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ABSTRACT. A norm inequality is proved for elements of a star algebra so that the algebra is
noncommutative. In particular, a relation between maximal and minimal extensions of regular
norm on aC∗-algebra is established.
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Let H be a Hilbert space andB(H) be the algebra of all bounded linear operators onH. A
subset ofB(H) is aW ∗-algebra onH if X is aC∗-algebra which is closed in the weak operator
topology, see [1]. Also, aW ∗-algebra is aC∗-subalgebra ofB(H) which is weakly closed. In
particular, aW ∗-algebra is an algebra of operators. We note that aC∗-algebra acting onH is
commutative if and only if zero is the only nilpotent element of the algebra.

Let X be aW ∗-algebra andXSA be the set of self-adjoint elements ofX, that is if T ∈
S (X) =⇒ T = T ∗, whereT ∗ is the adjoint ofT . Here we prove the following theorem.

Theorem 1. A unitalW ∗-algebraX of operators is noncommutative if∀A, B ∈ XSA,

‖A‖ = 1 = ‖B‖ =⇒ ‖A + B‖ > 1 + ‖AB‖ .

Proof. SinceX is noncommutative, there exists an operatorT in X such thatT 2 = 0. Suppose
X1 is the range ofT andX2 is the orthogonal complement ofX1. ThenH = X1 ⊕X2. Let S
be an operator with‖S‖ = 1. Then

T =

(
0 S
0 0

)
and T ∗ =

(
0 0
S∗ 0

)
.
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We use these representations forT andT ∗ to define the operatorsA andB as follows: For
σ1 > 0, σ2 > 0 andσ1 + σ2 = 1, we have

A =

(
SS∗ 0
0 0

)
= TT ∗,

B =

(
σ1SS∗ σ2S
σ2S

∗ σ1S
∗S

)
= σ1 (TT ∗ + T ∗T ) + σ2 (T + T ∗) .

Clearly,A = A∗, B = B∗ andA, B ∈ X. Next, we consider the following two cases.

Case 1.Let σ1 = σ2 = 1
2

and

B =
1

2

(
SS∗ S
S∗ S∗S

)
=

1

2
(TT ∗ + T ∗T + T + T ∗) .

It is not difficult to see that‖A‖ = 1 and‖B‖ ≤ 1. To obtain‖B‖ ≥ 1, let ‖S‖ = 1 then
∃an ∈ X 3: ‖an‖ = 1. Also,

‖SS∗an − an‖2 = ‖SS∗an‖2 − 2 ‖S∗an‖2 + ‖an‖2

≤ 2
(
‖an‖2 − ‖S∗an‖2)

and if‖S∗an‖ → 1 thenSS∗an − an → 0. Further,(Bb− b) → 0, whereb = (an + S∗an) and
hence,‖B‖ ≥ 1, which concludes that‖B‖ = 1.

Let

AB =
1

2

(
SS∗ S
S∗ S∗S

)
and

A + B =

(
SS∗ + SS∗

2
S
2

S∗

2
S∗S
2

)
=

1

2
(TT ∗ + T ∗T + T + T ∗) .

Choosean as above andbn = S∗an

(2µ−1)
, whereµ > 1. Let

µ1 = σ1 +
1

2
+

(
σ2 +

1

4

) 1
2

so that it satisfies the equation

(µ1 − σ1 − 1) (µ1 − σ1) = σ2
2.

Then
[(A + B) (an + bn)− µ (an + bn)] → 0

and‖A + B‖ ≥ µ > 1. If we chooseσ1 andσ2 so that

σ1 +
1

2
+

(
σ2 +

1

4

) 1
2

> 1 +
(
σ2

1 + σ2
2

) 1
2 ,

then we have
‖A + B‖ > 1 + ‖AB‖ .

For example, it is sufficient to takeσ1 = 2
3

andσ2 = 1
3
. We note thatσ1 > σ2. If σ1 < σ2 then

the above inequality fails. Sinceµ > 1 +
√

2σ1 the proof in this case is complete.

