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Abstract

The problem addressed is the exact determination of the norms of the classical
Hilbert, Copson and averaging operators on weighted ¢, spaces and the corre-
sponding Lorentz sequence spaces d(w, p), with the power weighting sequence

w, = n~® or the variant defined by w; + --- + w, = n'~®. Exact values are
found in each case except for the averaging operator with w,, = n=%, for which Norms of certain operators on
estimates deriving from various different methods are obtained and compared. weighted £, spaces and Lorentz

sequence spaces

G.J.0. Jameson and
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In [13], the first author determined the norms and so-called “lower bounds"
of the Hilbert, Copson and averaging operators/gm) and on the Lorentz
sequence spacEw, 1), with the power weighting sequenag, = 1/n“ or the
closely related sequence (equally natural in the context of Lorentz spaces) given
by W,, = n'=®, whereW,, = w; +- - -+w,. In the present paper, we address the
problem of finding the norms of these operators in the gasel. The problem

Norms of certain operators on

of lower bounds was considered in a companion pap4gr [ weighted ¢, spaces and Lorentz
The classical inequalities of Hilbert, Copson and Hardy describe the norms B E
of these operators ofj, (wherep > 1). Solutions to our problem need to G.J.0. Jameson and

reproduce these inequalities when we take= 1, and the results ofl[] when R. Lashkaripour

we takep = 1. The methods used for the case- 1 no longer apply. The norms
of these operators at{w, p) are determined by their action decreasingnon- Title Page
negative sequences ip(w): we denote this quantity bg, ,,. In most cases,

it turns out to coincide with the norm afy(w) itself. In the context of,(w), Contents
we also consider the increasing weight = n®, although such weights do not 44 >
generate a Lorentz sequence space. This case cannot always be treated together < >
with 1/n®, because of the reversal of some inequalities at 0.

Our two special choices af are alternative analogues of the weighting func- Go Back
tion 1/z* in the continuous case. The solutions of the continuous analogues of Close
our problems are well known and quite simple to establish. Best-constant esti- Quit

mations are notoriously harder for the discrete case, essentially because discrete
sums may be greater or less than their approximating integrals. Page 3 of 38

There is an extensive literature on boundedness of various classes of opera-
tors on/,, spaces, with or without weights. Less attention has been given to the 2 ineq Pure and Appl. Math. 31) Art. 6, 2002
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exact evaluation of norms. Our study aims to do this for the most “natural" op-
erators and weights: as we shall see, the problem is already quite hard enough
for these specific cases without attempting anything more general. Indeed, we
fail to reach an exact solution in one important case. Problems involving two
indicesp, g, or two weights, lead rapidly to intractable supremum evaluations.
Though we do formulate some estimates applying to general weights, our main
objective is not to present new results of a general nature. Rather, given the
wealth of known results and methods, the task is to identify the ones that lead Norms of certain operators on
to a solution, or at least a sharp estimate, for the problems under considera- “elghted ¢, spaces and Lorentz

. . . . R . i seqguence spaces
tion. Any particular theorem can be effective in one context and ineffective in

G.J.0. Jameson and
another. R. Lashkaripour

For the Hilbert operatofi, the “Schur" method can be adapted to show that

the value from the continuous case is reproduced: for either choiee o
have Title Page

m
H|,,=24A,.,H)=— .
[ ||, paw(H) sin[(1 — a)7/p] Contents
The Copson operataf’ and the averaging operater are triangular instead 4« dd
of symmetric, and other methods are needed to deliver the right constant even < >
whenw, = 1. A better starting point is Bennett’'s systematic set of theorems o )
o0 Bac

on “factorable" triangular matricegl[5, 6]. For C', one such theorem can be
applied to show that (for general), ||C|,., < psup,,»;(W,/nw,), and hence Close
that ||C|lp. = A,0(C) = p/(1 — a) for both our decreasing weights (repro-

ducing the value in the continuous case). ol

For the averaging operatd, a similar method gives the valyg(p — 1 — a) Page 4 of 38
(reproducing the continuous case) for thereasingweightn® (wherea < p—
1). ForW, = n'~*, classical methods can be adapted to showMat(A) = ¥ fneq. Pure and Appl. Math. S(1) At 6, 2002
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p/(p— 1+ «), suggesting that this weight is the “right" analogud 6 in this
context (though we do not know whethigd||, ., has the same value). How-
ever, forw, = 1/n%, the problem is much more difficult. A simple example
shows that the above value is not correct. We can only identify and compare
the estimates deriving from the various theorems and methods available; differ-

ent estimates are sharper in different cases. The best estimate provided by the

factorable-matrix theorems ig (p + «), and we show that this can be replaced
by the scale of estimates((r + «)]"/? for1 < r < p. The case = 1 occurs

Norms of certain operators on

as a point on another scale of estimates derived by the Schur method. A precise"e'9nted ¢ spaces and Lorentz

solution would have to reproduce the known valpehena = 0 and{(1+ «)
whenp = 1: it seems unlikely that it can be expressed by a single reasonably
simple formula in terms gb anda.

sequence spaces
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Letw = (w,) be a sequence of positive numbers. We wiite= w; +- - - +w,
(and similarly for sequences denoted(by,), (v,), etc.). Letp > 1. By £,(w)
we mean the space of sequences (z,,) with

oo
Sy = Z Wy |, |P
n=1

convergent, with norm{z|,.., = Sp’*. Whenw, = 1 for all n, we denote the
norm by||. ||,

Now suppose thatw,,) is decreasinglim,, .., w, = 0 and) >~ w, is di-
vergent. The Lorentz sequence spége, p) is then defined as follows. Given a
null sequence = (x,), let (z) be the decreasing rearrangement:qf. Then
d(w,p) is the space of null sequencedor which z* is in £,(w), with norm
1) = 112 .

