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ABSTRACT. The problem addressed is the exact determination of the norms of the classical
Hilbert, Copson and averaging operators on weiglitespaces and the corresponding Lorentz
sequence spacesw, p), with the power weighting sequeneag, = n~< or the variant defined

by w, +---+w, = n'~. Exact values are found in each case except for the averaging operator
with w,, = n~%, for which estimates deriving from various different methods are obtained and
compared.
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1. INTRODUCTION

In [13], the first author determined the norms and so-called “lower bounds" of the Hilbert,
Copson and averaging operators/efw) and on the Lorentz sequence spd¢e, 1), with the
power weighting sequenae, = 1/n* or the closely related sequence (equally natural in the
context of Lorentz spaces) given by, = n'~<, whereW,, = w; + --- + w,. In the present
paper, we address the problem of finding the norms of these operators in the eakseThe
problem of lower bounds was considered in a companion paper [14].

The classical inequalities of Hilbert, Copson and Hardy describe the norms of these operators
on/, (wherep > 1). Solutions to our problem need to reproduce these inequalities when we
takew, = 1, and the results of [13] when we take= 1. The methods used for the case- 1
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2 G.J.O. AMESON AND R. LASHKARIPOUR

no longer apply. The norms of these operatorsion, p) are determined by their action on
decreasingnon-negative sequencesdy{w): we denote this quantity by, ,,. In most cases,

it turns out to coincide with the norm af)(w) itself. In the context of,,(w), we also consider

the increasing weighiw,, = n®, although such weights do not generate a Lorentz sequence
space. This case cannot always be treated togethen ith because of the reversal of some
inequalities atv = 0.

Our two special choices af are alternative analogues of the weighting functign® in the
continuous case. The solutions of the continuous analogues of our problems are well known and
guite simple to establish. Best-constant estimations are notoriously harder for the discrete case,
essentially because discrete sums may be greater or less than their approximating integrals.

There is an extensive literature on boundedness of various classes of operdipspaces,
with or without weights. Less attention has been given to the exact evaluation of norms. Our
study aims to do this for the most “natural” operators and weights: as we shall see, the problem
is already quite hard enough for these specific cases without attempting anything more general.
Indeed, we fail to reach an exact solution in one important case. Problems involving two indices
p, q, or two weights, lead rapidly to intractable supremum evaluations. Though we do formulate
some estimates applying to general weights, our main objective is not to present new results of a
general nature. Rather, given the wealth of known results and methods, the task is to identify the
ones that lead to a solution, or at least a sharp estimate, for the problems under consideration.
Any particular theorem can be effective in one context and ineffective in another.

For the Hilbert operatofi, the “Schur" method can be adapted to show that the value from
the continuous case is reproduced: for either choice,afe have

sinl(1— a)r/p]’

The Copson operatd@r' and the averaging operatdrare triangular instead of symmetric, and
other methods are needed to deliver the right constant evenahenl. A better starting point
is Bennett's systematic set of theorems on “factorable” triangular matrices [4, 5, &]., leoe
such theorem can be applied to show that (for geneyal|C||, ., < psup,~,(W,/nw,), and
hence that|/C||,.., = A,.,(C) = p/(1 — «) for both our decreasing weights (reproducing the
value in the continuous case).

For the averaging operatat, a similar method gives the valyg(p — 1 — «) (reproducing
the continuous case) for thecreasingweightn® (wherea < p —1). ForW,, = n'=¢, classical
methods can be adapted to show that,(A) = p/(p—1+«), suggesting that this weight is the
“right" analogue ofl /2 in this context (though we do not know whetht||,, ., has the same
value). However, foiw,, = 1/n?, the problem is much more difficult. A simple example shows
that the above value is not correct. We can only identify and compare the estimates deriving
from the various theorems and methods available; different estimates are sharper in different
cases. The best estimate provided by the factorable-matrix theoregip is «), and we show
that this can be replaced by the scale of estimatgs + «)]"/? for 1 < r < p. The case = 1
occurs as a point on another scale of estimates derived by the Schur method. A precise solution
would have to reproduce the known valygsvhena = 0 and((1 + «) whenp = 1: it seems
unlikely that it can be expressed by a single reasonably simple formula in tegrendi..

HHHp,w = Ap,w(H) =

2. PRELIMINARIES

Let w = (w,) be a sequence of positive numbers. We whitg = w; + --- + w,, (and
similarly for sequences denoted by, ), (), etc.). Letp > 1. By ¢,(w) we mean the space of
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OPERATORS ON WEIGHTEDY;, SPACES 3

sequences = (z,) with
Sy = Z Wy |z, [P
n=1

convergent, with nornjjz||, ., = Sy/". Whenuw,, = 1 for all n, we denote the norm by |-

Now suppose thafw,) is decreasinglim,, ...w, = 0 and)_~ w, is divergent. The
Lorentz sequence spacdéw, p) is then defined as follows. Given a null sequence (z,,), let
(x) be the decreasing rearrangementqf. Thend(w, p) is the space of null sequencesor
which z* is in £, (w), with norm||z|| 4w p) = [|2*||p.w-

We denote by, the sequence having 1 in placeand 0 elsewhere.