Case 2.Let σ1 6= σ2. Then‖AB‖ ≤ a0, (by mimicking the proof of Case 1), where

a0 = sup
{
σ1 ‖a‖+ σ2 ‖b‖ : ‖a‖2 + ‖b‖2 = 1

}
=

√
σ2

1 + σ2
2.
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Let bn (µ1 − σ1) = σ2S
∗an, whereµ1 depends onσ1 andσ2. Then‖A + B‖ ≥ µ1 and one can

have the following form ofµ1, that is,2µ1 = (2σ1 + 1) +
√

1 + σ2
1. Hence,µ1 > 1 + a0 and

this concludes the proof of the theorem.

�

Remark 2. If X is commutative then forA, B ∈ XSA with ‖A‖ = 1 = ‖B‖, we have0 ≤
I −B − A + AB, whereI is the identity operator. Thus‖A + B‖ ≤ 1 + ‖AB‖.

Let 0 < p, q, r be real numbers such thatq (2r + 1) ≥ (2r + p) andq ≥ 1. If two bounded

linear operatorsA, B ∈ B (H) on a Hilbert spaceH satisfy0 ≤ B ≤ A then(BrApBr)
1
q ≥

B
p
q B

2r
q . This inequality is called the Furuta inequality and can be found in [3]. Recently, Kotaro

and others in [6] have extended this inequality in a unital hermitian Banach∗-algebras with
continuous involution. We give a slightly different version of these inequalities in the following
corollary.
Corollary 3. Suppose thatXC∗ is a C∗-algebra acting onH. Let λ, µ and σ be three real
numbers withσ > 0, λ > 0. Then there exists operatorsT1, T2 andT3 in X 3: λT1 + µT2 +
σT3 ≥ 0 ⇐⇒ λσ ≥ µ2.

Proof. We recall that an operatorO ∈ B (H) is positive if 〈Oh, h〉 ≥ 0 for every vectorh.
Using the techniques of Theorem 1, the following operators belong toXC∗. That is,

T1 =

(
SS∗ 0
0 0

)
, T2 =

(
0

√
SS∗S

S∗
√

SS∗ 0

)
, and

T3 =

(
0 0
0 S∗S

)
are inXC∗. In this case we have

λT1 + µT2 + σT3 =

(
λSS∗ µ

√
SS∗S

µS∗
√

SS∗ σS∗S

)
.

Let λT1 + µT2 + σT3 = Λ. Then we observe that the determinant ofΛ is zero ifλσ = µ2. If
ε < 0 andh ∈ H, then we have

‖(Λ− ε) h‖2 = ‖Λh‖2 − 2ε 〈Λh, h〉+ ε2 ‖h‖2 ≥ −2ε 〈Λh, h〉+ ε2 ‖h‖2 ≥ +ε2 ‖h‖2 .

Thus ε /∈ SPap (Λ) , the approximate point spectrum ofΛ. This means that(Λ− ε) is left
invertible. Since(Λ− ε) is hermitian, it must also be right invertible. That is,ε /∈ SP (Λ) and
soΛ ≥ 0 ⇐⇒ λσ ≥ µ2.

Alternatively, fora ∈ X1 andb ∈ X2, we have

〈Λ (a + b) , (a + b)〉 =

∥∥∥∥∥√σSb + µ

√
SS∗

σ
a

∥∥∥∥∥
2

+

(
λ− µ2

σ

)
‖S∗a‖2 .

Sincea ∈ X1, therefore

∃bn ∈ X2 3:
√

σ (Sbn) + µ

√
SS∗

σ
a → 0 =⇒ Λ ≥ 0 ⇐⇒ λ− µ2

σ
≥ 0.

Hence the proof of the corollary is complete. �

Remark 4. By reducing the matrixΛ into a product of three matrices the above corollary can
also be proved. That is,Λ = L∗DL, where

L =

(
I W
0 I

)
and W =

µ

σ

√
SS∗S

√
S∗S.
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By the partial commutation relation, we have
√

SS∗S = S
√

S∗S

and hence

D =


(
λ− µ2

σ

)
SS∗ 0

0 σS∗S

 .

Under the above assumption aboutσ andS∗S, the Sylvester type test applies. That is,Λ is
positive (semi definite) if and only ifσ > 0 andλ− µ2

σ
≥ 0.

Let A, B > 0 be invertible operators onH. In this case a Furuta type inequality is obtainable
by replacing1 with 0 in the original Furuta inequality in Remark 2. In fact, we have

A2r ≥ (ArBpAr)
2r

(2r+p) .