We denote by, the sequence having 1 in placeand O elsewhere.

Let A be the operator defined by« = y, wherey; = 2‘;‘;1 a; ;xj. \We write
|A|l, for the norm ofA as an operator ofi,, and||A||, ..., for its norm as an
operator fronv,(w) to ¢,(v) (or just| A||,., whenv = w). This norm equates
to the norm of another operator épitself: by substitution, one hagA||, .., =
|B]|, , whereB is the operator with matrik; ; = v;""a; juw; /"

We assume throughout that, > 0 for all ¢, j, which implies in each case
that the norm is determined by the actiondbn non-negative sequences. Next,

we establish conditions, adequate for the operators considered below, ensur-

J. Ineq. Pure and Appl. Math. 3(1) Art. 6, 2002

ing that|| A4 p) is determined bylecreasingnon-negative sequences (more

Norms of certain operators on
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general conditions are given in{, Theorem 2]). Denote by,(w) the set of
decreasing, non-negative sequences i), and define

Apw(A) = sup{[|Az|lpw - © € dp(w) : l2flpw = 1}-
Lemma 2.1. Suppose thatw,,) is decreasing, that; ; > 0 for all ¢,j, and A
mapsd,(w) into £,(w). Writec,, ; = > a; ;. Suppose further that:
(i) lim;_.a;; = 0foreachi;
and either  (ii) a,; decreases with j for each |,
or (iii) a,;; decreases withifor each jang, ; decreases with |
for eachm.

Then ||A(z*)[lawp)y = |A(@)]|4wp) fOr non-negative elements of d(w,p).
Hencel|Al|gwp) = Apw(A)-

Proof. Lety = Az andz = Ax*. As before, writeX; = z; + --- + z;, etc.
First, assume condition (ii). By Abel summation and (ii), we have

E :aw% E (i — aij1) X5,
7j=1

and similarly forz; with X7 replacingX;. SinceX; < X7 for all j, we have
y; < z; for all 7, which implies that|y||aw.p) < [|2]|dw,p)-
Now assume (iii). Then,; andz; decrease with, and

o0

Y = Z Zaz jLj = Z Cm,j L5 = Z(Cm,j - Cm7j+1)Xj

i=1 j=1 = j=1

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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and similarly forZ,,. HenceY,, < Z,, for all m. By the majorization principle
(e.g. 3, 1.30]), this implies thad_;", ¥ < S, 2 for all m, and hence by
Abel summation thalfy|| swp) < |12 agw,p)- O

The evaluations in1[Z] are based on the property, special for= 1, that
| A1 ., is determined by the elements, and A, ,,(A) by the elements; +
---+e,. These statements fail when> 1 (with or without weights). Fof{ A]|,
this is very well known. For,, let A be the averaging operator dp. The
lower-bound estimation in Hardy’s inequality shows thgi(A) = p*, while
integral estimation shows thatif, = e; + - - - + ¢, then
1Azl

. * l/p
sup = (p )
U T, P

The “Schur" methodBY this (taking a slight historical liberty) we mean the
following technique. It can be used to give a straightforward solution of the

continuous analogues of all the problems considered herel (GfSections 9.2

and 9.3]). We state a slightly generalized form of the method for the discrete

case.

Lemma 2.2. Letp > 1 andp* = p/(p — 1). Let B be the operator with matrix
(b; ;), whereb,; ; > 0 for all 4, j. Suppose thats;), (¢;) are two sequences of
strictly positive numbers such that for sodig C.:

s bt <oy foralli, 67N bys P < ¢y forallj.
j=1

i=1

Then ||B|, < ¢/ C/7.

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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Proof. Let y; = Z;";l b; ;z;. By HOlder's inequality,

_ 1/p* ,—1/pp*~ 3.1/p, 1/pp*

i3 V7 .17])

NE

1

o 1/p 1/p
Z 7 j J—l/l)) (Z bz ]t]l/p p)
1/p
Oys 1/p) (Z b ]tl/p )
4% )

<.
Il

AN
/‘\

IN
—

SO
Z yp < Cm/p prtl/p Z bi,jsi_l/p* < Cf/p* C, Z x?.
=1 j=1

]

This result has usually been applied with= ¢, = j. As we will see, useful
consequences can be derived from other choices, af,.

