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Abstract

This paper gives best bounds for the ratio
∫ b−t
a f(x) f(x + t) dx/

∫ b
a f2(x) dx for

any square-summable real function f(x) on the interval (a, b]. Similarly, bounds
are established for the autocorrelation of any pulse or finite-length sequence at
any known lag, and the family of pulses and sequences attaining these bounds
is identified. The form of this family is related to a half-cycle of a sinusoid.
Stronger bounds are suggested for pulses known to be non-negative and uni-
modal or concave.
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1. Introduction
This paper presents a derivation of the inequality

(1.1)

∣∣∣∣∣
∫ b−t

a
f(x) f(x + t) dx∫ b

a
f 2(x) dx

∣∣∣∣∣ ≤ cos

(
π⌈

b−a
t

⌉
+ 1

)
0 < t ≤ b− a

for any square-summable real functionf(x) on the interval(a, b], and demon-
strates that the bound is the best possible. The notationd·e denotes the ‘lowest
integer not less than’ function. The result is obtained by a shift in origin after
derivation of the inequality

(1.2) |A(t)| ≤ cos

(
π

dT/te+ 1

)
0 < t ≤ T,

where

(1.3) A(t) ≡
∫ T−t

0
f(x) f(x + t) dx∫ T

0
f 2(x) dx

is the autocorrelation function of a pulse of durationT . As the notation suggests,
the autocorrelation function is principally thought of as a function of the lag
t for known f(x) andT . In that context familiar results areA(0) = 1 and
|A(t)| ≤ 1. Here the lag (as a proportion of the pulse duration) is deemed to be
known and the bounds, equation (1.2), are obtained for any square-summable
pulsef(x). If T is unknown then the parameter of interest is the lag proportion
t/T , and equation (1.2) can be written accordingly. Also if the pulse duration
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is known only to be less than or equal to some figureT then the same bounds
hold. Equation (1.2) is obtained by first developing a discrete analogy which
bounds the autocorrelation of a real sequence.

The motivating example for this work was the placement of bounds on a
correlation arising in medical Doppler ultrasound, where the goal is the de-
scription of blood-flow. Scatterers of ultrasound (groupings of red cells) within
the blood can be regarded as being distributed uniformly and randomly within
an insonated volume. Therefore the power of the signal measured on recep-
tion at the transmitter-receiver is the sum of many contributions with uniform
random phases. A short time later the scatterers have moved with the rest of
the blood but with little change in their relative positions. Some scatterers have
entered the insonated volume and some have left. The correlation between the
powers received at these two times is related to the velocity of bloodv, the time
interval τ , and the intensity profile of the ultrasound beam. The ‘pulse’f(x)
is this intensity profile as a one-dimensional function of space in the direction
of the blood velocity. So the product|vτ | is t, and the spatial extent of the in-
tensity function isT . If sides lobes are ignored this extent is the width of the
central lobe of the intensity function. Even if theshapeof the intensity func-
tion is unknown the correlation between the powers at the two times is bounded
according to equation (1.2) and more strongly according to the results for uni-
modal and concave functions obtained in Sections3 and4. If the correlation is
determined experimentally this in turn boundsv.

There appears to be little published regarding such bounds on an autocorrela-
tion. Communications engineers are more interested in the design of sequences
with desirable (small) autocorrelation over a range of lags. Upper bounds have
been given for the autocorrelation of maximal-length pseudo-random sequences
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[1], while lower bounds for the maximum magnitude of cross-correlation func-
tions and autocorrelation functions for sets of complex-valued sequences have
been considered [2].
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2. Analysis
Equation (1.2) is derived by considering the definite integral to be a sum of
infinitesimal terms. So we first study the autocorrelation of a finite real sequence
of P values{fn}, n = 1, 2, . . . , P , at positive lagp, which is

(2.1) Ap ≡
∑P−p

n=1 fnfn+p∑P
n=1 f 2

n

.