Let A be the operator defined byr = y, wherey; = 3%, a; jz;. We write || Al|, for
the norm ofA as an operator ofi,, and || A||,..., for its norm as an operator froi)(w) to
¢, (v) (or just||All,.. Whenv = w). This norm equates to the norm of another operator on

¢, itself: by substitution, one haA|,.... = ||Bl|, » whereB is the operator with matrix
bi,j — U;/paidw;l/p-

We assume throughout that; > 0 for all 4, j, which implies in each case that the norm is
determined by the action of on non-negative sequences. Next, we establish conditions, ade-
quate for the operators considered below, ensuring|thé}., ,) is determined bylecreasing
non-negative sequences (more general conditions are givenlin [13, Theorem 2]). Denote by
d,(w) the set of decreasing, non-negative sequencégir), and define

Apw(A) = sup{[|Az|pw : @ € dp(w) : ||2[|pw = 1}

Lemma 2.1. Suppose thatw,,) is decreasing, that, ; > 0 for all 7,j, and A mapsd,(w) into
ly(w). Writec,,, ; = >0 | a; ;. Suppose further that:

=1
() lim; .. a,;; = 0foreachi;
and either (ii) «,;; decreases with j for each i,
or (iii) a,; decreases with ifor each jang, ; decreases with j for each m.

Then||A(z*) || aqw,p) = || A(2)]dww,p) for non-negative elemenisof d(w, p). Hence|| A|| uwp) =
Ay w(A).

Proof. Lety = Az andz = Az*. As before, writeX; = x; + --- + z;, etc. First, assume
condition (ii). By Abel summation and (ii), we have
Yi = Z @i jlj = Z(ai,j — aij+1)Xj,
j=1 j=1
and similarly forz; with X7 replacingX;. SinceX; < X~ for all j, we havey; < z; for all ¢,
which implies that|y/|| aw,p) < |12l aw,p)-
Now assume (iii). Then, andz; decrease with, and
m o0 o0 [0.9]
Yoo = > ) iz =Y eyt = > (Cmj— Cmjr1)X;

i=1 j=1 j=1 j=1
and similarly for~Z,,. HenceY,, < Z,, for all m. By the majorization principle (e.g..[3,
1.30]), this implies thad """ v/ < >, 2P for all m, and hence by Abel summation that
[Yllaqwp) < 12 llaqw.p- U

The evaluations in [13] are based on the property, specialfoi, that||A||; ,, is determined
by the elements,,, andA, ,,(A) by the elements, +- - - +e,,. These statements fail when> 1
(with or without weights). Foi|A||, this is very well known. For\,, let A be the averaging
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4 G.J.O. AMESON AND R. LASHKARIPOUR

operator or?,. The lower-bound estimation in Hardy’s inequality shows thgtA) = p*,
while integral estimation shows thatif, = e¢; + - - - + ¢, then

||Awn||l7 _ (*\1/p
W e,
The “Schur" methodBY this (taking a slight historical liberty) we mean the following tech-
nique. It can be used to give a straightforward solution of the continuous analogues of all the
problems considered here (df. [11, Sections 9.2 and 9.3]). We state a slightly generalized form
of the method for the discrete case.

Lemma 2.2. Letp > 1 andp* = p/(p — 1). Let B be the operator with matrixb; ;), where

b;; > 0forall i, j. Suppose thats;), (¢;) are two sequences of strictly positive numbers such
that for some’;, Cj:

sy bt <oy foralli, 67N bys P < ¢y forallj.
=1 =1
Then||B||, < C{/" C)/*.
Proof. Lety; = Z;“;l b; ;x;. By Holder’s inequality,

— PP 1/py1/
Y = Z pt pp* b”pt] pp* ij)

0 / 1/77
< (Z y J—l/p> (Z b: thl/p p)
. 1/p
( —1/p> (Z bwtjl/” p> ’

IN

SO
ny < Cp/p prtl/p Zbi,jsi—l/p*
=1
< Of/p*cgzxf;.

O

This result has usually been applied with= ¢; = 5. As we will see, useful consequences
can be derived from other choices9f ;.

