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ABSTRACT. In this paper we study convolution operatdrs with measures: in R* of the
form 1 (E) = [, x& (z,¢(2))dz, where B is the unit ball ofR?, andy is a homogeneous
polynomial function. Ifinf;cg: [det (digp (h, ))| vanishes only on a finite union of lines, we
prove, under suitable hypothesis, tifat is bounded fromL? into L if (%, %) belongs to a
certain explicitly described trapezoidal region.
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1. INTRODUCTION

It is well known that a complex measufeon R™ acts as a convolution operator on the
Lebesgue spacds’ (R") : pux LP C LP for 1 < p < oo. If for somep there existg > p such
thatu « LP C L%, pis calledLP— improving. It is known that singular measures supported on
smooth submanifolds d&™ may belL?— improving. See, for example,![2],/[5],[8].][9].][7] and
[4].

Let 1, v, be two homogeneous polynomial functionshof degreem > 2 and lety =
(¢1,p2) . Let u be the Borel measure d* given by

(1.1) u(E) = / x& (2,0 () dz,
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2 E. FERREYRA, T. GODOY, AND M. URCIUOLO

where B denotes the closed unit ball around the origiRthanddz is the Lebesgue measure
onR?. Let T, be the convolution operator given By, f = 1. = f, f € S (R*) and letE, be the
type set corresponding to the measurefined by

11
E,LL: {(]_975) :HT,LLHp,q<ooul SpaQSOO}y

where||T, || denotes the operator norm @, from L? (R*) into L¢ (R*) and where the ?
lip,q

spaces are taken with respect to the Lebesgue measiité on

Forz, h € R? lety” (x) h be the2 x 2 matrix whosej — th column ise () h, whereg! (z)
denotes the Hessian matrix @f atz. Following [3, p. 152], we say that € R? is an elliptic
point forp if det (¢” (z) h) # 0forall h € R?\ {0} . For A C R?, we will say thaty is strongly
elliptic on A if det (¢} (z) h, ¢ (y) h) # 0 forall z,y € Aandh € R*\ {0}.

If every pointz € B\ {0} is elliptic for ¢, it is proved in [4] that forn > 3, E, is the closed
trapezoidal regioft,,, with vertices(0,0), (1,1), (525, 2=;) and (27, =5 -

Our aim in this paper is to study the case where the set of non elliptic points consists of a finite
union of lines through the origin,, ..., L. We assume from now on, that fere R* — {0},
det (" (z) h) does not vanish identically, as a functionvofFor eachl = 1,2, ..., k, let 7., and
Tt be the orthogonal projections froR¥ onto L; and ;- respectively. Fos > 0,1 <1 <k,

let
V(Sl = {:1: €eB:1/2<|m, (z)] <1land ‘WLLL (37)’ < 0|, ($)|}

It is easy to see (see Lemina]2.1 and Rerpark 3.6) that $anall enough, there exists € N
and positive constantsandc¢’ such that

[e7] . ay
el @) < inf Jdet (¢ @) )] < [y (@)

for all z € V. Following the approach developed [ri [3], we prove, in Thedrer 3.7, that if
a = max;<<; oq and if 7ae < m + 1, then the interior of,, agrees with the interior of,,.

Moreover in Theore8 we obtain thaf, = 3, still holds in some cases wheTe: >
m + 1, if we require a suitable hypothesis on the behavior, near the lipes, L, of the map
(2, y) — infpesr |det (] (x) b o (y) h)].

In any case, even though we can not give a complete description of the intety;, ofe
obtain a polygonal region contained in it.

Throughout the paperwill denote a positive constant not necessarily the same at each oc-
currence.

2. PRELIMINARIES
Let o1, ¢, : R? — R be two homogeneous polynomials functions of degreg 2 and let
© = (p1,p2). Foré > 0 let
1
(2.1) Véz{(371,372)633§§|$1\§1and|$2|§5’9@1|}~

We assume in this section that, for sofge> 0, the set of the non elliptic points forin Vj, is
contained in the;; axis.