Then we increasep andP without limit while preserving the ratiop/P = t/T .
WriteP = Mp+q whereM = bP/pc and0 ≤ q < p, andb·c is ‘the greatest

integer not greater than’ function. The sequence can be split intop interleaving
subsequences each containing elements spacedp apart. Thejth subsequence,
{fj, fj+p, . . . , fj+(Lj−1)p} has lengthLj, whereLj = M + 1 for 1 ≤ j ≤ q and
Lj = M for q + 1 ≤ j ≤ p. Equation (2.1) can then be written as

Ap =
a1 + . . . + ap

b1 + . . . + bp

where

aj =

Lj∑
k=1

fj+(k−1)pfj+kp and bj =

Lj∑
k=1

f 2
j+(k−1)p.

Evidently aj/bj is the autocorrelation of thejth subsequence with lag 1. Be-
cause eachbj is non-negative it follows thatAp is bounded between the maxi-
mum and minimum values ofaj/bj, so

|Ap| ≤ max
j
{|aj/bj|}.
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Any of the subsequences can be relabelled{F1, F2, . . . FN} whereN = M or
N = M +1 so the problem reduces to bounding the autocorrelation of this new
sequence at lag 1, i.e. bounding

(2.2) A∗ ≡
∑N−1

n=1 FnFn+1∑N
i=1 F 2

n

for any sequence{Fn} and choosingN = M or N = M + 1 to give the least
lower bound and greatest upper bound.

Let ρ be an extremum ofA∗ with respect to each element of{Fn}. Setting
∂A∗/∂Fn = 0 gives

(Fn−1 + Fn+1)
N∑

i=1

F 2
i = 2Fn

N−1∑
i=1

FiFi+1 n = 1, . . . , N

if we defineF0 ≡ 0 andFN+1 ≡ 0. At this extremum the right-hand side of
equation (2.2) is ρ, so this rearranges to the recurrence relation

(2.3) Fn+1 = 2ρ Fn − Fn−1.

The general solution to equation (2.3) with F0 = 0 is

Fn = K sin(n cos−1 ρ) n = 0, . . . , N

whereK is an arbitrary constant. This equation must be the general solution
because it satisfies equation (2.3) andF0 = 0 while keepingF1 arbitrary. From
the further conditionFN+1 = 0 we identify possible values ofρ to be

(2.4) ρ = cos
(

kπ
N+1

)
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wherek is an integer. SoA∗ takes its global maximum and minimum values of

(2.5) ρmax = cos
(

π
N+1

)
and ρmin = − cos

(
π

N+1

)
with corresponding sequences

(2.6) Fn = K sin
(

nπ
N+1

)
and Fn = (−1)nK sin

(
nπ

N+1

)
,

whose elements are equally spaced samples of half-cycles of sinusoids.
An alternative derivation of equation (2.4) follows from writing the right-

hand side of equation (2.2) as (F′CF)/(F′F) whereF is the column vector
(F1, F2, . . . , FN)′, and C is the N × N Toeplitz matrix with elements1/2
in the diagonals immediately either side of the leading diagonal (first super-
diagonal and first sub-diagonal), and zero elsewhere. Differentiating with re-
spect toF and setting the result to zero givesCF = ρF, which is a re-
expression of equation (2.3) with F0 = 0 and FN+1 = 0. So the possible
values ofρ and vectorsF are the eigenvalues and eigenvectors ofC. The
eigenvalues of anN × N matrix with elementsc0 in the leading diagonal,c1

in the first super-diagonal,c2 in the first sub-diagonal and zero elsewhere are
c0 + 2(c1c2)

1/2 cos (kπ/(N + 1)), k = 1, . . . , N [3, p. 284].
Both bounds in equation (2.5) are larger in magnitude whenN = M + 1

than whenN = M . AlsoM + 1 = dP/pe. Therefore the autocorrelation of the
original sequence at lagp is bounded by

(2.7) |Ap| ≤ cos

(
π

dP/pe+ 1

)
.
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If p andP tend to infinity while maintaining the ratiop/P = t/T , the result is
equation (1.2) for the bound on the autocorrelation defined by equation (1.3).
To show this more rigorously define the stepwise function

f(x) = fn
(n−1)T

P
< x ≤ nT

P
n = 1, 2, . . . , P,

which has fixed extentT and step lengthT/P , and definef(x) = 0 outside
(0, T ]. So for integer values ofk ≥ 0

fn+k = f(x + kT/P ) (n−1)T
P

< x ≤ nT
P

n = 1, 2, . . . , P − k,

from which it follows that

fnfn+k =
P

T

∫ nT/P

(n−1)T/P

f(x)f(x + kT/P ) dx.