Theorems on “factorable” triangular matrice3hese theorems appearediin[4,15, 6], formu-
lated for the more general case of operators ffgito ¢,. They can be summarized as follows.
In each case, operatafs " are defined by

(S[L’)l = Q; ijl'j, (T.T)Z = a; Z bjl'j,
j=i j=1

wherea;,b; > 0 for all 7, j. Note thatS is upper-triangular/” lower-triangular. Fop > 1, we
define

m 00 00
_E:p ~ _E: E: 3 _E: *
am_ a’ia am_ 17 Y ﬁm_ b?
=1 i=m j=m
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Proposition 2.3. (*head” version).
(i) If 320 (bjoy)P" < KV ay, for all m (in particular, if bja; < Kya?™" for all j),then
IS, < i *
(i) 1f Y77 (aifi)? < K7By, for all m (in particular, if a;8; < Kb} ~! for all j), then
1Tl < p" K.
Proposition 2.4. (“tail” version).
Q) 1f 3500, (@) < K5B,, for all m, (in particular, if a;3; < K07 ' for all j),
then||S||, < p* K.
(i) 1f 320, (ba,)P" < K%y, for all m, (in particular, if b;a; < Kia?™' for all j)
then||T||, < pKo.
Proposition 2.5. (“mixed” version).
(i) If clPBa/"" < K for all m, then||S||, < p'/?(p*)/P" K.
(i) If an/PBy/"" < K for all m, then||T||, < p'/?(p*)/?" K.
In each case, (ii) is equivalent to (i), by duality. Propositipn$ 2.3[and 2.4 are [4, Theorem
2] and (with suitable substitutions)/[5, Theor@m(note: the right-hand exponent in Bennett's
formula (18) should bér — 1)/(r — s)). For the reader’s convenience, we include here a direct

proof of Propositiof 2]3(i), simplified from the more general theorernlin [5]; the prgof pf 2.4(ii)
is almost the same.

Proof of Proposition 2]3(i) Note first the following fact, easily proved by Abel summation: if
sj,: tj (1 < j < N) are real numbers such that’"  s; < >° ¢; for 1 < m < N, and
(751 2 . 2 un 2 O, thean.V:l Sj'LLj S Ejvzl tjuj.

It is enough to consider finite sums withj < N, and to taker; > 0. Lety = Sx. Write
R; = Zj\’:i b;z;, SO thaty; = a; R;. By Abel summation,

N N N—-1
Doy =) alRl =) (R — R\ + ay Ry
=1 =1 =1

By the mean-value theoreng, — 2? < p(y — z)y?~* for anyz,y > 0. SinceR; — R;;1 = b;x;
forl1 <i< N —1,we have

R — RV, < pba; RV

for suchi. Also, R}, < pbyrnRE, sinceRy = byxy. Hence

N N N Ur s N 1/p*
ny < pZaibixinfl <p (Z :L’f) (Z(@'O&i)p*R?)
i=1 i1 i—1

i=1

(note thatp*(p — 1) = p). By the “fact” noted above and our hypothesis (or directly from the
alternative hypothesis),

N N N
D (bio)” B S KT Y alRY =KV )y
=1 i=1 i=1

Together, these inequalities giyg||, < pK||z||,. 5

Propositior] 2.5 is [6, Theorem 9]; with standard substitutions, it is also a special case of [1,
Theorems 4.1 and 4.2]. The corresponding result for the continuous case was given in [16].
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6 G.J.O. AMESON AND R. LASHKARIPOUR

We shall be particularly concerned with two choicesptlefined respectively by,, = 1/n®
(for o > 0) and byW,, = n'=* (for 0 < a < 1). Note that in the second case,

n 1 _
w, =n""*—(n—1)"* = / a dt,
n—1 t

and hence
1l -« 1l -«

ne ~ (n—1)>

Several of our estimations will be expressed in terms of the zeta function. It will be helpful
to recall that{(1 + o) = 1/a + r(«) for a > 0, wherel < r(a) < 1 andr(«) — v (Euler's
constant) agx — 0. Also, for the evaluation of various suprema that arise, we will need the
following lemmas.
Lemma 2.6. [9, Proposition 3] LetA, = >"7_, j*. ThenA,, /n't* decreases with if o > 0,
and increases ift < 0. If « > —1, ittends tol /(1 + «) asn — oc.
Lemma 2.7. [8, Remark 4.10]without proof),[13, Proposition 6] Leta > 0 and letC,, =
> oo, 1/k'*. Thenn®C,, decreases with, and(n — 1)*C,, increases.
Lemma 2.8. [7, Lemma 8] more simply iff9), Proposition 1] The expression

1 n
e DL
n(n+1)* e
increases withh whena > 1 or o < 0, and decreases withif 0 < o < 1.

3. THE HILBERT OPERATOR

We consider the Hilbert operatdf, with matrixa; ; = 1/(i + j). This satisfies conditions
(i) and (i) of Lemmg 2.]l. Hilbert's classical inequality states that||, = =/ sin(r/p) for
p > 1. For the case = 1, with either of our choices af, it was shown in[[18] thaf H||; ,, =
Ay (H) =m/sinar.

For the analogous operator in the continuous case,wm(ith = 1/z?, itis quite easily shown
by the Schur method thg# ||, ., = 7/ sin[(1 — a)7/p]. We show that the method adapts to the
discrete case, giving this value again for either of our choices. dfhis is straightforward for
w, = 1/n%, but rather more delicate fo¥,, = n' .