Theorems on “factorable” triangular matrice3hese theorems appeared in
[4, 5, 6], formulated for the more general case of operators fépto ¢,. They
can be summarized as follows. In each case, operatdfsare defined by

(Sl’)z = Qa; Z bj[Ej, (TZL‘)Z = Q; ijl’j,
j=t 7j=1

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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whereq;, b; > 0 for all , 7. Note thatS' is upper-triangular]’ lower-triangular.

Forp > 1, we define

m o0 m (e.0)
_§ : P ~ _§ : P _§ : * 3 _§ : *
am_ aia am_ ai7 ﬁm_ b?a ﬁm_ bf
i=1 i=m j=1 j=m

Proposition 2.3. (“head” version).

(i) 1f 220 (bjay)P” < K" o, for all m (in particular, if b;a; < Kla§‘1 for
all j),then||S||, < pKj.

(i) If S5 (a:Bi)? < K7B,, for all m (in particular, if a;3; < K7 " for
all j), then|[|T'||, < p*K;.

Proposition 2.4. (“tail” version).

(i) If sz(ai@)l? < K%, for all m, (in particular, if aij < KQbf;*’l for
all 5), then ||S|, < p* K.

(i) 1f 3222, (biay)"" < K%, for all m, (in particular, if b;é; < Kya? ™'
for all j) then ||T||, < pKo.

Proposition 2.5. (“mixed” version).
(i) If cnl”Ba/"" < K forall m, then || S]], < pV/?(p*)"/*" K.

(ii) If Gnl”Bu”" < K for all m, then || T, < p'/?(p*)'/" K.

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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In each case, (ii) is equivalent to (i), by duality. PropositiGn3and?2.4
are [/, Theorem 2] and (with suitable substitutions) Theoren?’] (note: the
right-hand exponent in Bennett's formula (18) shouldbe- 1)/(r — s)). For
the reader’s convenience, we include here a direct proof of Propo&iti,
simplified from the more general theorem iij;[the proof of2.4(ii) is almost
the same.

Proof of Propositior2.3. (i) Note first the following fact, easily proved by Abel

summation: ifs;,: ¢; (1 < j < N) are real numbers such that’™ , s; <
Sitjforl < m < N,andup > ... > uy > 0, then 37 sju; <
N
Zj:l tu;.
It is enough to consider finite sums withj < N, and to taker; > 0. Let
y = Sxz. Write R; = ZL bjz;, so thaty, = a;R;. By Abel summation,

N N N-1
i=1 =1 1=1

By the mean-value theoreny? — 2? < p(y — x)y?~! for anyz,y > 0. Since
R; — R/L'Jrl = bx; for 1 <i<N-—-1,we have

Rf - R?—Q—l S pbzszffl
for suchi. Also, RY, < pbyzyRE Y, sinceRy = byay. Hence

N Up , N 1/p*
D WS aibwR <p (Z xf) (Z(bm)p* Rf>

=1

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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(note thatp*(p — 1) = p). By the “fact” noted above and our hypothesis (or
directly from the alternative hypothesis),

N N N
D (b} RY S KT D aPRY = KD i
= i=1 i=1

Together, these inequalities givg/||, < pK||x|],. .

Proposition2.5 is [6, Theorem 9]; with standard substitutions, it is also a Norms of certain operators on
special case ofl| Theorems 4.1 and 4.2]. The corresponding result for the  "9MeZ % SPecce &rc torentz
continuous case was given ind.

We shall be particularly concerned with two choicesugfdefined respec-
tively by w,, = 1/n“ (for a > 0) and byW,, = n' =@ (for 0 < a < 1). Note that
in the second case,

G.J.0. Jameson and
R. Lashkaripour

n o Title Page
— — — o
w, =n'"" — (n— 1)1 = / ta dt, Contents
n—1
and hence « dd
11—« l1—«a
<wp, < — . < >
ne (n— 1)
Several of our estimations will be expressed in terms of the zeta function. It Go Back
will be helpful to recall that((1 + a) = 1/a + r(a) for a > 0, where 1 < Close
r(o) < 1andr(a) — v (Euler's constant) as — 0. Also, for the evaluation Quit

of various suprema that arise, we will need the following lemmas.

Lemma 2.6.[9, Proposition 3]. Let4,, = > 7, j. ThenA, /n'* decreases Page 12 of 38

with n if « > 0, and increases ift < 0. If « > —1, ittends tol/(1 + «) as
J. Ineq. Pure and Appl. Math. 3(1) Art. 6, 2002
n — oo. http://jipam.vu.edu.au
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Lemma 2.7.[8, Remark 4.10] (without proof),1[3, Proposition 6]. Leto > 0
and letC, = >"° 1/k'**. Thenn®C, decreases with, and (n — 1)*C,
increases.

Lemma 2.8. [ 7, Lemma 8], more simply ir] Proposition 1]. The expression

n

1 (03
n(n+ 1)@ Zk

k=1

increases withh whena > 1 or o < 0, and decreases withif 0 < o < 1.

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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We consider the Hilbert operatéf, with matrixa; ; = 1/(i + j). This satisfies
conditions (i) and (ii) of Lemm&.1. Hilbert’s classical inequality states that
|H||, = m/sin(n/p) for p > 1. For the case = 1, with either of our choices
of w, itwas shown in{] that || H||,., = A1w(H) = 7/ sinar.

