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Abstract

In this paper we obtain the conditions for L1-convergence of the r-th deriva-
tives of the cosine and sine trigonometric series. These results are extensions
of corresponding Sidon’s and Telyakovskii’s theorems for trigonometric series
(case: r = 0).
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1. Introduction
Let

f(x) =
a0

2
+

∞∑
n=1

an cos nx ,(1.1)

g(x) =
∞∑

n=1

an sin nx(1.2)

be the cosine and sine trigonometric series with real coefficients.
Let ∆an = an−an+1, n ∈ {0, 1, 2, 3, . . .}. The Dirichlet’s kernel, conjugate

Dirichlet’s kernel and modified Dirichlet’s kernel are denoted respectively by

Dn (t) =
1

2
+

n∑
k=1

cos kt =
sin
(
n + 1

2

)
t

2 sin t
2

,

D̃n(t) =
n∑

k=1

sin kt =
cos t

2
− cos

(
n + 1

2

)
t

2 sin t
2

,

Dn(t) = −1

2
ctg

t

2
+ D̃n(t) = −

cos
(
n + 1

2

)
t

2 sin t
2

.

Let

En (t) =
1

2
+

n∑
k=1

eikt and E−n (t) =
1

2
+

n∑
k=1

e−ikt.
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Then ther-th derivativesD(r)
n (t) andD̃

(r)
n (t) can be written as

2D(r)
n (t) = E(r)

n (t) + E
(r)
−n (t) ,(1.3)

2iD̃(r)
n (t) = E(r)

n (t)− E
(r)
−n (t) .(1.4)

In [2], Sidon proved the following theorem.

Theorem 1.1. Let {αn}∞n=1 and{pn}∞n=1 be sequences such that|αn| ≤ 1, for
everyn and let

∑∞
n=1 |pn| converge. If

(1.5) an =
∞∑

k=n

pk

k

k∑
l=n

αl, n ∈ N

then the cosine series (1.1) is the Fourier series of its sumf.

Several authors have studied the problem ofL1−convergence of the series
(1.1) and (1.2).

In [4] Telyakovskii defined the following class ofL1-convergence of Fourier
series. A sequence{ak}∞k=0 belongs to the classS, or {ak} ∈ S if ak → 0 as
k → ∞ and there exists a monotonically decreasing sequence{Ak}∞k=0 such
that

∑∞
k=0Ak < ∞ and|∆ak| ≤ Ak for all k.

The importance of Telyakovskii’s contributions are twofold. Firstly, he ex-
pressed Sidon’s conditions (1.5) in a succinct equivalent form, and secondly, he
showed that the classS is also a class ofL1-convergence. Thus, the classS is
usually called the Sidon–Telyakovskii class.

In the same paper, Telyakovskii proved the following two theorems.
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Theorem 1.2. [4]. Let the coefficients of the seriesf (x) belong to the classS.
Then the series is a Fourier series and the following inequality holds:∫ π

0

|f (x)| dx ≤ M
∞∑

n=0

An ,

whereM is a positive constant, independent onf .

Theorem 1.3. [4]. Let the coefficients of the seriesg (x) belong to the classS.
Then the following inequality holds forp = 1, 2, 3, . . .∫ π

π/(p+1)

|g (x)| dx =

p∑
n=1

|an|
n

+ O

(
∞∑

n=1

An

)
.

In particular, g (x) is a Fourier series iff
∑∞

n=1
|an|
n

< ∞.

In [5], we extended the Sidon–Telyakovskii classS = S0, i.e., we defined
the classSr, r = 1, 2, 3, . . . as follows: {ak}∞k=1 ∈ Sr if ak → 0 ask →
∞ and there exists a monotonically decreasing sequence{Ak}∞k=1 such that∑∞

k=1 krAk < ∞ and|∆ak| ≤ Ak for all k.
We note that byAk ↓ 0 and

∑∞
k=1 krAk < ∞, we get

(1.6) kr+1Ak = o (1) , k →∞.