Let0 < a < 1. As with most studies of the Hilbert operator, we use the well-known integral

> 1 7r
| s =
o te(t+c) ¢ sin am

"1
gn(a) :/ — dt.
n—1 te
Note thatg, (a) > 1/n".

Lemma 3.1. With this notation, we have for eagh> 1,

Write

iia( 1 < = gi(a) < T

i+j) — i+7 ~ j®sinam

=1

; 1 G| ‘ 1
i) L[ Ly
t+g vty St i1 t(t+7)

The statement follows, by the integral quoted above. O

Proof. Clearly,
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OPERATORS ON WEIGHTEDY;, SPACES 7

Now let0 < a < 1. Write v,, = ¢,,(«) andv!, = (1 — a)v,. In our previous terminology,
v is our “second choice af". Clearly, an operator will have the same normdde’, p) and on
d(v,p). Note that by Holder’s inequality for integrals, < g,,(cr) for r > 1.

Theorem 3.2.Let H be the operator with matrix; ; = 1/(i+j), and letp > 1. Letw,, = n~°,
wherel — p < a < 1. Then

”H”p,w = Apm)(H) =

™
sin[(1 — o) /p]’
If0 <o <landv, = [ t*dt, then|H|,,andA,,(H) also have the value stated.

n

Proof. Write M = 7/sin[(1 — o) /p]. Letw, = n~, wherel —p < a < 1. Now || H||,, =
| B|,, whereB has matrixb;; = (j/i)*/?/(i + j). In Lemmg 2.2, take, = t; = i, and let
C1, Cs be defined as before. Then

) et (z’)“‘am’
1,555 tj == .
t+7\J
By Lemmg 3.1, it follows tha€; < M. Similarly, C; < M.
Now let0 < a < 1, and letv, w be as stated. We show in fact thgt||,,.,, < M. It then
follows that|| H||,, < M, since||z|/,. < ||z||,. for all z. Note that||H||, .. = || Bl,, where

now
1

bij = —— ()"
J Z—i—](] )
Takes; = v; '/ andt; = j. Then
1
by (5 /E )P = —(jo.)(e=D/ap,
S5t = =)
By Lemmg 3.1,
X (a—1
ST ey
P
Sincei~! < v,/®, we havei®=1/» < 4{'=/*? and henc&’, < M.
Also,
* 1
b; i(t;/s; Yr = —(J%v; ta
J(ti/s) i+ (i)
where
1 1
t==4—.
p ap
Note thatt > 1, so as remarked above, we haye< g;(at). By Lemmd 3.1l again,
= gfar) _ a1
2wy S
whereM’ = 7/ sin atw. Now
a 1 -«
at=—+—=1- ,
p D D

so thatM’ = M, and henc&€’, < M. The statement follows.
To show thatA, ,(H) > M, taker = (1 — «)/p, so that + rp = 1. Fix N, and let

_J1/5" forj <N,
Y0 forj > n.
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8 G.J.O. AMESON AND R. LASHKARIPOUR

Then(x;) is decreasing andl > | w;a? = >, 4

the details), one finds that

. Lety = Hzx. By routine methods (we omit

N N 1

Swat > MY~ ),

=1 =1
whereg(r) is independent ofV. Clearly, the required statement follows. Minor modifications
give the same conclusion for O

Note A variantH, of the discrete Hilbert operator has mattiXi+ j —1). This is decidedly
more difficult! Already in the casg = 1, the norms do not coincide for our two weights, and it
seems unlikely that there is a simple formula fféf, ||, .,: see[[13].

4., THE COPSONOPERATOR

The “Copson” operato€’ is defined byy = C'x, wherey; = Z;";i(xj/j). It is given by the
transpose of the Cesaro matrix:

1) fori<j
%=\ 0 fori >j -

This matrix satisfies conditions (i) and (iii) of Lemrpaj2.1. Copson’s inequality [11, Theorem
331] states thatC'||, < p (Copson’s original resuli [10] was in fact the reverse inequality for
the casé) < p < 1).

The corresponding operator in the continuous case is definéd p)(z) = [°[f(v)/y] dy.
Whenw(z) = 1/2°, itis quite easily shown, for example by the Schur method,Mat(C) =
ICllpaw = p/(1 — ).

For the discrete case, we will show that this value is correct for either decreasing choice
of w. However, the Schur method does not lead to the right constant in the discrete ver-
sion of Copson'’s inequality, and instead we use Propoditign 2.3. First we formulate a result
for general weights. Thé-regularity constanbf a sequencéw,,) is defined to be (w) =
sup,,>; Wa/(nwy,).

Theorem 4.1. Suppose thatw, ) is 1-regular andp > 1. Then the Copson operat6r maps
d(w,p) into itself , and||C| ., < pri(w).