For the analogous operator in the continuous case, #(th) = 1/x%, itis
quite easily shown by the Schur method thét|, ., = =/sin[(1 — a)7/p].

Norms of certain operators on

We show that the method adapts to the discrete case, giving this value again for weighted ¢, spaces and Lorentz

either of our choices ofv. This is straightforward fotv,, = 1/n®, but rather

more delicate fofV,, = n'=°.

Let0 < a < 1. As with most studies of the Hilbert operator, we use the

well-known integral

/°° 1 s
dt = — .
o tt+c) c®sin aw

noq
gn(a) = / t_a dt.
n—1

Lemma 3.1. With this notation, we have for eagh> 1,

Write

Note thatg, (a) > 1/n".

D o ) B
— (i + 7) —~i+j ~ j*sinam

sequence spaces

G.J.0. Jameson and
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Proof. Clearly,

; 1 1 ‘ 1
gia) _ _ / —dtg/ —
t+gy vty )i t? i te(t+ )

The statement follows, by the integral quoted above. O

Now let0 < a < 1. Writev,, = g,(«) andv, = (1 — «)v,,. In our previous
terminology,«’ is our “second choice ofs". Clearly, an operator will have
the same norm od(v’, p) and ond(v, p). Note that by Holder’s inequality for
integrals,! < g,(ar) forr > 1.

Theorem 3.2.Let H be the operator with matrix; ; = 1/(i+5), and letp > 1.
Letw, =n"% wherel —p < a < 1. Then

sin[(1 — o) /p]

f0 <a<1landv, = [" t*dt, then|H|,,andA,,(H) also have the
value stated.

||H||p,w = Ap,w(H) =

Proof. Write M = 7/sin[(1 — o) /p]. Letw,, = n~, wherel —p < a < 1.
Now ||H ||,., = || B]|,, whereB has matrixb; ; = (j/i)*/?/(i + j). In Lemma
2.2, takes; = t; = i, and letC';, C, be defined as before. Then

T (z‘)“—‘”“)
4,555 tj =\ .
t+7 \J

By Lemma3.1, it follows thatC; < M. Similarly, Cy < M.

Norms of certain operators on
weighted ¢, spaces and Lorentz
sequence spaces
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for all z. Note that || H||,.u. = || B]

Now let0 < o < 1, and letv,w be as stated. We show in fact that
| H||pwo < M. It then follows that|H|,, < M, since||z|,w < [|z|pw
»» Where now

1

bi': (5 1/p.
J Z+j(] i)

Takes; = v[l/"‘ andt; = j. Then

1 oa— Q
bij(si/t;)!? = m(] vp) e,

By Lemma3.],

(a=1)

Z J : ./p < jle=D/ppr
Pl +J

Sincei~! < v/*, we havei@1/? < 4{'=/*? and henceC; < M.
Also,

where

b i(t;/s; 1/p*:. (7% t’
J(]/) Z+j(] )
1 1
t=—-+ )
p ap*

Note thatt > 1, so as remarked above, we haye< g;(at). By Lemma3.1
again,

= gi(at) _M
Z — at’
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where M’ = r/sin aitr. Now

o 1 11—«
at=—+—=1- ,
p D p

so thatM’ = M, and henc&’, < M. The statement follows.

To show thatA, ,(H) > M, taker = (1 — «)/p, so thato + rp = 1. Fix
N, and let

e . Norms of certain operators on
€T = 1/j for J < N’ weighted ¢, spaces and Lorentz
J 0 fOI‘j > n. sequence spaces
Then(z;) is decreasing and¥>° , w;2? = -V 1. Lety = Hz. By routine ©.J.0. Jameson and
J J=1"J"3 j=13j" Yy ) R. Lashkaripour

methods (we omit the details), one finds that

N N :
1 Title Page
(1 P> MP - — g\r),
; Y = ; i g(r) Contents
whereg(r) is independent olN. Clearly, the required statement follows. Minor « dd
modifications give the same conclusion for O < >
Note A variantH, of the discrete Hilbert operator has mattiX(: + j — 1). Go Back

This is decidedly more difficult! Already in the cage= 1, the norms do

not coincide for our two weights, and it seems unlikely that there is a simple :

formula for || Ho||, .. see [.7]. QUi
Page 17 of 38
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The “Copson” operatof’ is defined byy = C'x, where y; = Z;’ii(xj/j). Itis
given by the transpose of the Cesaro matrix:

A 1/j fori<j
Wl o0 fori>g o

This matrix satisfies conditions (i) and (iii) of Lemr2al. Copson’s inequality Norms of certain operators on
[11, Theorem 331] states that’|, < p (Copson'’s original result![]] was in We‘ghtegeéﬁesr?f:z;::gsLOfe”tz
fact the reverse inequality for the cake: p < 1).