Form the relevant sums
∑

fnfn+k appearing in equation (2.1) with k = p in the
numerator andk = 0 in the denominator, and sett = pT/P to obtain

Ap =

∫ T−t

0
f(x) f(x + t) dx∫ T

0
f 2(x) dx

.

Recall thatT is fixed. Letp andP tend to infinity in a way that maintains the ra-
tio p/P = t/T . No restrictions are placed on thefn values so this enablesf(x)
to approach any square-summable function, continuous or otherwise, which is
zero outside(0, T ]. Also the lagst corresponding to neighbouring values of
p become arbitrarily close, so the result is valid for anyt where0 < t ≤ T .
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Therefore equation (2.1) becomes equation (1.3), and equation (2.7) becomes
equation (1.2). Thus we have found bounds on the autocorrelation of any pulse
at a lag which is a known proportion of the pulse duration.

If the condition thatf(x) = 0 outside(0, T ] is relaxed then equation (1.3)
no longer defines the autocorrelation function but describes a more general sit-
uation. The equations derived will still be true, as they do not require anything
of f(x) outside that interval, and by a shift of origin, withT = b − a (for any
reala, b, with a < b), equation (1.2) generalises to the more fundamental result
that is equation (1.1).

The bound in equation (1.2) is given by the stepwise solid line in Figure1.
The left endpoints of the pieces of this function correspond to integer values of
T/t. For non-integerT/t the positive upper bound is only reached by functions
such as that in Figure2, (where, for example,t/T = 0.3). The function can only
be non-zero indT/te (= 4) regions each of durations = T − (dT/te − 1) t (=
0.1). The points in these regions correspond to elements in the longer subse-
quences of lengthM + 1(= 4), in the discrete formulation given above. The
function in each of these regions is of identical arbitrary form, but with a differ-
ent scale factor. Corresponding points lie on a half-cycle of a sinusoid, as drawn
in Figure2 for the two modal points, and in accordance with the first sequence in
equation (2.6). The function must be zero in the interleavingdT/te−1 (= 3) re-
gions, containing points corresponding to elements in the shorter subsequences
of lengthM(= 3). The negative lower bound is reached by such a function if
every second non-zero region is inverted, as in the second sequence in equation
(2.6). Examples like this can be constructed for any lag, which indicates that
the bounds given by equation (1.2) and equation (1.1) are the best possible.

The short-dashed line on Figure1 gives the quantitycos (π/(T/t + 1))
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which is the bound in equation (1.2) without application of thed·e function.
As the lag approaches zero the bound approaches this quantity, which itself ap-
proachescos(πt/T ). Also, using equation (2.6) for sequences with increasing
length, the shape of the pulse maximising the correlation approaches in some
sense the half-cyclesin(πx/T ) for 0 < x ≤ T .
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0.0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lag t/T

bound

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lag p    (P=14)

Figure 1: Bounds for the autocorrelation function. Solid line – magni-
tude of bound for all functions,cos (π/(dT/te+ 1)). Short-dashed line –
cos (π/(T/t + 1)). Long-dashed line – apparent upper bound for unimodal
functions. Cross marks – apparent upper bound for concave sequences of length
14. Ast/T approaches zero each line approachescos(πt/T ).
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0 T
t st t

Figure 2: A function giving maximum correlation whenT/t is not an inte-
ger. (Heret/T = 0.3.) The function comprisesdT/te regions of duration
s = T − (dT/te − 1) t, each with identical arbitrary form but scaled so that
corresponding points lie on a sinusoid, anddT/te − 1 interleaving regions of
zero.

http://jipam.vu.edu.au/
mailto:r.willink@irl.cri.nz
http://jipam.vu.edu.au/


An Integral Inequality Bounding
the Autocorrelation of a Pulse
or Sequence at a Known Lag

Robin Willink

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 21

J. Ineq. Pure and Appl. Math. 3(1) Art. 15, 2002

http://jipam.vu.edu.au

3. Unimodal functions
Consider the subset of pulses which are non-negative and unimodal, i.e. with a
single modal point or plateau that might contain either extreme point 0 orT . An
example is the central lobe of a sinc, i.e.(sin x)/x, or sinc-squared function,
as might be the form off(x) in the medical ultrasonics example. The bound of
interest is the upper bound.

