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Abstract

This paper continues a series of results begun by a I'Hospital type rule for
monotonicity, which is used here to obtain refinements of the Eaton-Pinelis in-
equalities for sums of bounded independent random variables.
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In [&], the following criterion for monotonicity was given, which reminds one
of the I'Hospital rule for computing limits.

Proposition 1.1. Let —co < a < b < oo. Let f and g be differentiable func-

tions on an intervala, b). Assume that eithey’ > 0 everywhere orja, b) or

g < 0on(a,b). Suppose thaf(a+) = g(a+) = 0 or f(b—) = g(b—) =0
!

andil is increasing (decreasing) ofa, b). Theni is increasing (respectively,

decreasing) oria, b). (Note that the conditions here imply thais nonzero and
does not change sign dn. b).)

Developments of this result and applications were givensfingpplications
to certain information inequalities; inL{], extensions to non-monotonic ra-
tios of functions, with applications to certain probability inequalities arising in
bioequivalence studies and to convexity problems?]ndpplications to mono-
tonicity of the relative error of a Padé approximation for the complementary
error function.

Here we shall consider further applications, to probability inequalities, con-
cerning the Studeritstatistic.

Letn,...,n, beindependent zero-mean random variables suciPthay <
1) = 1forall i, and leta,, . . . , a, be any real numbers such thdtt - - - + a2 =
1. Let v stand for a standard normal random variable.

In [3] and [4], a multivariate version of the following inequality was given:

(1.1) P(laym + -+ awnn| >u) <c-P(lv]| >u) VYu>0,
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where 00
e
= — =4463...;
C 9 )
cf. Corollary 2.6 in [I] and the comment in the middle of page 359 therein
concerning the Hunt inequality. For subsequent developments;sé#][ and
[7].
Inequality (L.1) implies a conjecture made by Eato].[In turn, (1.1) was
obtained in {] based on the inequality

1.2) P(laym + -+ annn] > u) < Q(u) Yu >0,
where
1
(1.3) Q(u) := min [1, i W(u)}
1 if 0<u<l,
(1.4) = if 1<u<pu,

1
u
Wu) if w > p,

E |v|”

Hy 1= E\I/\Q :2\/32 1.595...;
W (u) ::inf{% te (O,u)};

cf. Lemma 3.5 in{]. The bound?(u) possesses a certain optimality property;
cf. (3.7) in [4] and the definition of),.(u) therein. In [], @Q(u) is denoted by
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Bgp(u), called the Eaton-Pinelis bound, and tabulated, along with other related

bounds; various statistical applications are given therein.
Let

1 e e Bla) e 1 — B
o(u) == \/%e 2 d(u) = /_Oogp(s)ds, and P(u) :==1— ®(u)

denote, as usual, the density, distribution function, and tail function of the stan-

dard normal law.

It follows from [4] (cf. Lemma 3.6 therein) that the ratio
(1.5) ) = W QW)

c-P(lv|>u) c-20(u)

of the upper bounds irl(2) and (L.1) is less tharl for all © > 0, so that (..2)
indeed implies {.1). Moreover, it was shown ir] thatr(u) — 1 asu — oo;
cf. Proposition A.2 therein. Other methods of obtainifadl) are given in {]
and [].

In Section2 of this paper, we shall present monotonicity properties of the
ratio r, from which it follows, once again, that

(1.6) r<1l on (0,00).

Combining the boundsL(1) and (L.2) and taking {.3) into account, one has
the following improvement of the upper bound provided byi):

(17) P (|a1771 +oee annn| > u)

< V(u) :=min |1 P(lv] >u)| Yu>D0.

—, C
7u2a
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Monotonicity properties of the ratio

(1.8) R:==

of the upper bounds inL(2) and (L.7) will be studied in Sectior.

Our approach is based on Propositinoi. Mainly, we follow here lines of

(=]
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1.5
Theorem 2.1.

1. There is a unique solution to the equatidh(d) = d-¢(d) ford € (1, 11);
in fact,d = 1.190. . ..

2. The ratior is

1 1
a) increasing ono, 1] fromr(0) = - =0.224... tor(l) = ——— =
@ g or{0, 1] from (0) = W= 550
0.706.. ;
1
. d2
b) decreasing onl,d] fromr(1) = 0.706... tor(d) = ——— =
(b) g oril, d] from (1) @) = e
0.675...;

(c) increasing ond, oo) fromr(d) = 0.675...tor(co) = 1.
Proof.
1. Consider the function
h(u) = 2®(u) — up(u).