The corresponding operator in the continuous case is definéd py(z) = €20, Jameson and
) . . . . Lashkaripour
L. 1f(y)/y] dy. Whenw(z) = 1/z, itis quite easily shown, for example by
the Schur method, that, ,,(C) = ||C|lpw = p/(1 — ). _
For the discrete case, we will show that this value is correct for either de- Title Page
creasing choice af. However, the Schur method does not lead to the right con- Contents
stant in the discrete version of Copson’s inequality, and instead we use Propo-

sition 2.3, First we formulate a result for general weights. Theegularity « dd
constantof a sequencew,) is defined to ber; (w) = sup,,»; W,/ (nw,). < 4
Theorem 4.1. Suppose thatw,,) is 1-regular andp > 1. Then the Copson Go Back
operatorC' mapsd(w, p) into itself , and ||C||,.., < pri(w). Close
Proof. We have||C||,. = [|S||,, whereS is as in Propositior2.3, with a; = Quit

1/p L . 1/p i iti =
w,;"" andb; = 1/(jw;’"). In the notation of Propositiod.3, a,,, = W, SO Page 18 of 38
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Sincep/p* = p — 1, the simpler hypothesis of Propositi@n3(i) holds with
K1 =T (w) ]

Note The same reasoning shows thit'||, .., < pK;, whereK is such
that V,, < Klnw}/pv}/p* for all n.

An example in 5, Section 2.3] shows thaiC||, ., is not necessarily equal
to pri (w). However, equality does hold for our special choices of decreasing
as we now show.

Theorem 4.2.Let C be the Copson operator. Suppose that 1 and thatw is
defined either byv,, = 1/n® or by W,, = n'=*, where0 < a < 1. Then

p

Bp(C) = [Cllpaw = 12—

Proof. We show first that in either case,(w) = 1/(1 — «), so that||C/||,. <

p/(1—«). First, considetv,, = 1/n®. By comparison with the integrals of¢*
on[1,n] and[0, n], we have

1 -«

(n )< T 1l-«

J— ’

from which the required statement follows easily. Now consider theldgse
n'~%. Thennw, /W, = n®w,. By the inequalities fotv,, mentioned in Section
2,

nOé

(n— 1)’
from which it is clear that agaim; (w) = 1/(1 — «).

l—a<nw, <(1-a)
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We now show that\, ,(C') > 1 — a. Choose:s > 0 and definer by a +
rp = 1+ e¢. Letz, = 1/n" for all n; note that(zx,,) is decreasing. Then
n~%k = 1/n*t"? = 1/n'*, soz is in £,(w) for either choice ofw,) (note
that for the second choice;,, < ¢/n“ for a constant). Also, again by integral

estimation,
=1 1 T,
n = > = -_—
Y ; kitr = ppr r
for all n, so .
p
w > —xlpw = ——— 12|l pao-
Wl 2l = 37— llzl,
The statement follows. O]

Theorem4.1 has a very simple consequence iftcreasingweights:

Proposition 4.3. Let (w,,) be any increasing weight sequence. THEH||,, ., <
p-

Proof. If (w,) isincreasing, thei,, < nw,, with equality whem = 1. Hence
ri(w) = 1. O

Clearly,A, .,(C) > 1, sinceC(e;) = e;. For the casev,, = n*, the method
of Theorem¥.2shows that alsa\, ,,(C') > p/(1+«). A simple example shows
thatA, ,(C) can be greater than both 1 apd1 + «).

Example4.1 Letp = 2 anda = 1, so thatp/(1 + o) = 1. Takez =
(4,2,0,0,...). Theny = (5,1,0,0,...), and| z||3,, = 24, while ||y||3 , = 27.
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We leave further investigation of this case to another study; it is analogous
to the problem of the averaging operator with = 1/n*, considered in more
detail below.
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Henceforth,A will mean the averaging operator, defined py= Az, where
Yn = (21 + -+ + x,). Itis given by the Cesaro matrix

[ 1)i forj<i
Y10 forj >’ Norms of certain operators on

weighted ¢, spaces and Lorentz
sequence spaces

which satisfies conditions (i) and (ii) of Lemn#al In this section, we give
some results for general weighting sequences. We consider upper estimates G.J.0. Jameson and
first. Hardy’s inequality states thdt||, = p* for p > 1. Itis easy to deduce R. Lashkaripour

that the same upper estimate applies for any decreasing

" . : . Title P
Proposition 5.1. If (w,) is any decreasing, non-negative sequence, then elad e
| Allpw < p* Contents
Proof. Let « be a non-negative element f(w), and letu; = w;/pxj. Then N L
|ull, = ||*]|p., @and sinc€w;) is decreasing, < 4
n y Go Back
1/p P _
w,/ P X, < ij x; =Up, Close
j=1
Quit

(where, as usualy,, meansr; + - -- + x,,). Hence
Page 22 of 38
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< (p")"> _ul by Hardy's inequality
n=1

= ()Nl

]

The next result records the estimates for the averaging operator derived from

Propositiong2.3, 2.4 and2.5. Instead of the fully general statements, we give
simpler forms pertinent to our objectives. Hok r < p, define

o0 . rflUm
Un(r) = ﬁ, V(r) = sup m_Zml) (T)
j=m ]r m>1 Wm
Proposition 5.2. Let A be the averaging operator and let> 1. Then:
() [|Allp < p*K1, where S0 wi ™ < Kymuwl?" for all m;

(i) [[Allpw <pV(p);
(iii) if (w,) is decreasing, theflA|,,., < p'/?(p*)Y/?"V (p)/.