The discussion in the previous section suggests that for such functions the
upper bound given in equation (1.2) is only reached whenT/t is an integer and
the function comprisesT/t level sections each of lengtht with heights which
are equally spaced samples of a half-sinusoid.

For general values ofT/t a Monte Carlo technique was used to find the
unimodal pulse shape maximising the autocorrelation for a given lag. (An ana-
lytical derivation was not found.) Random unimodal sequences of lengthN = 8
were created by the cumulative summation of uniform random numbers either
side of a randomly selected mode. This was carried out109 times, and for
each lag the sequence giving the maximum autocorrelation was recorded. For
y ≤ 1/2 the sequences suggested were symmetric, so109 symmetric sequences
of both N = 13 and N = 16 were studied. The sequences and functions
strongly suggested by this technique are stepwise. Consider the autocorrelation
as a function of the lag proportiony ≡ t/T . For y < 1/2 the function sug-
gested is symmetric, stepwise and of the family including Figures3a and3b.
For y ≥ 1/2 the function suggested is of the form shown in Figure3c (or its
reflection about the axisx/T = 1/2).

In Figure3 the modal region in each case is scaled to have height 1. Assum-
ing these forms are correct, expressions are found for the maximum autocorre-
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lation by setting to zero the derivatives of the autocorrelation with respect to the
unknown levels,α (andβ), solving a polynomial equation to obtain these lev-
els, and calculating the autocorrelation. Thus the autocorrelation for a unimodal
function is bounded by

(3.1) 0 ≤ A(t) ≤



5y−1+
√

(1−2y−3y2)
4y

1
5
≤ y < 1

4

y
3y−1+

√
(1−4y+5y2)

1
4
≤ y < 1

3

3y−1+
√

(1+2y−7y2)
4y

1
3
≤ y < 1

2

1
2

√
( 1

y
− 1) 1

2
≤ y < 1.

The upper bound is continuous and is the long-dashed line in Figure1.
The two dashed lines on Figure1 are close betweeny = 1/5 andy = 1/3

and, by suggestion, will be close for lower values ofy also. Therefore, fory ≤
1/3 the short-dashed line provides an approximate bound, and for a unimodal
function the inequality

(3.2) 0 ≤ A(t) <≈ cos

(
π

T/t + 1

)
0 < t

T
≤ 1

3

might be used in place of equation (3.1).
The levelsα (andβ) in the functions of Figure3 attaining the upper bound in

equation (3.1) are simply related to this bound. LetV be the upper bound listed
in equation (3.1). Thenα = V andβ = 1/2 for 1/5 ≤ y < 1/4, α = 1/(2V )
for 1/4 ≤ y < 1/3, α = V for 1/3 ≤ y < 1/2 and α = 2V for 1/2 ≤ y < 1.

As with equation (1.1) an inequality for square-summable functions which
are non-negative and unimodal in(a, b] can be written using equation (3.1) or
equation (3.2).
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0 1

α
1

y y

1-2y

(b)
x /T

f(x)

0 1

α
1

y

y

1-4y

β
y

y

(a)
x /T

f(x)

0 1

α

1

y

1-y

(c)
x /T

f(x)