Proof. We have||C||,. = ||S]|,, wheresS is as in Propositi03, with; = wil/p andb; =
1/(jw;/p). In the notation of Propositi.&m = W, SO

Wy _ W
jwjl./p Jw;

Sincep/p* = p — 1, the simpler hypothesis of Proposition[2.3(i) holds with = r (w).

W < ()0t =y (w)d?

bja; = J J j

Note The same reasoning shows thgt|, .. < pK;, where K is such thatV, <
Kinwt/Pu?" for all n.
An example in[[15, Section 2.3] shows thgt||,,.., is not necessarily equal {0, (w). How-

ever, equality does hold for our special choices of decreasjras we now show.

Theorem 4.2. Let C' be the Copson operator. Suppose that 1 and thatw is defined either
byw, = 1/n% or by W,, = n'~*, whered < a < 1. Then

p
Bpw(C) = Cllpw = 77—

J. Inequal. Pure and Appl. Math3(1) Art. 6, 2002 http://jipam.vu.edu.au/
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Proof. We show first that in either casg,(w) = 1/(1 — «), so that|C||, ., < p/(1 — «). First,
considerw,, = 1/n®. By comparison with the integrals oft“ on 1, n| and[0, n], we have

1 nl—a

11—«
—1 <Wn< ,
(n )< T 11—«

from which the required statement follows easily. Now consider the @ase- n!~<. Then
nw, /W, = n®w,. By the inequalities fotv,, mentioned in Secti 2,

«

11—«

n

l—agnawng(l—a)(—l),
n_ (e}

from which it is clear that again (w) = 1/(1 — «).

We now show that\, ,,(C) > 1 — a. Chooses > 0 and define by o +7p = 1 + €. Let
z, = 1/n" for all n; note that(z,,) is decreasing. Then 2?2 = 1/n*™™ = 1/n'*¢, sox isin
¢, (w) for either choice ofw,,) (note that for the second choice, < ¢/n* for a constant).
Also, again by integral estimation,

=1 1 T
W= oy 2=
k=n

for all n, so

p
1y[lpw = ;Hznp,w = mHﬂ?HpW

The statement follows. O

Theorenj 4.]1 has a very simple consequencénaeasingweights:
Proposition 4.3. Let (w,,) be any increasing weight sequence. Théhl,.., < p.

Proof. If (w,) is increasing, thei,, < nw,,, with equality whem = 1. Hencer;(w) = 1. O

Clearly,A,,,(C) > 1, sinceC(e;) = e;. For the casen, = n®, the method of Theorefn 4.2
shows that als@\, ,,(C') > p/(1 + «). A simple example shows thdt, ,,(C) can be greater
than both 1 ang/(1 + «).

Example 4.1.Letp = 2 anda = 1, so thatp/(1 + «) = 1. Takez = (4,2,0,0,...). Then
y =(5,1,0,0,...), and||z|3,, = 24, while [|y[]3 , = 27.

We leave further investigation of this case to another study; it is analogous to the problem of
the averaging operator with,, = 1/n®, considered in more detail below.

5. THE AVERAGING OPERATOR: RESULTS FOR GENERAL WEIGHTS

Henceforth,A will mean the averaging operator, defineddpy= Az, wherey, = %(xl +
-+« + x,). Itis given by the Cesaro matrix

o 1/i forj <i
“i=N 0 forj >’

which satisfies conditions (i) and (ii) of Lemma R.1. In this section, we give some results
for general weighting sequences. We consider upper estimates first. Hardy’'s inequality states
that||A||, = p* for p > 1. Itis easy to deduce that the same upper estimate applies for any
decreasingu:

Proposition 5.1. If (w,,) is any decreasing, non-negative sequence, ), ., < p*.

J. Inequal. Pure and Appl. Math3(1) Art. 6, 2002 http://jipam.vu.edu.au/
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10 G.J.O. AMESON AND R. LASHKARIPOUR

Proof. Let = be a non-negative element 6f(w), and letu; = w;/pxj. Then||ull, = [|z|lpw
and sincgw,) is decreasing,

n
wiPX, < ijl-/pxj =U,
7j=1
(where, as usuall,, meanse; + - - - + x,,). Hence

[AZ|[5. = X

IA
[
JE

3

IN

(p*)P) b by Hardy's inequality

O

The next result records the estimates for the averaging operator derived from Propositions
[2.3,[2.4 and 2]5. Instead of the fully general statements, we give simpler forms pertinent to our
objectives. Foi < r < p, define

e ) rflU
Un(r) =32, V() = sup 2 ImlT)
j=m ]r m>1 W,
Proposition 5.2. Let A be the averaging operator and lget> 1. Then:
() 1 Allpw < p*Ki, whered 7" wjlfp* < Kymwl? for all m;

(i) [ Allpw < pV(p);
(iii) if (w,) is decreasing, thefiA|,,., < p'/?(p*)Y/?"V (p)/.