It is trivially to see thatSr+1 ⊂ Sr for all r = 1, 2, 3, .... Now, let{an}∞n=1 ∈
S1. For arbitrary real numbera0, we shall prove that sequence{an}∞n=0 belongs
to S0. We defineA0 = max(|∆a0|, A1). Then|∆a0| ≤ A0, i.e. |∆an| ≤ An,
for all n ∈ {0, 1, 2, ...} and{An}∞n=0 is monotonically decreasing sequence.
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On the other hand,
∞∑

n=0

An ≤ A0 +
∞∑

n=1

nAn < ∞ .

Thus,{an}∞n=0 ∈ S0, i.e. Sr+1 ⊂ Sr, for all r = 0, 1, 2, . . .. The next example
verifies that the implication

{an} ∈ Sr+1 ⇒ {an} ∈ Sr , r = 0, 1, 2, . . .

is not reversible.

Example 1.1. For n = 0, 1, 2, 3, ... definean =
∑∞

k=n+1
1
k2 . Thenan → 0 as

n → ∞ and forn = 0, 1, 2, 3, . . ., ∆an = 1
(n+1)2

. Firstly we shall show that
{an}∞n=1 /∈ S1.

Let {An}∞n=1 is an arbitrary positive sequence such thatA ↓ 0 and∆an =
|∆an| ≤ An. However,

∑∞
n=1nAn ≥

∑∞
n=1

n
(n+1)2

is divergent, i.e.{an} /∈ S1.

Now, for alln = 0, 1, 2, . . . let An = 1
(n+1)2

. ThenAn ↓ 0, |∆an| ≤ An and∑∞
n=0An =

∑∞
n=1

1
n2 < ∞, i.e. {an}∞n=0 ∈ S0.

Our next example will show that there exists a sequence{an}∞n=1 such that
{an}∞n=1 ∈ Sr but{an}∞n=1 /∈ Sr+1, for all r = 1, 2, 3, . . ..

Namely, for alln = 1, 2, 3, . . . let an =
∑∞

k=n
1

kr+2 . Thenan → 0 asn →∞
and forn = 1, 2, 3, . . . , ∆an = 1

nr+2 . Let {An}∞n=1 is an arbitrary positive
sequence such thatAn ↓ 0 and∆an = |∆an| ≤ An. However,

∞∑
n=1

nr+1An ≥
∞∑

n=1

nr+1 1

nr+2
=

∞∑
n=1

1

n
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is divergent, i.e.{an} /∈ Sr+1. On the other hand, for alln = 1, 2, . . . let
An = 1

nr+2 . ThenAn ↓ 0, |∆an| ≤ An and
∑∞

n=1n
rAn =

∑∞
n=1

1
n2 < ∞, i.e.

{an} ∈ Sr.
In the same paper [5] we proved the following theorem.

Theorem 1.4. [5]. Let the coefficients of the series (1.1) belong to the class
Sr, r = 0, 1, 2, .... Then ther−th derivative of the series (1.1) is a Fourier
series of somef (r) ∈ L1 (0, π) and the following inequality holds:∫ π

0

∣∣f (r) (x)
∣∣ dx ≤ M

∞∑
n=1

nrAn,

where0 < M = M(r) < ∞.

This is an extension of the Telyakovskii Theorem1.2.

http://jipam.vu.edu.au/
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/


Some Results on
L1-Approximation of the r-th

Derivate of Fourier Series

Živorad Tomovski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 23

J. Ineq. Pure and Appl. Math. 3(1) Art. 10, 2002

http://jipam.vu.edu.au

2. Results
In this paper, we shall prove the following main results.

Theorem 2.1. A null sequence{an} belongs to the classSr, r = 0, 1, 2, . . . if
and only if it can be represented as

(2.1) an =
∞∑

k=n

pk

k

k∑
l=n

αl, n ∈ N

where{αn}∞n=1 and{pn}∞n=1 are sequences such that|αn| ≤ 1, for all n and

∞∑
n=1

nr |pn| < ∞.

Corollary 2.2. Let {αn}∞n=1 and{pn}∞n=1 be sequences such that|αn| ≤ 1, for
everyn and let

∑∞
n=1 nr |pn| < ∞, r = 0, 1, 2, . . . . If

an =
∞∑

k=n

pk

k

k∑
l=n

αl, n ∈ N

then ther−th derivate of the series (1.1) is a Fourier series of somef (r) ∈ L1.

