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ABSTRACT. This paper continues a series of results begun by a I'Hospital type rule for mono-
tonicity, which is used here to obtain refinements of the Eaton-Pinelis inequalities for sums of
bounded independent random variables.
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1. INTRODUCTION

In [8], the following criterion for monotonicity was given, which reminds one of the 'Hospital
rule for computing limits.

Proposition 1.1. Let —o0 < a < b < 0. Let f and g be differentiable functions on an
interval (a, b). Assume that eithey > 0 everywhere offa, b) or ¢’ < 0 on (a,b). Suppose that
/

fla+) = gla+) =0or f(b—) = g(b—) =0 and§ is increasing (decreasing) ofa, b). Then
f

= is increasing (respectively, decreasing) @nb). (Note that the conditions here imply that
g

is nonzero and does not change sign(arb).)

Developments of this result and applications were giveri:lin [8], applications to certain infor-
mation inequalities; in [10], extensions to non-monotonic ratios of functions, with applications
to certain probability inequalities arising in bioequivalence studies and to convexity problems;
in [9], applications to monotonicity of the relative error of a Padé approximation for the com-
plementary error function.
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2 lOSIF PINELIS

Here we shall consider further applications, to probability inequalities, concerning the Stu-
dentt statistic.

Letn,...,n, be independent zero-mean random variables suclPthat| < 1) = 1 for all
i, and leta,, . . ., a, be any real numbers such thdt+ - - - + a2 = 1. Letv stand for a standard
normal random variable.

In [3] and [4], a multivariate version of the following inequality was given:

(1.2) P(laym + -4+ awmn| > u) <c-P(jy| >u) VYu>0,

where
2e3
6:2?24.463...;
cf. Corollary 2.6 in[[4] and the comment in the middle of page 359 therein concerning the Hunt
inequality. For subsequent developments, seel[5], [6],/and [7].
Inequality [I.1) implies a conjecture made by Eaton [2]. In tUrn,| (1.1) was obtained in [4]
based on the inequality

where
1
(1.3) Q(u) := min ll, el W(u)}
1 if 0<u<l,
1 .
(1.4) = ) it 1<u<p,

Wi(u) if w>p,

E|v? \/5
= = 24/==1.59...;
H1 E|y|2 T

Y 01 AN
W(u) := f{ OEE 1t e (0, )},

cf. Lemma 3.5 in[[4]. The boun@(u) possesses a certain optimality property; cf. (3.7)in [4]
and the definition of,.(u) therein. In[1],Q(u) is denoted byBgp(u), called the Eaton-Pinelis
bound, and tabulated, along with other related bounds; various statistical applications are given
therein.

Let

1 e e Bl e 1 — Dl
o(u) ::Ee 2 ®(u) .—/Oogp(s)ds, and ®(u) :=1— &(u)

denote, as usual, the density, distribution function, and tail function of the standard normal law.
It follows from [4] (cf. Lemma 3.6 therein) that the ratio

Ow) Q)
c-P(lv|>u)  c-20(u)’ 7
of the upper bounds i (1.2) arfd ([L.1) is less thdar all w > 0, so that[(1.R) indeed implies
(1.1). Moreover, it was shown inl[4] thatu) — 1 asu — oo; cf. Proposition A.2 therein.
Other methods of obtaining (1.1) are givenlin [5] and [6].

In Sectior] 2 of this paper, we shall present monotonicity properties of the-rditmm which
it follows, once again, that

(1.6) r<1l on (0,00).

(1.5) r(u) =
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Combining the bounds$ (1.1) and ([L..2) and taking](1.3) into account, one has the following
improvement of the upper bound provided py [1.1):

1
c-P(lv| >wu)| Yu>0.

1.7) P(laym + -+ + apnp| > w) < V(u) :=min |1, 5

Monotonicity properties of the ratio

of the upper bounds if (1.2) arjd ([L.7) will be studied in Segtjon 3.
Our approach is based on Proposifior] 1.1. Mainly, we follow here lines of [3].

2. MONOTONOCITY PROPERTIES OF THE RATIO 7 GIVEN BY (L.5)
Theorem 2.1.

1. There is a unique solution to the equatid®(d) = d - ¢(d) for d € (1,p,); in fact,
d=1.190....
2. The ratior is

1 1
a) increasing ono, 1] fromr(0) = — =0.224...tor(1) = ——— = 0.706.. . .;
(@) g orf0, 1] from(0) = - = Fm
1
(b) decreasing orl, d] fromr(1) = 0.706...tor(d) = & _ 675,
c-20(d)

(c) increasing ond, oo) fromr(d) = 0.675...tor(co0) = 1.