Proof. Recall that| A||, ., = ||T||,, whereT is as in Propositi03, with; = wil/p/z‘ andb,; =
wj’l/p. With notation as before, we hade, = ., w;/j” = Un(p) andf,, = > 7", wj”’*/p.
Noting thatp*/p = p* — 1, one checks easily that Propositidns| 2.3(ii) 2.4(ii) (with the
simpler, alternative hypotheses) translate into (i) and (ii).

For (iii), note that if (w,) is decreasing, them,, < mwy P, Hence amprt <

m?~'U,,,(p) /w., SO the condition of Proposition 2.5(iii) is satisfied with = V(p)'/». O

For decreasinguw,,), (i) will give an estimate no less thar, hence no advance on Proposition
(5.7 (one need only take = 1 to see thafy; is at least 1). Also, (iii) adds nothing to (ii), since

PV ()P (p*)/?" > min[pV (p), p°].

In the specific case we consider below, the supremum defiriiipg is attained ain = 1. In
such a case, nothing is lost by the inequality used in (iii)dgr Furthermore, nothing would
be gained by using the more genetral [1, Theorem 4.1] instead of Prop¢sifion 2.5.

Another result relating to our (p) is [12, Corollary of Theorem 3.4] (repeated, with an extra
condition removed, iri |2, Corollary 4.3]). The quantity considered is sup,,~, n”U,(p)/W,,.
Again, in our case(’ coincides withV/ (p). It is shown in [12] that ifC' is finite, then so is
A, (A), without giving an explicit relationship.

The next theorem improves on the estimate in (ii) by exhibiting it as one point in a scale of
estimates. We are not aware that it is a case of any known result.
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Theorem 5.3. Suppose that < r < pand)_ ° w,/n" is convergent. Defin¥(r) as above.
Then|| Ay < [rV (r)]"7?,

Proof. Write U,,(r) = U, andV (r) = V. Let 2, = 22" and (asusualy, = z; +--- + z,. By
Holder’s inequality,

X, < nl—f/ng/p’
henceX? < nP~"Z If y = Az, theny,, = X,,/n, soy? < n~"Z. For anyN, we have

N w N
Tl = U= Un)Z

N
= Y UnlZ—Z5 ) — Uvii Zy

n=1
N
< rY UyzZ,' bythe mean-value theorem
n=1
al w
< rVY —"z,Z" by the definition of
n=1

nrfl

nT

N r s N 1/r
= v (Z wn%) ( %Zﬁ> by Holder’s inequality
n=1

n=1

Sincez] = P, it follows that (for all V)

N N N
Z wpyh < Z n—:Z,’; < (rv)r Z wph.
n=1 n=1 n=1
O

The case = 1 (for which the proof, of course, becomes simpler), gilds, ., < V' (1)*/7,
in which

1 o0
V(1) = sup — :
m>1 Wm j=m J

Wi

Among the above results (including the Schur method) only Proposition 5.2(i) delivers the
right constanp* in Hardy’s original inequality. Another method that does so is the classical
one of [11, Theorem 326]. The next result shows what is obtained by adapting this method to
the weighted case. Note that it appliesg,,(A), not|| A||, .-

Theorem 5.4.Letp > 1, and let

NWp 1
C=8up —]/——.
nz];l) Wn
Assume that < p. Then
p
A, (A < :
pl4) < 2

Proof. Let x = (z,,) be a decreasing, non-negative element,0fv), and lety = Ax. Fix a
positive integerV. By Abel summation,

N N
D waylh =Y Waa(yh oy — h) + Wk
n=1 n=2
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By the mean-value theorent, |, — v2 > py2~(y,—1 — yn)- Also, forn > 2,

Tp=nYn — (N = D)Yn—1=Yn — (0 — 1) (Yn-1 — Yn),

SO
1
Yn—1 — Yn = o 1(yn - xn)
Hence
N N
Z wnyg Z p Z anlygil(ynfl - yn>
n=1 n=2

N
Wn—l _
= pz myfb 1(yn - mn)'
n=2

Now since(x,,) is decreasingy, > x,, for all n. Also,y; = x;. Sincew,, < c¢W,_1/(n — 1),
we deduce that

N N N

p _ p _
anyﬁ > E anyﬁ 1<yn - xn) = E anyg 1(yn - xn)v
n=1 n=2 n=1

so that
N N
(p—rc) Z WY, <P Z wnyﬁ_lxn-
n=1 n=1
A standard application of Holder’s inequality to the right-hand side finishes the proof. [J

We now consider lower estimates. First, an obvious one:
Proposition 5.5. We have
| 1/p
w
Ap (A > —) = :
> (32)
Proof. Takex = e;. Theny, = 1/n for all n, so the statement follows. (In particular, the stated
series must converge in order fd(e,) to be in/,(w).) O
Secondly, we formulate the lower estimate derived by the classical method of considering

x, = n~ % for a suitables.