T

Figure 3: Unimodal functions maximising the autocorrelation at lagy ≡ t/T .
(a)1/6 ≤ y < 1/4 (b) 1/4 ≤ y < 1/2 (c) 1/2 ≤ y < 1
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4. Concave functions
A similar Monte Carlo analysis was performed for the subset of non-negative
unimodal pulses which are concave, i.e. have a second derivative which is zero
or negative at all points in the interval. The stepwise forms of Figure3 are
then excluded. Preliminary results suggested that the concave pulse maximising
the autocorrelation for any fixed lag is symmetric. Subsequently109 random
symmetric concave sequences of lengthP = 14 were generated. The observed
maximum autocorrelations of these sequences for lagsp = 1, . . . , 13 are marked
on Figure1 together with the trivial bound of 1 for lag zero. The results for
p ≥ 7 suggest that the maximum autocorrelation for lagt/T ≥ 1/2 lies on the
straight line ‘bound = 1 − t/T ’ and the maximising function is uniform. For
p < 7 the maximum autocorrelations appear to lie just below the short-dashed
line. The corresponding sequences suggest that the maximising function is of
the form shown normalised in Figure4, where outside a central curved section
the function is linear. With an increase iny, the quantitiesγ andδ increase and
the absolute slope of the linear regions decreases. Asy decreases the function
approaches a half-cycle of a sinusoid.

The cross marks lie close to the short-dashed line in Figure1. This suggests
that for a concave function the inequality

(4.1) 0 ≤ A(t) <≈

{
cos
(

π
T/t+1

)
0 < t

T
< 1

2

1− t
T

1
2
≤ t

T
≤ 1

may be more useful than equation (1.2).
As with equation (1.1) an inequality for square-summable functions which

http://jipam.vu.edu.au/
mailto:r.willink@irl.cri.nz
http://jipam.vu.edu.au/


An Integral Inequality Bounding
the Autocorrelation of a Pulse
or Sequence at a Known Lag

Robin Willink

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 21

J. Ineq. Pure and Appl. Math. 3(1) Art. 15, 2002

http://jipam.vu.edu.au

0 1

γ

1

y 1-2y

x /T
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δ
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Figure 4: The concave function maximising the autocorrelation at lagy ≡ t/T
for y < 1/2.

are non-negative and concave in some interval(a, b] can be written using this
result.

http://jipam.vu.edu.au/
mailto:r.willink@irl.cri.nz
http://jipam.vu.edu.au/


An Integral Inequality Bounding
the Autocorrelation of a Pulse
or Sequence at a Known Lag

Robin Willink

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 21

J. Ineq. Pure and Appl. Math. 3(1) Art. 15, 2002

http://jipam.vu.edu.au

5. Summary
The autocorrelation of any square-summable pulsef(x) of durationT at lagt
is bounded by∣∣∣∣∣

∫ T−t

0
f(x) f(x + t) dx∫ T

0
f 2(x) dx

∣∣∣∣∣ ≤ cos

(
π

dT/te+ 1

)
0 < t ≤ T,

which is equation (1.2). Similarly, the right-hand side is a bound on the auto-
correlation of a pulse at a lag which is at least a proportiont/T of the pulse
duration.

The magnitude of the bound is depicted by the stepwise solid line of Figure1.
If only non-negative and unimodal pulses are permitted then, using a Monte-
Carlo method, suggested bounds are given by equation (3.1), the upper bound is
shown by the long-dashed line of Figure1 and approximate bounds are given by
equation (3.2). If only pulses which are non-negative and concave are permitted
then, using a Monte-Carlo method, approximate bounds are given by equation
(4.1).

The importance of the sine and cosine functions in this analysis is evident.
The pulses and sequences attaining the bounds are constrained by half-cycles of
a sinusoid. As the lag approaches zero each upper bound approaches 1 accord-
ing to cos(πt/T ) and the shape of pulse maximising the correlation approaches
in some sense a half-cycle of a sinusoid, which is unimodal and concave.

Each of these inequalities can be modified to apply to real functions square-
summable on some interval. For any such functionf(x) and interval(a, b] the
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appropriate inequality is∣∣∣∣∣
∫ b−t

a
f(x) f(x + t) dx∫ b

a
f 2(x) dx

∣∣∣∣∣ ≤ cos

(
π⌈

b−a
t

⌉
+ 1

)
0 < t ≤ b− a,

which is equation (1.1).
In addition, bounds on the autocorrelation of any real sequence{fn} of

lengthP at lagp are given by∣∣∣∣∣
∑P−p

n=1 fnfn+p∑P
n=1 f 2

n

∣∣∣∣∣ ≤ cos

(
π

dP/pe+ 1

)
,

which is equation (2.7). Forp = 1 the extreme correlations are given by equa-
tion (2.5) and the corresponding sequences by equation (2.6).
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