Proof. Recall thatl|A||,., = ||T||,, whereT is as in Propositio2.3, with a;, =
w)’? /i andb; = wj_l/p. With notation as before, we have, = 3~ . w;/j” =
Un(p) andB,, = >0, wj_”*/p. Noting thatp*/p = p* — 1, one checks easily
that Proposition®.3(ii) and 2.4(ii) (with the simpler, alternative hypotheses)
translate into (i) and (ii).

For (iii), note that if (w,) is decreasing, thens,, < mw,? P, Hence
G B0~ < mP~1U,, (p) /wim, SO the condition of Propositioh Kiii) is satisfied
with K3 = V(p)'/?. O
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For decreasingw,,), (i) will give an estimate no less thari, hence no ad-
vance on Propositioh.1 (one need only take: = 1 to see thatk; is at least
1). Also, (iii) adds nothing to (ii), since

PV (p)]2(p*)V?P" > min[pV (p), p*].

In the specific case we consider below, the supremum defin{pgis attained
atm = 1. In such a case, nothing is lost by the inequality used in (iii)dgr
Furthermore, nothing would be gained by using the more generdaheorem
4.1] instead of PropositioR.5.

Another result relating to ouv’(p) is [12, Corollary of Theorem 3.4] (re-
peated, with an extra condition removed, iy Corollary 4.3]). The quantity
considered isC' = sup,,~, n*U,(p)/W,. Again, in our case(' coincides with
V(p). Itis shown in [L7] that if C is finite, then so is\, ,,(A4), without giving
an explicit relationship.

The next theorem improves on the estimate in (ii) by exhibiting it as one
point in a scale of estimates. We are not aware that it is a case of any known
result.

Theorem 5.3. Suppose that < r < pand)_ ~ w,/n" is convergent. Define
V(r) as above. ThefA||,., < [rV (r)]"/?.

Proof. Write U,(r) = U, andV(r) = V. Letz, = 2%/ and (as usual)
Zn =2+ -+ + z,. By Hblder’s inequality,

X, < nl—r/er?;/zD7
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henceX? < nP~"Z". If y = Az, theny, = X,,/n, soy < n~"Z". For anyN,
we have

N w N
> = > (Un=Uni1)Z
n=1 n=1
N
= U2~ 2, )~ UniZ
n—1 Norms of certain operators on
N weighted ¢, spaces and Lorentz
sequence spaces
<r Z UnznZ;‘1 by the mean-value theorem
1 G.J.0. Jameson and

R. Lashkaripour

<rv Z —"z,Z" by the definition oft’

Title Page
N Y N e Contents
< V(D waz, > ngr by Hélder’s inequality
= =t ! <« 33
Since 2 = 22, it follows that (for all \') < >
Go Back
Z wpyh < Z (rv)" Z Wk, Close
Quit
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1Al < V(1)'/7, in which

1 X w,
V(1) = sup — 4
m>1 Wm j=m ]

Among the above results (including the Schur method) only Proposition
5.2(i) delivers the right constant* in Hardy’s original inequality. Another
method that does so is the classical one’df [Theorem 326]. The next re-

Norms of certain operators on

sult shows what is obtained by adapting this method to the weighted case. Note Weighted £, spaces and Lorentz

that it applies ta\,, ,,(A), not || Al[, .-
Theorem 5.4.Letp > 1, and let

NWnp41
C=5Sup —/—
nzlzl) Wn
Assume that < p. Then
Apu(4) < —F

p—c
Proof. Let z = (z,,) be a decreasing, non-negative element,¢fv), and let
y = Az. Fix a positive integeV. By Abel summation,

N N
D wagh =Y Wi (Yoo, — ) + Wik

n=1 n=2

By the mean-value theoremy? | — v > py? ' (y,_1 — yn). Also, forn > 2,

LTp = NYn — (TL - 1)yn—1 =Yn — (n - 1)(yn—1 - yn)a

sequence spaces
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SO

Yn—1 —Yn = n— 1(yn - xn)
Hence
N N
Z wnyg Z p Z Wn71y£71<yn71 - yn>
n=1 n=2

Norms of certain operators on
weighted ¢, spaces and Lorentz

n 1 1
— P _
- pE : x"> sequence spaces

G.J.0. Jameson and

Now since(z,) is decreasingy,, > z, for all n. Also,y; = z;. Sincew, < e L e

cW,-1/(n — 1), we deduce that

N ) N ) N Title Page
P > L P Ny, — 1) = & WP Wy, — T Contents
;wyn_cgwyn (Yn — ) C;wyn (Un — ),
- B B 44 44
so that

N N 4 4

P—0) Y wayh <p Y wnyh . ColEa

Close

A standard application of Holder’s inequality to the right-hand side finishes the

proof. H Quit
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Proposition 5.5. We have