Lemma 5.6. Suppose that,, b,, are non-negative numbers such that-_, a,, is divergent and
lim,, .o, b, = 0. Then

ooy nbn
EnNzl an

Proof. Elementary. O

— 0 asN — .

Theorem 5.7.Let A be the averaging operator and jet> 1. Let(w,,) be any positive sequence,
and letq < p be such thad" > | w,/n? is divergent. Then

D
Ayp(A) > ——.
,p( ) q

Proof. Write p/(p — q) = r, so thatl/r = 1 — ¢/p. Fix N, and let

S n~9? forl <n<N
" 10 forn > N
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Then
[e%s) N w
D _ _n
(5.1) ;wnxn = 2 .

Also, forn < N,

X, > / P At = r(nt/" 1),

1

so that

X” r —1/r
Yn = . > W(l —n").

Since(1 —¢)» > 1 —ptfor0 <t < 1, we have
7P
P> __(1—pn Ur
Y 2 (L =pn™77),

and hence

D p%_ p_Wn
(5.2) W 2 1P = prf o (2).

Takes > 0. By (5.1) and[(5.2), together with Lemrpa 5.6 (with = w,,/n? andb, = n~/"),

it is clear that for all large enougN,

N oo
Z Wyt > (1 —e)r? Z (i
n=1 n=1

O

Corollary 5.8. If Y~ | w, /nis divergent (in particular, ifw,,) is increasing), them\,, ,,(A) >
P

Remarks on the relation betwegH||,, , and A, ,,(A). If (w,,) isincreasing then|Al|, ., =
A, w(A), forif * = (27) is the decreasing rearrangementzofthen it is easily seen that
2" pw < l#]lpw, While ||Az*|,., > ||Az||,.. The following example shows that this is not
true for decreasingwveights in general (though it may possibly be true fgn®), and indeed

that the estimate in Theorgm b.4 does not applyAg), ...

Example 5.1. Let £, = {i : k! < i < (k+ 1)!}, and letw; = 1/(k'k) for i € E.
Then}_, , w; = 1 and, by integral estimatior},_,_,, (1/i) > log(k + 1). Now fix k, and
choosep close enough td to have) ,_, 77 > logk. Write || || for || ||, .. Taken = k!
Then||e,||P = w, = 1/(k!k), while

» w; log k
|Aen|” > > T

i€Ey

Hencel||A||2,, > logk. We show thatw,.,/W, < 2 for all n, so thatA,,(4) < 3, by
Theorem 5.4. It > 3 andn € Ej, thenWV,, > k — 1, so
M1 _ k+1)! 1 k+1 <2
W, — Kk k-1 k(k—1) 3

The required inequality is easily checked fom F; and Es.
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6. THE AVERAGING OPERATOR:RESULTS FOR SPECIFIC WEIGHTS

We now explore the extent to which the results of Sedtjon 5 solve the problem for our chosen
weighting sequences. The analogous operator in the continuous case is giuéifi)by) =
1 [ f. Whenw(z) = 2~°, one can show by the Schur method (or ain [17, Theorem 1.9.16])
that

[Allpw = Bpw(A) = p/(p— 1+ a).
In the discrete case, when= 1, it was shown in[[13] that:
(i) if w, = 1/n% then||Al|1, = A1w(A) = (1 + ),
(ii) if W, =n'~ thenA; ,(A) =1/a.
As suggested by (ii) and Hardy’s inequality, the continuous case is reproducediyhen

nl—o:

Theorem 6.1. Let A be the averaging operator and let> 1. Let(w, ) be defined byV,, =
n'= where0 < o < 1. Then

p
Ay p(A) = ——.
D, ( ) p— 1 NN
Proof. Recall that
Wit € —— < Wy
nOL
Hence
nwy, o
Tnﬂ =n"wWny1 <1 —a
for n > 1, so Theorem 5|4 applies with= 1 — «. Also, Theorem 5]7 applies with= 1 — «.
The stated equality follows. O

We do not know whethefA||, ., has the same value; howevey, ,,(A) is of more interest
for this choice ofw, since it is motivated by Lorentz spaces.

For the increasing weight,, = n*, our problem is solved by the method of Proposifior} 2.3
(which, it will be recalled, was effective for the Copson operator wihreasingveights).

Theorem 6.2. Letw, = n®, where0 < a < p — 1. Then
_r
p—1—a

Proof. By Theoren} 5.7, we hava,, ,(A) > p/(p — 1 — «). We use Propositidn 5.2(i) to prove
the reverse inequality. The condition is

= 1 m
Zl e = M-
j:

Note thato(p* — 1) = a/(p — 1) < 1. By Lemmd 2., the condition is satisfied with
1 o p—1
l—alp*—1) p—-1—-a
So||Allpw < p* K1 =p/(p—1—a). O
Note Fora < 1, this result also follows from Theorgm 5.4 and Lenima 2.8.
We now come to the hard case, = 1/n®. The trivial lower estimate 5.5 is enough to show

thatA, ,,(A) can be greater thas/(p — 1 + «). Indeed, we have at once from Proposifior] 5.5
and Theorerh 517:

[Allp.w = Apw(A) =
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Proposition 6.3. Letp > 1 andw,, = 1/n%, wherea > 0. ThenA, ,(A) > max(my, ms),

where
p

p—1+a’
Either lower estimate can be larger (even wheq 1), as the following table shows:

my = my = ((p+ a)?.