Theorem 2.3.Let the coefficients of the seriesg (x) belong to the classSr, r =
0, 1, 2, . . . Then ther-th derivate of the series (1.2) converges to a function and
for m = 1, 2, 3, . . . the following inequality holds:

(∗)
∫ π

π/(m+1)

∣∣g(r) (x)
∣∣ dx ≤ M

(
m∑

n=1

|an| · nr−1 +
∞∑

n=1

nrAn

)
,

http://jipam.vu.edu.au/
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where
0 < M = M(r) < ∞ .

Moreover, if
∑∞

n=1n
r−1|an| < ∞, then ther-th derivate of the series (1.2) is a

Fourier series of someg(r) ∈ L1(0, π) and∫ π

0

∣∣g(r) (x)
∣∣ dx ≤ M

(
∞∑

n=1

|an| · nr−1 +
∞∑

n=1

nrAn

)

Corollary 2.4. Let the coefficients of the seriesg (x) belong to the classSr,
r ≥ 1. Then the following inequality holds:∫ π

0

∣∣g(r) (x)
∣∣ dx ≤ M

∞∑
n=1

nrAn,

where0 < M = M(r) < ∞.
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3. Lemmas
For the proof of our new theorems we need the following lemmas.

The following lemma proved by Sheng, can be reformulated in the following
way.

Lemma 3.1. [1] Let r be a nonnegative integer andx ∈ (0, π], wheren ≥ 1.
Then

D(r)
n (x) =

r∑
k=0

(
n + 1

2

)
k sin

[(
n + 1

2

)
x + kπ

2

](
sin
(

x
2

))r+1−k
ϕk(x),

whereϕr ≡ 1
2

and ϕk, k = 0, 1, 2, . . . , r − 1 denotes various entire4π –
periodic functions ofx, independent ofn. More precisely,ϕk, k = 0, 1, 2, . . . , r
are trigonometric polynomials ofx

2
.

Lemma 3.2. Let {αj}k
j=0 be a sequence of real numbers. Then the following

relation holds forν = 0, 1, 2, . . . , r andr = 0, 1, 2, . . .

Uk =

∫ π

π/(k+1)

∣∣∣∣∣
k∑

j=0

αj

(
j + 1

2

)ν
sin
[(

j + 1
2

)
x + ν+3

2
π
](

sin
(

x
2

))r+1−ν

∣∣∣∣∣ dx

= O

(k + 1)r−ν+ 1
2

(
k∑

j=0

α2
j (j + 1)2ν

)1/2
 .

Proof. Applying first Cauchy–Buniakowski inequality, yields

Uk ≤

[∫ π

π/(k+1)

dx(
sin
(

x
2

))2(r+1−ν)

]1/2
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×


∫ π

π/(k+1)

[
k∑

j=0

αj

(
j +

1

2

)ν

sin

[(
j +

1

2

)
x +

(ν + 3)π

2

]]2

dx


1/2

.

Since ∫ π

π/(k+1)

dx(
sin
(

x
2

))2(r+1−ν)
≤ π2(r+1−ν)

∫ π

π/(k+1)

dx

x2(r+1−ν)

≤ π(k + 1)2(r+1−ν)−1

2(r + 1− ν)− 1

≤ π(k + 1)2(r+1−ν)−1,

we have

Uk ≤
[
π(k + 1)2(r+1−ν)−1

]1/2

×


∫ π

0

[
k∑

j=0

αj

(
j +

1

2

)ν

sin

[(
j +

1

2

)
x +

ν + 3

2
π

]]2

dx


1/2

≤
[
2π(k + 1)2(r+1−ν)−1

]1/2

×


∫ 2π

0

[
k∑

j=0

αj

(
j +

1

2

)ν

sin

[
(2j + 1)t +

ν + 3

2
π

]]2

dt


1/2

.

Then, applying Parseval’s equality, we obtain:

Uk ≤
[
2π (k + 1)2(r+1−ν)−1

]1/2
[

k∑
j=0

|αj|2 (j + 1)2ν

]1/2

.
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Finally,

Uk = O

(k + 1)r−ν+ 1
2

(
k∑

j=0

α2
j (j + 1)2ν

)1/2
 .

