylloo < 20 + zo(e” — 1).
This shows thafl/ is bounded.
Hence, Lemma 2]2 applies aid has a fixed point which is a solution to problem (3.1) —

B2
Step 6: We shall show that the solutignof (3.1)-[3.2) satisfies
a(t) <y(t) < p(t) forall t e J

Lety be a solution tg (3]1) { (3.2). We prove that
a(t) <y(t) forall t € J.
Suppose not. Then there existt, € J, t; <ty such thatx(¢;) = y(¢;) and
a(t) > y(t) forall t € (t,t2).
In view of the definition ofr one has
y'(t)+y(t) € F(t,a(t)) + a(t) a.e.on (t,ts).
Thus there exists(t) € F(t, a(t)) a.e. onJ with v(t) > v, () a.e. on(t, t2) such that
Yy (t)+yt)=v)+at) ae.on (t,ts).
An integration on(ty, t], with ¢ € (¢4, t) yields

y(t) —ylt)) = / [o(s) + (o — )(s)]ds

t1

> /t:v(s)ds.
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Sincea is a lower solution to (1]1) 4 (1.2), then

a(t) —a(ty) < / vi(s)ds, t € (t1,ta).

t1

It follows from the factgy(¢;) = «(t1), v(t) > v1(t) that
a(t) <y(t) forall t e (t1,t2)
which is a contradiction, sincgt) < «(t) forall ¢ € (t1,t2). Consequently
a(t) <y(t) forall t e J
Analogously, we can prove that
y(t) < p(t) forall t e J.

This shows that the problerh (8.1)[— (3.2) has a solution in the interval.
Finally, we prove that every solution df (3.1) - (8.2) is also a solutiof td (1.L) + (1.2). We
only need to show that

a(0) < y(0) — L(y(0), y(T)) < 5(0).
Notice first that we can prove that
a(T) <y(T) < B(T).
Suppose now that(0) — L(y(0),5(T)) < «(0). Theny(0) = «(0) and
y(0) — L((0),%(T)) < a(0).
SinceL is nonincreasing iy, we have
a(0) < a(0) — L(a(0), a(T") < a(0) — L(«(0),7(T")) < (0)

which is a contradiction.
Analogously we can prove that

y(0) = L(7(0), 7(T)) < 5(0).
Theny is a solution to[(1]1) 4 (1]2). O

Remark 3.4. Observe that ifL(z,y) = axz — by — ¢, we obtain that Theorefn 3.1 gives an
existence result for the problem

y'(t) € F(t,y(t)), fora.e.t € J=[0,T]

ay(0) —by(T") =c
with a, b > 0, a + b > 0 which includes the periodic case € b = 1, ¢ = 0) and the initial
and the terminal problem.
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