[e.9]

1 1/p
Wn
Apw(A) 2 (w—l E ﬁ) :

n=1

Proof. Takex = e;. Theny, = 1/n for all n, so the statement follows. (In
particular, the stated series must converge in orde#fer) to be inf,(w).) O

. ) i Norms of certain operators on
Secondly, we formulate the lower estimate derived by the classical method weighted ¢, spaces and Lorentz

of consideringr,, = n~* for a suitables. sequence spaces

G.J.0. Jameson and

Lemma 5.6. Suppose that,,, b, are non-negative numbers such that ™, a, R. Lashkaripour
is divergent andim,, ., b, = 0. Then

N .
nbn Title Page
E+a —0 asN — 0.
anl Qn Contents
Proof. Elementary. ] 44 >»
Theorem 5.7. Let A be the averaging operator and jet> 1. Let(w,,) be any < 4
positive sequence, and lgk p be suchthad >~  w, /n?is divergent. Then S0 Bl
Ay p(A) > p . Close
p—q Quit
Proof. Write p/(p — q) = r, so thatl/r = 1 — ¢/p. Fix N, and let Page 28 of 38
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Then
(5.1) 3wt =35

Also, forn < N,

so that
> —(1- n‘l/r).

Since(1 —¢)» > 1 —ptfor0 <t < 1, we have
rP
P> (1 —pn Ur
Y 2 (L =pn™77),

and hence

w
D p_" D n
(52) wnyn Z r nd pr nq+1/r (2)

Takees > 0. By (5.1) and 6.2), together with Lemm&.6 (with a,, = w,,/n?
andb, = n~/"), itis clear that for all large enougN,

N 00
Z wpyt > (1 —e)r? anxﬁ
n=1 n=1
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Corollary 5.8. If Y>>, w,/n is divergent (in particular, ifw,,) is increasing),
thenA, ,(A4) > p*.

Remarks on the relation betwegH||,, , and A, ,,(A). If (w,,) isincreasing

then|| A, = Apw(A), forif z* = (z) is the decreasing rearrangement of

z, then it is easily seen thd{t:*||, ., < ||z|yw, While ||[Az*||,., > [|AZ||pw-

The following example shows that this is not true figcreasingweights in

general (though it may possibly be true fioin®), and indeed that the estimate

in Theorem5.4 does not apply tdA||,..-

Example5.1 Let E; = {i: k! <i < (k+ 1)!}, and letw; = 1/(k!k) fori €
Ey. Then ), p w; =1 and, by integral estimation,, , (1/i) > log(k+1).
Now fix k£, and choose close enough td to have >, . i7" > log k. Write
| || for || ||p.w- Taken = kL. Then |le,||? = w, = 1/(k!k), while

» w; log k
’LEEk
Hence [|A|2,, > logk. We show thatnw,.,/W, < % for all n, so that
A, w(A) < 3, by Theorenb .4 If £ > 3 andn € Ej, thenW,, > k — 1, so

nwn+1<(/€+1)! 1 k+1
W, = Kk k-1 kE-1

2
< -
-3

The required inequality is easily checked fom E; and Es.
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We now explore the extent to which the results of Secti@olve the problem

for our chosen weighting sequences. The analogous operator in the continuous

case is given byAf)(z) = 1 [ f. Whenw(z) = 2™, one can show by the

Tz

Schur method (or as in [/, Theorem 1.9.16]) that
[Allpw = Bpw(A) = p/(p— 1+ a).
In the discrete case, when= 1, it was shown in [ ] that:

(i) if w, = 1/n% then||Al|1, = A1u(A) = (1 + ),
(ii) if W, =n'~ thenA ,(A) =1/
As suggested by (i) and Hardy’s inequality, the continuous case is repro-
duced wheWv,, = n'~:

Theorem 6.1. Let A be the averaging operator and let> 1. Let (w,) be
defined byV,, = n'=*, where0 < a < 1. Then

p
Ay (A = ———.
palA) = ——
Proof. Recall that
Wop1 < —— < wy,.
na
Hence
NWnp41 a
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forn > 1, so Theorend.4 applies withc = 1 — «. Also, Theorenb.7 applies
with ¢ = 1 — «a. The stated equality follows. ]

We do not know whethgfA||, ., has the same value; howevey, ,,(A) is of
more interest for this choice af, since it is motivated by Lorentz spaces.

For the increasing weight,, = n®, our problem is solved by the method of
Propositior2.3(which, it will be recalled, was effective for the Copson operator

with decreasingveights).