One hash(1l) = 0.07... > 0, h(uy) = —0.06... < 0, andh/(u) =
(u® — 3)p(u). Hence,h'(u) < 0 foru € [1, ], sinceu; < /3. This
implies part 1 of the theorem.
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(a) Part 2(a) of the theorem is immediate froing) and (L.4).
(b) Foru > 0, one has

d , o= B
T (W ®(u)) = uh(u),

whereh is the function considered in the proof of part 1 of the theo-

1 .
i — L'Hospital Type Rules for
rem. Sinceh > 0 on|1,d) andr(u) 2 (a) foru € [1, py], part s s el
Probability Inequalities for
Z(b) now follows. Sums of Bou_nded Random
(c) Sinceh < 0 on(d, 1], it also follows from above thatis increasing Variables
on [d, u1]. It remains to show that is increasing orju, c0). This losif Pinelis

is the main part of the proof, and it requires some notation and facts

from [4]. Let

. Title Page
Ci=——5—, Contents
Jo e 2ds
o0 44 44
y(u) = / (s — u)®e"/2ds, p R
, d’y(u
D (1) = %j) (7(0) =7), Go Back
3y(t Close
2.1) u(t) =t - 210
v (t) Quit
t
F(t,u) :C’<’Y( 1)3’ t< Page 8 of 20
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cf. notation on pages 361-363 iri][ in which we presently take
r=1.

ThenVj € {0,1,2,3,4,5}

(2.3) (1) D(u) = 6w e /2 (1 +0(1)) as u— oo,
2.4) D) =672 and ~O(u) = —6u€_u2/2;
( . ;

cf. Lemma 3.3 in {]. Moreover, it was shown in/]] (see page 363
therein) that ono, co)

(2.5) w >0,

so that the formula
t e u=pt)

defines an increasing correspondence betwee andu > 1(0) =
(1, SO that the inverse map
pt [, 00) = [0, 00)

is correctly defined and is a bijection. Finally, one has (cf. (3.11) in

[4] and (1.4) and @.1) above)
W) = __Cye°
@6)  Yuzm Q) =W(w) = Flt,w) =~

here and in the rest of this proefstands fop: ! (u) and, equivalently,
u for u(t).
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Now equation 2.6) implies

Qe
/ _ dt _ Y7
(2.7) Q'(u) = a2
dt
for u > py; here we used the formula
R 1 )7”(t) — 27 (t)°

Next,

Y (@)u(t) =ty'(t) = 3(t)

8

3/ t(s—t)* + (s —t)%] e ds
3/ (s — 1) e ds
6/ (s—t)e
¢

/(t

—52/2 ds

\

for the fourth of the five equalities here, integration by parts was used.

Hence, o0, co),

(2.9) p=-1,
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whence
il

ek i
lu‘ - 7/2 )

this and @.5) yield
(210) ,_)///2 _ Py/,y/// > 0
Let (cf. (1.5 and useZ%.7))

(2.12) o) = LW _ O A

¢ 20 ()  Hey(Pe(u(t)

Using (2.11) and then 2.9) and @.9), one has

dinp(u) _ d : p(t)?
__3D()A"(1)?
v(t)y'(t)3
for all ¢ > 0, where
,}/2
Further, on(0, oo),
,y/
(213) D/ — (7//2 o 7/7///> < 0’

112
Y
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in view of (2.2) and @.10. On the other hand, it follows fron2(3)
that D(t) — 0 ast — oo. Hence, 2.13) implies that on(0, co)

(2.14) D> 0.

Now (2.12), (2.14), and @.2) imply thatp is increasing or{uy, co).
Also, it follows from (2.6) and @.3) that@Q(u) — 0 asu — oo; it is
obvious thatc - 2®(u) — 0 asu — oo. It remains to refer to1(.5),
(2.11), Proposition1.1, and also (for(co) = 1) to Proposition A.2

[“]-
O
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1.8
Theorem 3.1.

1. There is a unique solution to the equation

(3.1) = P(M>2)
forz > py;infact,z =1.834....
2.
1 if 0<u<l,
@2 V=4 i 1<uss

c-P(lv|>u) if u> =z

3. (@ R=1o0n]0, 1] ;
(b) R is decreasing offyi, z] from R(u;) = 1to R(z) = 0.820.. ;
(c) R is increasing onz, c0) from R(z) = 0.820... to R(c0) = 1[=
Thus, the upper bound is quite close to the optimal Ei':tton-PineIis bound
(Q = Bgp given by (L.3), exceeding it by a factor of at mo%@ =1.218....