Proof.

1. Consider the function
h(u) = 2®(u) — up(u).

One hasi(1) = 0.07... > 0, h(p;) = —0.06... < 0, andh/(u) = (u* — 3)p(u).
Hence /' (u) < 0 foru € [1, 1], sinceu; < /3. This implies part 1 of the theorem.
2.

(a) Part 2(a) of the theorem is immediate frgm {1.5) dnd](1.4).
(b) Foru > 0, one has

whereh is the function considered in the proof of part 1 of the theorem. Since

h > 0on[l,d) andr(u) = 2;_ for u € [1, py], part 2(b) now follows.

cu?d(u
(c) Sinceh < 0 on (d, 1], it also follows from above thatis increasing orid, p]. It
remains to show thatis increasing onu,, co). This is the main part of the proof,
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and it requires some notation and facts from [4]. Let

L
fooo e=5*/2(ds’

)= [ (e as

C =

g -0 )
3
pult) =t — )
F(t,u) = C(uyiti)g, t < u;

cf. notation on pages 361-363 in [4], in which we presently takel.
ThenVj € {0,1,2,3,4,5}
(=1Y49 >0 on (0,00),
(1Y (u) = 60/ e /2 (1 +0(1)) as u— oo,
YD () =62 and 7O (u) = —6ue ' /?;
Ff. Le)mma 3.3 inl[4]. Moreover, it was shown in [4] (see page 363 therein) that on
0,00

!/

w >0,
so that the formula
t o u=pu(t)

defines an increasing correspondence betweer) andu > ©(0) = pq, SO that
the inverse map

ot [, 00) = [0, 00)

is correctly defined and is a bijection. Finally, one has (cf. (3.11)lin [4] (1.4)
and [2.1) above)

o)
27 y()*’

Vu > Qu) = W(u) = F(t,u) =

here and in the rest of this prodfstands for.~!(u) and, equivalentlyy for ().
Now equation|[(2.J6) implies

Q)

/ o dt o v

QW =g = e
“ar

for u > uy; here we used the formula

3(t)Y"(t) — 29/ (t)°
v (t)?

p(t) =
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Next,
Y (O)u(t) =ty'(t) = 3y(t)
= —3/ [t(s —t)* + (s — t)%] e % ds
t
= —3/ (s —t)2se=>%ds
t
=—6 (s —t) e ds
t
= —"(t);
for the fourth of the five equalities here, integration by parts was used. Hence, on
[0, 00),
Y
whence
. 7//2 _ 7/7///'
2 5 ;
Y
this and [(2.p) yield
(210) 7//2 _ ’7/’7,” > 0.
Let (cf. (1.3) and usé€ (2.7))
/ / 4
(2.11) p(u) == Q) _C ()

20 (u)  Hler(t)Pe(u(t)

Using (2.11) and the (3.9) ar{d (R.8), one has

@1z M _d <4ln (1)) - 3l (t) + %’*) _ _%
forall t > 0, where
2
1%:;7_%
Further, on(0, o),

in view of (2.3) and[(2.10). On the other hand, it follows frdm [2.3) thét) — 0
ast — oo. Hence,[(2.13) implies that dif, oo)

(2.14) D > 0.
Now (2.12), (2.14), and (2.2) imply thatis increasing orfy, oo). Also, it follows
from (2.6) and|(2.3) thaf)(u) — 0 asu — oo; it is obvious that: - 2®(u) — 0

asu — oo. It remains to refer to] (1]5)[ (2.111), Proposition]1.1, and also (for
r(oo) = 1) to Proposition A.2[[4].

O
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3. MONOTONOCITY PROPERTIES OF THE RATIO R GIVEN BY (L.8)

Theorem 3.1.
1. There is a unique solution to the equation
(3.1) = P(M22)
forz > py;infact,z =1.834. ...
2.
1 if 0<u<l,
(3.2) Viu) =< = if 1<u<z,
c-P(ly| >u) if u>z.

3. @ R=10n[0,u];
(b) R is decreasing offy:;, z] from R(u;) = 1to R(z) = 0.820.. ;
(c) Risincreasing orjz,co) from R(z) = 0.820...to R(c0) = 1[= r(o0)].
Thus, the upper bound is quite close to the optimal Eaton-Pinelis boupd= Bgp given

. 1 . . .
by (1.3), exceeding it by a factor of at m = 1.218.... In addition,V is asymptotic (at
z

o0) to and as universal &. On the other hand; is much more transparent and tractable than

Q.
Proof of Theorem 3]1.

1. Consider the function

(3.3) Mu) = ———> = 2cu’®(u).