Lemma 3.3. Let r ∈ {0, 1, 2, 3, . . . } and{αk}n
k=0 be a sequence of real num-

bers such that|αk| ≤ 1, for all k. Then there exists a finite constantM =
M(r) > 0 such that for anyn ≥ 0

(∗∗)
∫ π

π/(n+1)

∣∣∣∣∣
n∑

k=0

αkD
(r)

k (x)

∣∣∣∣∣ dx ≤ M · (n + 1)r+1.

Proof. Similar to Lemma3.1 it is not difficult to proof the following equality

D
(r)

n (x) =
r∑

k=0

(
n + 1

2

)
k sin

[(
n + 1

2

)
x + k+3

2
π
](

sin
(

x
2

))r+1−k
ϕk(x),

whereϕk denotes the same various4π-periodic functions ofx, independent of
n.

Now, we have:∫ π

π/(n+1)

∣∣∣∣∣
n∑

k=0

αkD
(r)

k (x)

∣∣∣∣∣ dx

≤
∫ π

π/(n+1)

∣∣∣∣∣
n∑

j=0

αj

(
r∑

ν=0

(
j + 1

2

)
ν sin

[(
j + 1

2

)
x + ν+3

2
π
](

sin
(

x
2

))r+1−ν ϕν(x)

)∣∣∣∣∣ dx.
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Sinceϕν are bounded, we have:∫ π

π/(n+1)

∣∣∣∣∣
n∑

j=0

αj

(
j+1

2

)ν
sin
[(

j + 1
2

)
x + ν+3

2
π
](

sin
(

x
2

))r+1−ν ϕν(x)

∣∣∣∣∣ dx ≤ K Un ,

whereUn is the integral as in Lemma3.2, andK = K(r) is a positive constant.
Applying Lemma3.2, to the last integral, we obtain:∫ π

π/(n+1)

∣∣∣∣∣
n∑

j=0

αj

(
j + 1

2

)ν
sin
[(

j + 1
2

)
x + ν+3

2
π
](

sin
(

x
2

))r+1−ν ϕν(x)

∣∣∣∣∣ dx

= O

(n + 1)r−ν+ 1
2

(
n∑

j=0

α2
j (j + 1)2ν

)1/2


= O
(
(n + 1)r−ν+ 1

2 (n + 1)ν+ 1
2

)
= O

(
(n + 1)r+1

)
.

Finally the inequality (∗∗) is satisfied.

Remark 3.1. For r = 0, we obtain the Telyakovskii type inequality, proved in
[4].

Lemma 3.4. Let r be a non-negative integer. Then for all0 < |t| ≤ π and all
n ≥ 1 the following estimates hold:

(i)
∣∣∣E(r)
−n (t)

∣∣∣ ≤ 4nrπ
|t| ,

(ii)
∣∣∣D̃(r)

n (t)
∣∣∣ ≤ 4nrπ

|t| ,
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(iii)
∣∣∣D(r)

n (t)
∣∣∣ ≤ 4nrπ

|t| + O
(

1
|t|r+1

)
.

Proof. (i) The caser = 0 is trivial. Really,

|En(t)| ≤ |Dn(t)|+ |D̃n(t)| ≤ π

2|t|
+

π

|t|
=

3π

2|t|
<

4π

|t|
,

|E−n(t)| = |En(−t)| < 4π

|t|
.

Let r ≥ 1. Applying the Abel’s transformation, we have:

E(r)
n (t) = ir

n∑
k=1

kreikt = ir

[
n−1∑
k=1

∆(kr)

(
Ek(t)−

1

2

)
+ nr

(
En(t)− 1

2

)]

|E(r)
n (t)| ≤

n−1∑
k=1

[(k + 1)r − kr]

(
1

2
+ |Ek(t)|

)
+ nr

(
1

2
+ |En(t)|

)

≤
(

π

2|t|
+

3π

2|t|

){n−1∑
k=1

[(k + 1)r − kr] + nr

}
=

4πnr

|t|
.

SinceE
(r)
−n (t) = E

(r)
n (−t), we obtain

∣∣∣E(r)
−n (t)

∣∣∣ ≤ 4nrπ
|t| .