Theorem 6.2. Letw, = n®, where0 < a < p — 1. Then

_r

p—1—a’

Proof. By Theorenb.7, we have), ,,(A) > p/(p—1—a). We use Proposition
5.2(i) to prove the reverse inequality. The condition is

[Allp.w = Apw(A) =

m

1 m
Z; [ -
‘7:

Note thata(p* — 1) = a/(p—1) < 1. By Lemma2.6, the condition is satisfied
with

l—alp*—1) p—-1—-«
So [[Allpw <p K1 =p/(p—1—a). O

Note Fora < 1, this result also follows from Theoref4 and LemmeR.8,

We now come to the hard case, = 1/n*. The trivial lower estimate 5.5
is enough to show thak, ,,(A) can be greater thas (p — 1 + «). Indeed, we
have at once from Propositién5and Theorens.7:
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Proposition 6.3. Letp > 1 andw,, = 1/n%, wherea > 0. ThenA,, ,,(A) >
max(my, msg), Where

p

T = Clpra)

myp =

Either lower estimate can be larger (even whenr< 1), as the following
table shows:

P o ma mo Norms of certain operators on
weighted ¢, spaces and Lorentz
121 851) 1 1818 1;13 seqﬁence sSpaces
. . . G.J.O. Jameson and
No improvement onn, is obtained by considering elements of the farm R. Lashkaripour
ore; + - - -+ e,. However, the next example shows tigt,,(A) can be greater
than bothm; andms.. Title Page
Example6.1 Letp = 2, a = 1. Thenm,; = 1 andm, = ¢(3)"/? ~ 1.096. Let =
9 1 ontents
r=(2,1,0,0,...). Theny; = 2andy, = 3/n forn > 2. Hence|z|3 , = 43,
while [|y|13 ,, = 4 4 9[¢(3) — 1] = 5.818, so0 thatl|y||2,u/||]|2,. =~ 1.137. 44 >»
(One could formulate another general lower estimate using this choice of < >
but it is too unpleasant to be worth stating explicitly.) p—
We now record the upper estimates derived from the various results above.
Of course, by Propositiof.1, we have||A||, ., < p*. Close
Proposition 6.4. Letp > 1, and letw,, = 1/n*, wherea > 0. Then Quit
Page 33 of 38
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Proof. We have

W, (n+1)az”: 1
k=1 ke

NWp 41 n

By Lemma2.8, this expression increases withso has its least valu when
n = 1. Hence Theorerb.4 applies withc = 27, O]

Proposition 6.5. Letp > 1 and1 < r < p, and letw,, = 1/n®, wherea > 0.
Then
| Allpa < Ma(r) =: [r¢(r + a)]"/?.

Proof. Apply Theoremb5.3. In the notation used there, we have

r—1 &
m" U (r) Y 1
rta”
W, =

By Lemmaz2.7, this expression decreases with so is greatest whem = 1,
with the value((r + «). O

Note that in particular,M(1) = ¢(1 4+ a)/? and Ms(p) = p((p + «). By
the remark after Propositidh2, min[M,(p),p*] < p*/?(p*)"? my < 2ma.

To optimize the estimate in Propositi@h5, we have to choose (in the
interval[1, p]) to minimize [r((r+«)]". Computations show that when> 0.4,
the least value occurs when= 1, while for o = 0.1, it occurs whemn ~ 1.35.

The Schur method provides another scale of estimates, as follows.
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Proposition 6.6. Let w,, = 1/n%, wherea > 0. Leta < r < p+ a.
Then || A||,.w < Ms(r), where

1/p* 1/p
D r «

M(r) = | ——— I+—+—) .
#(7) (p—r+a) C( D* p)

Proof. In Lemma2.2, takes; = t; = j7. We haveb, ; = a;b; for j < i, where
a; = i~*/P~t andb; = j*/P. So(C is the supremum (aisvaries) of

Norms of certain operators on
% 1 weighted ¢, spaces and Lorentz
Z'(T_a)/p_l Z sequence spaces
gr=a)/p

G.J.0. Jameson and
R. Lashkaripour

J=1

By Lemma2.6 (or trivially whenr = «),

Cy= ! = b . Title Page
=G —a)fp p-rta
Contents
Also, C5 is the supremum (agvaries) of
’ «“ >
= 1
a/ptr/p | >
J Z Z'1+a/p+r/p* ’
= Go Back
By Lemma2.7, this is greatest whep= 1, with value((1 + r/p* + a/p). O Close
Note that Ms(a) = My (1) = (1 + )'/?. HenceMs will always be at least Quit

as good as/, whena > 0.4.

The following table compares the estimates in some particular cases. We
denote byn the greater of the lower estimates, m,. Recall that\/; estimates
A,.(A). The values of used forM, (r) and Ms(r) are indicated. o ipamanetuan
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P« m  p* My Msy(r) M;(r)

1.1 0.1 55 11 6.587 6.151(1.1) 6.031 (0.98)
1.1 0.9 1.572 11 1.950 1.663 (1) 1.663 (0.9)
12 03 24 6 3.095 3.084(1.1) 2.886 (0.9)
2 05 1.333 2 1547 1.616 (1) 1593 (0.75)

Table 6.1: Numerical values of upper and lower estimates

In most, if not all cases)/; is a better estimate thav,, at the cost of being
more complicated. Both/, and /5 reproduce the correct valdé¢l + «) when
p = 1. On the other hand, both can be larger thann other cases. Some
product of the typel/;(1) would reproduce the valueg1l + «) whenp = 1
andp* whena = 0; the exponent would need to be of the fofitw, p), where
f(0,p) =1forp > 1andf(a,1)=0fora > 0.
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