Forz € R? let P = P (x) be the symmetric matrix that realizes the quadratic férm-
det (¢" (x) h), SO

(2.2) det (¢" (x) h) = (P (x) h,h).
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Lemma 2.1. There exist € (0,6y), « € N and a real analytic functioy = g (x1, z2)on V;
with g (x1,0) # 0 for x; # 0 such that

@3) inf [det (¢ () )| = |22/ (@)

forall x € Vj.

Proof. Since P(z) is real analytic ori; and P (x) # 0 for x # 0, it follows that, foré small
enough, there exists two real analytic functiongz) and X\, (x) wich are the eigenvalues of
P (x). Also, infj— |det (¢” (z) h)| = min {|\; (z)],|X2 (x)[} for z € V;. Since we have
assumed thatl, 0) is not an elliptic point forp and thatP (z) # 0 for « # 0, diminishingo
if necessary, we can assume tha{1,0) = 0 and that\; (1, z5)| < |A\a (1, 29)| for |z, < 6.
SinceP (x) is homogeneous im, we have that\; (x) and\, (x) are homogeneous inwith
the same homogeneity degrée Thus|\; (z)| < |As (z)| for all x € V5. Now, A\; (1,22) =
x§G (z2) for some real analytical functiod = G (.TQ) with G (0) # 0 and so\; (z1,z2) =

xd)\ (1, ;—j) = {23 G ( ) . Takingg (21, 3) = 2¢ aG( ) the lemma follows. O

Following [3], forU C R? let J; : R? — R U {0} given by
Ju(h) = inf |det (¢’ (z+h) — ¢ ()],

z, z+helU

where the infimum of the empty set is understood tadaNe also set, as there, for< o < 1

RY (f) (x) = / Ju (@ — 9)™° f (y) dy.

Forr > 0 andw € R?, let B, (w) denotes the open ball centered.avith radiusr.
We have the following

Lemma 2.2. Let w be an elliptic point fory. Then there exist positive constamtand ¢’ de-
pending only on|¢1 ([ sz @and|[ez|cspy such that ifd < r < cinfjy = |det (¢” (w) k)| then

(1) [det (¢’ (x4 h) — ¢ (2))| = 5 |det (¢" (w) h)| if 2,2+ h € B, (w).
@ |[RF© || <ertisly, fes®Y.
Proof. Let ' (h) = det (¢’ (xz + h) — ¢’ (z)) and letd’ F denotes the —th differential of ' at

x. Applying the Taylor formula to¥' (h ) aroundh = 0 and taking into account thdt (0) = 0,
doF (h) = 0 and that??F (h, h) = 2det (©” (z) h) we obtain

(11
2

det (¢’ (z+h) — ¢ (z)) = det (¢" (z) h) +/O d3 F (h, h,h)dt.

Let H (x) = det (¢” (z) h) . The above equation gives

et (¢ (24 ) = ¢/ (@) = et (& () 1)+ [ dussor T (1)

+/0 ( 5 ) d3, F (h, h,h) dt.

Then, forz,z + h € B, (w) we have

[det (¢ (z +h) = ¢ (2)) — det (¢" (w) h)| < M |B|* < 2M7 [h[*
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with A7 depending only|: || s ) @and|lgs || s ) - If we chooser < 437, we get, for0 < r <
cinfip=1 |det (¢” (w) h)| that

et (¢! (z 4+ h) — ¢ (@) > 3 Idet (¢" (w) 1)

and that .
det (¢ (w) h)| > —7r |h|?
|det (" (w) )I_chl |

N | —

IB.(w) (h) >

Thus ’Rfr(“’) (f)H < dra || (Ol < dr~2 || f||s , wherel, denotes the Riesz potential
2 6 2

onRR*, defined as in[[10, p. 117]. So the lemma follows from the Hardy-Littlewood—Sobolev
theorem of fractional integration as stated e.glin [10, p. 119]. O

Lemma 2.3. Letw be an elliptic point forp. Then there exists a positive constarttepending
only on ¢1|cs ) and [[z| sy such that if0 < r < cinfjy = [det (¢” (w) k)| then for all
h # 0the mapr — ¢ (x + h) — ¢ (x) is injective on the domaific € B : z,z+ h € B, (w)} .