P (07 my meo
1.1 09 1.1 1.572
2 0.1 1.818 1.249

No improvement omn, is obtained by considering elements of the faryrore; + - - - + e,,.
However, the next example shows tiig,, (A) can be greater than both, andm..

Example 6.1.Letp = 2, o = 1. Thenm; = 1 andmy, = ((3)'/? ~ 1.09. Letz =
(2,1,0,0,...). Theny, = 2 andy, = 3/n for n > 2. Hencel|z|3,, = 43, while ||y[]3,, =
4 +9[¢(3) — 1] = 5.818, s0 that]|y||2.w/||2||2.w ~ 1.137.

(One could formulate another general lower estimate using this choige lmit it is too

unpleasant to be worth stating explicitly.)
We now record the upper estimates derived from the various results above. Of course, by

Propositior) 5./, we havig ||,,., < p*.

Proposition 6.4. Letp > 1, and letw,, = 1/n®, wherea > 0. Then

p
_2—a'

Apﬂu(A) S M1 =: D

Proof. We have
W, (n+1)* 1

MWy n.o ko
By Lemmd 2.8, this expression increases witlso has its least valu#* whenn = 1. Hence
Theorenj 5.4 applies with= 2. O

Proposition 6.5. Letp > 1 and1 < r < p, and letw,, = 1/n*, wherea > 0. Then
1A < Ma(r) =: [r¢(r + )]/,
Proof. Apply Theorem} 5.3. In the notation used there, we have

U, =1
m (T) _ mr+a71 Z

W, - jr—i—a '
j=m

By Lemma[ 2.7, this expression decreases withso is greatest whem = 1, with the value
C(r+ a). O

Note that in particular)M, (1) = ¢(1 + )P and My(p) = p{(p + «). By the remark after
PrOpOSitiOmin[MQ(p),p*] < pP(p)VP my < 2me.

To optimize the estimate in Propositipn 6.5, we have to cheo@e the interval[l, p]) to
minimize [r((r + «)]". Computations show that when > 0.4, the least value occurs when
r = 1, while fora = 0.1, it occurs when ~ 1.35.

The Schur method provides another scale of estimates, as follows.

Proposition 6.6. Letw,, = 1/n%, wherea > 0. Leta < r < p+ a. Then||A||,., < M;(r),
where
1/p* 1/p
P r «
Ms(r) = ——— 1+ —+— .
() (P—TJFOZ) C( P* p)

J. Inequal. Pure and Appl. Math3(1) Art. 6, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

16 G.J.O. AMESON AND R. LASHKARIPOUR

Proof. In Lemmg 2.2, take; = t; = j". We haveb, ; = a,b; for j < i, wherea; = i~*/*~! and
b; = j*/P. SoC, is the supremum (asvaries) of

1
i(r—a)/p—1
v Z j(r—a)/p'

=1

By Lemmé 2.6 (or trivially when = «),

) = ! S
TG —a)fp p-rta

Also, C, is the supremum (agvaries) of

- 1
jo/ptr/p* - -
g Z jlta/ptr/p*”
i=j
By Lemmg 2.7, this is greatest whgn= 1, with value( (1 + r/p* + a/p). O

Note that)Ms(a) = My (1) = (1 4+ a)'/?. HenceM; will always be at least as good a$,
whena > 0.4.

The following table compares the estimates in some particular cases. We denatthby
greater of the lower estimates;, m,. Recall that\/, estimates\, ,,(A). The values of used
for M, (r) andM3(r) are indicated.

p o m p" M Mr) Ms(r)

11 01 55 11 6587 6.151(1.1) 6.031 (0.98)
1.1 09 1572 11 1.950 1.663 (1) 1.663 (0.9)
1.2 03 24 6 3.095 3.084 (1.1) 2.886 (0.9)
> 05 1333 2 1.547 1.616 (1)  1.593 (0.75)

Table 6.1: Numerical values of upper and lower estimates

In most, if not all cases)/; is a better estimate thall,, at the cost of being more compli-
cated. BothM, and M; reproduce the correct valy¢l + «) whenp = 1. On the other hand,
both can be larger thasi in other cases. Some product of the tyjde(1) would reproduce the
values((1 + «) whenp = 1 andp* whena = 0; the exponent would need to be of the form
f(a,p), wheref(0,p) = 1forp > 1andf(«,1) =0 for a > 0.
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