Also, if A ≥ B ≥ 0, 3: A > 0, then for eachα ∈ [0, 1] andp ≥ 1 we have{
A

r
2

(
A

−α
2 BαA

−α
2

)s

A
r
2

} (1+r−α)
[(p−α)s+r] ≤ A(1+r−α) for s ≥ 1 and r ≥ α.

For more details, see [3]. The following examples give an application of these inequalities in
case ofC∗-algebras.

Example 0.1.Let X be a commutativeC∗-algebra acting onH. If we take

A = 6T1 + 0T2 + 3T3 and

B = 3T1 + 2T2 + T3

then
A−B = 3T1 − 2T2 + T3

and by the Corollary 3 we haveA−B ≥ 0. We further note thatA2 is not greater than or equal
to B2, since forb ∈ X2, 〈(

A2 −B2
)
b, b

〉
+

〈
(S∗S)2 b, b

〉
= 0.

Example 0.2.Let

A = 2T1, B = T1 + T2 + T3 and

C = 4T1 + T2 + T3.

ThenA ≥ 0 andB + C ≥ 0. Further, by the Corollary 3, we haveB + C −A ≥ 0. Let Ψ ≤ B
andΦ ≤ C, whereA = Ψ+Φ. ThenΨ ≤ A. Hence, from Corollary 3, fora ∈ X1 andb ∈ X2,
we have

〈(T1 + T2 + T3) (a + b) , (a + b)〉 =
∥∥∥√SS∗a + Sb

∥∥∥2

.

Also, bn ∈ X2 =⇒ Ψ = 0, because
(
Sbn +

√
SS∗a

)
→ 0. Thus

A = Φ = 2T1 ≤ 4T1 + T2 + T3.

Example 0.3.Let

A =
1

3
T1, B = T1 + T2 + T3 and

C = 4T1 + 2T2 + T3.

ThenA ≥ 0 andB+C ≥ 0. Next, by Corollary 3, we getB+C−A ≥ 0. Now by Example 0.2
it follows thatA = Φ = 1

3
T1 ≤ C. This contradicts Corollary 3, since for(C − A) , λσ < µ2.
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Remark 5. The algebra norm‖·‖ on a non-unital Banach algebraJ can be extended to an
algebra norm on the unitizationJ+ = Ce+J, (wheree is the unit in the algebra) in many ways.
In particular, the following two norms,

l1 − norm= ‖(λ) e + a‖1 = |λ|+ ‖a‖
and the operator norm,

‖(λ) e + a‖OP = sup {‖(λ) b + ab‖ , ‖(λ) b + ba‖ ; b ∈ J, ‖b‖ ≤ 1} , λ ∈ C, a ∈ J

are the maximal and the minimal extensions of the original norm respectively, if it is a regular
norm, that is,

‖a‖ = sup {‖ab‖ , ‖ba‖ ; b ∈ J, ‖b‖ ≤ 1} ,

see [4]. The unitizationJ+ is complete under both‖·‖1 and‖·‖OP , so by the two norm lemma,
[2, II, 2.5] these two norms are equivalent. IfJ is aC∗-algebra,a ∈ J is self-adjoint, andλ is
complex, then‖(λ) e + a‖1 ≤ 3 ‖(λ) e + a‖OP . So far the constant3 is the best possible in this
case.

Recently, in [5], we extended the above result to locallym-convex algebras. Now we prove
the following corollary.
Corollary 6. If is a commutative non-unitalC∗-algebraA, B ∈ YSA with ‖A‖ = 1 = ‖B‖,
andλ is complex, then

‖(λI + Ψ)‖1 ≤ λ0 + 3 ‖Φ‖OP ,

whereλ0 > 0, Ψ = A + B, andΦ = AB.

Proof. Since
‖(λI + A + B)‖1 ≤ 3 ‖(λI + A + B)‖OP ,

we have
1

3
‖(λI + A + B)‖1 ≤ |λ|+ ‖(A + B)‖OP =⇒ ‖(λI + Ψ)‖1 ≤ λ0 + 3 ‖Φ‖OP ,

whereλ0 = 3 (|λ|+ 1) > 0. This concludes the proof of the corollary. �

Remark 7. ‖(λi + Ψ)‖OP ≤ λ0

3
+ ‖Φ‖OP .
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