In addition,V" is asymptotic (ato) to and as universal &3. On the other hand,
V' is much more transparent and tractable tan
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Proof of Theoren3.1

1. Consider the function

(3.3) Au) =

Then

N(u) = 2cuh(u),
whereh is the same as in the beginning of the proof of Theoffnon
page7, with #/(u) = (u® — 3)¢(u), so thaty/3 is the only root of the
equation’’(u) = 0. Sinceh(y;) = —0.06... < 0, h(v/3) = —0.07... <
0, andh(co) = 0, it follows thath < 0 on [y, 00), and then so isV.
Hence, ) is decreasing offy;, 0o) from A(z;) = 1.2... to A(c0) = 0.
Now part 1 of the theorem follows.

. It also follows from the above that > 1 on[uy, z] andA < 1 on |z, 00).
In addition, by 8.3), (1.5, and (L.4), one has\ = E on [1, u1], whence
r

A > 1lon[l, ] by (1.6). Thus,A > 1on|l,z] andX < 1o0n |z 00); in
particular,cP (Jv| > 1) = A(1) > 1. Now part 2 of the theorem follows.

3. (a) Part 3(a) of the theorem is immediate from4), (3.2), and the in-

equalityz > ;.

(b) Of all the parts of the theorem, part 3(b) is the most difficult to prove.

In view of (3.2), the inequalities > i, > 1, (2.6), and €.9), one has
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OO ()
27 (1)
here and to the rest of this proefagain stands for ~! (u) and, equiv-

alently,w for p(t). It follows that for allu € [u,, 2] or, equivalently,
forallt € [0, (2],

(3.4) R(u) = v*Q(u) = Yu € [, 2];

d _ ) 0" ()
(3.5) 7 In R(u) = L(t) := D) + 27”(1&) —2 0

Comparing 2.1) and @.9), one has for alt > 0
(3.6) 7(t):?,w)—t:—(wri),

V() () k(1)

where
_ Y,

(37) K“(t) = ,Y(t) )
similarly,

) o, 2
&9 ZO RO R

V(¢)

this and 8.6) yield

V() (P 42) K(t) + 3t
(3-9) ) k() +3
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Now (3.5), (3.6), and @3.9) lead to

(3.10) L(t) = —

where
N(t k) = —=2tk> + (3t* — 2) k* + 12tk + 9.

Next, fort > 0,

10N 2
Bl S-S I )
6ok " (t St) k=2

which is a monic quadratic polynomial ik, the product of whose
roots is—2, negative, so that one has(t) < 0 < kq(t), wherek, (¢)

andk,(t) are the two roots. It follows tha%% > 0 on (0, kz(t)) and

ON
a5 < 0 on (kq(t), 00).

Hence,N (t, k) is increasing ink € (0, k2(t)) and decreasing ik €
(ka(t), 00). On the other hand, it follows fron8(7) and @.2) that
(3.11) k(t) >0 Vt>0.

Therefore,

(3.12) (k(t) < K*(t) Vit > 0)
— (N(t,5(t)) > min (N(,0), N(t, (1)) ¥t >0);
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at this point,x* may be any function which majorizeson (0, co).
Let us now show the functior*(¢) := ¢ + 2 is such a majorant of
x(t). Toward this end, introduce

I >
AOES ——/ (s —t)te /2 ds,
t

4
so that ,
(V) =~
Similarly to (3.6) and 3.9),
V(t) V()
3.13 k(t)= -2 — 4 4t
(343 D=0 "0
Again withy(® := ~, one has fot > 0
(_ (j—l))’ —~(7)
Y = ,
GOy 46 Vi e{0,1,...},
. —y®(t) . L
and, in view of @.4), —=—-- = — is decreasing it > 0. In ad-
YO

dition, (2.3) implies thaty¥)(t) — 0 ast — oo, for everyj €
{-1,0,1,...}. Using now Propositiori.1 repeatedly, 5 times, one

_~(=1)
sees that | is decreasing of0, co), whencevt > 0
Y
00 _ Y0 _3ver L
() 7(0) 16 2
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This and 8.13 imply that

k(t) <t+2 Vt>0.

Hence, in view of .12,

N(t,x(t)) > min (N(¢,0), N(t,t + 2))

But N(¢,0) = 9 > 0 and N (t,t +2) = (t* —

Vvt > 0.

1)2 > 0 for all ¢.

Therefore,N(t,x(t)) > 0 V¢ > 0. Recalling now 8.5), (3.10 and
(3.11), one concludes thak is decreasing off;, z]. To compute
R(z), use B.4). Now part 3(b) of the theorem is proved.

(c) In view of (1.5 and @.2), one hask = r on [z, c0). Part 3(c) of the
theorem now follows from part 2(c) of Theorenl and inequalities

d<,u1<2.

O
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