Then
N(u) = 2cuh(u),

whereh is the same as in the beginning of the proof of Thedrer 2.1 on[gage 3, with
B (u) = (u® — 3)p(u), so thaty/3 is the only root of the equatio’(v) = 0. Since
h(uy) = —0.06... < 0, h(v/3) = —0.07... < 0, andh(oco) = 0, it follows thath < 0
on |11, 00), and then so i8/. Hence\ is decreasing ofy:;, o) from A(u1) = 1.2. ..
to A(o0) = 0. Now part 1 of the theorem follows.

2. It also follows from the above that> 1 on x4, z] and\ < 1 on|z, oo). In addition, by

), ), an4), one has= ! on|l, u1], whence\ > 1 on|[l1, u;] by ). Thus,
T
A>1on[l,z]andA < 1o0n|z, 00); in particular,cP (|v| > 1) = A(1) > 1. Now part
2 of the theorem follows.
3. (a) Part 3(a) of the theorem is immediate frdm {1.%),|(3.2), and the inequatity:;.
(b) Of all the parts of the theorem, part 3(b) is the most difficult to prove. In view of

(3.9), the inequalities > y; > 1, (2.6), and[(2.9), one has

C A1)

Yu € [, 2];
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here and to the rest of this proefagain stands for~'(«) and, equivalentlyy for
u(t). It follows that for allu € (11, 2] or, equivalently, for alt € [0, u=!(2)],

L L O P (OO

ai ) = HO = Sy 25 2

Comparing[(2.]l) and (2.9), one has foréatt 0

V') ), (3
=32t ()

Y ()

where
@)
0=
similarly,
’)/”/(t) B ,Y/(t) L 2 .
RO K U
v(t)
this and [(3.p) yield
V() (P +2) k(1) + 3t
YI(t) tr(t)+3
Now (3.5), [3.6), and (3]9) lead to
B N(t,k(t))
L) == ) + 30
where

N(t k)= —=2tk> + (3t* — 2) k* + 12tk +9.

Next, fort > 0,
1ON 2
T k2 S )
6ok " (t 3t) k=2,

which is a monic quadratic polynomial ik, the product of whose roots is2,
negative, so that one has(t) < 0 < kq(t), wherek,(t) andk,(t) are the two

roots. It follows that%—]Z > 0on (0, ky(t)) anda—]]:f < 0on (k(t), 00).

Hence,N (¢, k) is increasing ik € (0, k»(t)) and decreasing ik € (ka(t), 00).
On the other hand, it follows fron (3.7) arid (2.2) that

k(t) >0 Vt>D0.
Therefore,

(38.12) (k(t) < &*(t) Vt>0) = ( N(t,x(t)) > min (N(t,0), N(t, " () ¥t >0);

at this point,x* may be any function which majorizeson (0, co).
Let us now show the functior*(t) := ¢t + 2 is such a majorant of(¢). Toward
this end, introduce

1 [ 2
YD) = ——/ (s —t)*e /2 ds,
¢

so that /
(V) =~
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Similarly to (3.6) and[(3]8),

Y0 2w
3.13 kK(t) =——7==—4 +t.
(319 =0 T
Again with~y(® := ~, one has for > 0
(— (j—l))’ _~)
ot = .
GOy 3G Vi e{0,1,...},

[1]

[2]

[3]

[4]

[5]

[6]

[7]

and, in view of ),%“ES) = % Is decreasing irt > 0. In addition, )
implies thaty)(¢) — gast — oo, for everyj € {—1,0,1,...}. Using now
Proposition 1.1 repeatedly, 5 times, one seeth%Et_—l) is decreasing of0, o),
whencevt > 0 !

) _ 70 _3vem 1
(1) 7(0) 162
This and[(3.1IB) imply that
k(t) <t+2 Vt>0.
Hence, in view of[(3.12),
N(t,x(t)) > min (N(¢,0), N(t,t +2)) Vt>0.

But N(t,0) = 9 > 0 and N(t,¢ + 2) = (12—1)° > 0 for all t. Therefore,
N(t,x(t)) > 0 V¢ > 0. Recalling now[(35),[(3.10) anfl (3]11), one concludes
that R is decreasing ofy, z]. To computeR(z), use [(3.4). Now part 3(b) of the
theorem is proved.

(c) Inview of (1.5) and|(3.2), one ha8 = r on |z, 00). Part 3(c) of the theorem now
follows from part 2(c) of Theorein 2.1 and inequalities j; < 2.

O
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