(ii) Applying the inequality(i), we obtain∣∣∣D̃(r)
n (t)

∣∣∣ =
∣∣∣iD̃(r)

n (t)
∣∣∣ ≤ 1

2

∣∣E(r)
n (t)

∣∣+ 1

2

∣∣∣E(r)
−n (t)

∣∣∣ ≤ 4nrπ

|t|
.
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(iii) We note that
∣∣∣(ctg t

2

)(r)∣∣∣ = O
(

1
|t|r+1

)
. Applying the inequality(ii), we

obtain

|D(r)

n (t)| ≤ |D̃(r)
n (t)|+ 1

2

∣∣∣∣∣
(

ctg
t

2

)(r)
∣∣∣∣∣ ≤ 4nrπ

|t|
+ O

(
1

|t|r+1

)
.
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4. Proofs of the Main Results
Proof of Theorem2.1. Let (2.1) hold. Then

∆ak = αk

∞∑
m=k

pm

m
,

and we denote

Ak =
∞∑

m=k

|pm|
m

.

Since|αk| ≤ 1, we get

|∆ak| ≤ |αk|
∞∑

m=k

|pm|
m

≤ Ak , for all k .

However,

∞∑
k=1

krAk =
∞∑

k=1

kr

∞∑
m=k

|pm|
m

=
∞∑

m=1

|pm|
m

m∑
k=1

kr ≤
∞∑

m=1

mr |pm| < ∞ ,

andAk ↓ 0 i.e. {ak} ∈ Sr.

Now, if {ak} ∈ Sr, we putαk = ∆ak

Ak
andpk = k (Ak − Ak+1) .

Hence|αk| ≤ 1, and by (1.6) we get:

∞∑
k=1

kr |pk| =
∞∑

k=1

kr+1 (Ak − Ak+1) ≤
∞∑

k=1

(r + 1) krAk < ∞ .
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Finally,

ak =
∞∑

i=k

∆ai =
∞∑

i=k

αiAi =
∞∑

i=k

αi

∞∑
m=i

∆Am

=
∞∑

i=k

αi

∞∑
m=i

pm

m
=

∞∑
m=k

pm

m

m∑
i=k

αi ,

i.e. (2.1) holds.

Proof of Corollary2.2. The proof of this corollary follows from Theorems1.4
and2.1.

Proof of Theorem2.3. We suppose thata0 = 0 andA0 = max (|a1| , A1) .

Applying the Abel’s transformation, we have:

(4.1) g(x) =
∞∑

k=0

∆akDk(x) , x ∈ (0, π] .

Applying Lemma3.4 (iii), we have that the series
∑∞

k=1 ∆akD
(r)

k (x) is uni-
formly convergent on any compact subset of[ε, π], whereε > 0.

Thus, representation (4.1) implies that

g(r) (x) =
∞∑

k=0

∆akD
(r)

k (x) .
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Then,

π∫
π/(m+1)

|g(r)(x)|dx ≤
m∑

j=1

∫ π/j

π/(j+1)

∣∣∣∣∣
j−1∑
k=0

∆akD
(r)

k (x)

∣∣∣∣∣ dx

+ O

(
m∑

j=1

∫ π/j

π/(j+1)

∣∣∣∣∣
∞∑

k=j

∆akD
(r)

k (x)

∣∣∣∣∣ dx

)
.

Let

I1 =
m∑

j=1

∫ π/j

π/(j+1)

∣∣∣∣∣
j−1∑
k=0

∆akD
(r)

k (x)

∣∣∣∣∣ dx ,

I2 =
m∑

j=1

∫ π/j

π/(j+1)

∣∣∣∣∣
∞∑

k=j

∆akD
(r)

k (x)

∣∣∣∣∣ dx .

Sincectgx
2

= 2
x

+
∑∞

n=1
4x

x2−4n2π2 (see [3]) it is not difficult to proof the follow-
ing estimate (

ctg
x

2

)(r)

=
2(−1)rr!

xr+1
+ O(1), x ∈ (0, π] .

Thus

D
(r)

n (x) =
(−1)r+1r!

xr+1
+ O

(
(n + 1)r+1

)
, x ∈ (0, π]
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Hence,

I1 = r!
m∑

j=1

∣∣∣∣∣
j−1∑
k=0

∆ak

∣∣∣∣∣
∫ π/j

π/(j+1)

dx

xr+1

+ O

(
m∑

j=1

[
j−1∑
k=0

|∆ak|(k + 1)r+1

]∫ π/j

π/(j+1)

dx

)

= Or

(
m∑

j=1

|aj|jr−1

)
+ O

(
m∑

j=1

j−1∑
k=0

(k + 1)r+1|∆ak|
j(j + 1)

)
,

whereOr depends onr. However,

m∑
j=1

j−1∑
k=0

(k + 1)r+1|∆ak|
j(j + 1)

=
m∑

j=1

1

j(j + 1)

j−1∑
k=0

(k + 1)r+1|∆ak|

≤
∞∑

k=0

(k + 1)r+1|∆ak|
∞∑

j=k+1

1

j(j + 1)

=
∞∑

k=0

(k + 1)r|∆ak|

= |∆a0|+
∞∑

k=1

(k + 1)r|∆ak|

≤ |a1|+ 2r

∞∑
k=1

kr|∆ak|
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≤
∞∑

k=1

|∆ak|+ 2r

∞∑
k=1

krAk ≤ (1 + 2r)
∞∑

k=1

krAk .

Thus,
m∑

j=1

j−1∑
k=0

|∆ak|(k + 1)r+1

j(j + 1)
= Or

(
∞∑

k=1

krAk

)
,

whereOr depends onr.
Therefore,

I1 = Or

(
m∑

j=1

|aj|jr−1

)
+ Or

(
∞∑

k=1

krAk

)
.

Application of Abel’s transformation, yields

∞∑
k=j

∆akD
(r)

k (x) =
∞∑

k=j

∆Ak

k∑
i=0

∆ai

Ai

D
(r)

i (x)− Aj

j−1∑
i=0

∆ai

Ai

D
(r)

i (x) .

Let us estimate the second integral:

I2 ≤
m∑

j=1

[
∞∑

k=j

(∆Ak)

∫ π

π/(j+1)

∣∣∣∣∣
k∑

i=0

∆ai

Ai

D
(r)

i (x)

∣∣∣∣∣
+Aj

∫ π/j

π/(j+1)

∣∣∣∣∣
j−1∑
i=0

∆ai

Ai

D
(r)

i (x)

∣∣∣∣∣ dx

]
.
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Applying the Lemma3.3, we have:

(4.2) Jk =

∫ π

π/(j+1)

∣∣∣∣∣
k∑

i=0

∆ai

Ai

D
(r)

i (x)

∣∣∣∣∣ dx = Or

(
(k + 1)r+1

)
,

whereOr depends onr. Then, by Lemma3.4(iii),∫ π/j

π/(j+1)

∣∣∣∣∣
j−1∑
i=0

∆ai

Ai

D
(r)

i (x)

∣∣∣∣∣ dx|

= O

(
jr

(
j−1∑
i=0

|∆ai|
Ai

∫ π/j

π/(j+1)

dx

x

))
+ O

(
j−1∑
i=0

|∆ai|
Ai

∫ π/j

π/(j+1)

dx

xr+1

)
= O(jr) + Or(j

r) = Or(j
r)(4.3)

whereOr depends onr. However, by (4.2), (4.3) and (1.6), we have

I2 ≤
∞∑

k=1

(∆Ak) Jk + Or

(
∞∑

j=1

jrAj

)

= Or(1)
∞∑

k=1

(∆Ak)(k + 1)r+1 + Or

(
∞∑

j=1

jrAj

)

= Or

(
∞∑

j=1

jrAj

)
.

Finally, the inequality (∗) is satisfied.
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Proof of Corollary2.4. By the inequalities

m∑
n=1

|an| · nr−1 ≤
∞∑

n=1

nr−1

∞∑
k=n

|∆ak|

≤
∞∑

n=1

nr−1

∞∑
k=n

Ak

=
∞∑

k=1

Ak

k∑
n=1

nr−1 ≤
∞∑

k=1

krAk,

and Theorem2.3, we obtain:∫ π

0

|g(r)(x)|dx ≤ M

(
∞∑

n=1

nrAn

)
,

where0 < M = M(r) < ∞.
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