Proof. Suppose that, y, = + h andy + h belong toB, (w) and that

pe+h)—e@)=¢ly+h)—ey).
From this equation we get

1 1 1
0= [ wrth) =g bt = [ [y e (v - ) dsi
0 0 0

Now, for z € B, (w),

1
Mr |y — x| [h]

IN

then
1 r1

1 1
= dz;@ (y -, h) + / / |:d925+th+s(yfx)gp - di)@} (y -, h) dsdt.
0 0

So|dip (y — . h)| < Mr |y — | |h| with AL depending only offie: | s ) and|ls|l s -
On the other handy is an elliptic point fory and so, fofu| = 1, the matrixA := ¢” (w) u
is invertible. AlsoA~! = (det A)~" Ad (A), then

—~

A7 2| = |det A| 71| Ad (A) z| < |z,

|det A|
whereM depends only i1l c2(5) @A ||zl c2(5)- Then, forv| = 1 andz = Av, we have
|Av| > |det A| /M. Thus

2o (y—x,h)| > |y—=z||h| inf |die(u,0)]

lul=1,|v|=1

= ly—allAl inf (" (w)wv)

v

1
— |y — x| |h] inf |det " (w) ul.
Lyl ] o, et ()
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If we choose < M—lﬁ inf|, =1 | det ¢” (w) u| the above inequality implies = y and the lemma
is proved. O

For any measurable sel C B, let us, be the Borel measure defined by
pa(E) = [, xe (z,¢(z))dz and letT),, be the convolution operator given By, f = 114 * f.

Proposition 2.4. Letw be an elliptic point forp. Then there exist positive constamtand ¢/
depending only ofj1 | cs ) @nd ||ps| s () such that ifd < r < cinfj, = [det " (w) [ then

Proof. Taking account of Lemmia 4.3, we can proceed as in Theorem 0 in [3] to obtain, as there,
that

A - | F RY™F, (z)d
= [ B@ I RUR.@d

1<m<3,m#j

_1
Ty f |, < 73 11

3 1
,U,BT(M) * fH3 < (A1A2A3)§ )

where

andF; (x) = | f (x..)ll5
Then the proposition follows from Lemnja 2.2 and an application of the triple Holder in-
equality. O
For0 <a < 1landj e N let
Uuj = {(z1,22) € B: |z1]| > a, 27 |21] < |22 <277 4]}

and letU, ;;, 1 = 1,2, 3,4 the connected components(@f ;.
We have

Lemma 2.5. Let0 < a < 1. Suppose that there exiSte N, j, € N and a positive constant
¢ such that|det (¢ (z) h, ¢4 (y) k)| > 2% |n* for all h € R?, z,y € U, i, j > jo and
1=1,2,3,4. Thus

(1) Forall j > jo,i =1,2,3,4if z andz + h belong toU, ;; then
et (¢' (z + ) — &' ()] > 2777 |n*.

(2) There exists a positive constahsuch that for allj > j,,7 = 1,2, 3,4
|R ()], = 2% 11y
Proof. We fix i andj > j,. Forz € U, ;;, we have
1
det (¢' (x+h) — ' (x)) = det (/ " (x + sh) hds) :
0

For eachi, € R?\ {0} we have eithetlet (o (x) b, @ (y) h) > 2797 |n|* for all 2,y € U,
or det (¢ (z) h, ol (y) h) < —c277%|h|* for all 2,y € U, ;. We consider the first case. Let
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F()_det<f0 x+sh)hds).Then
F'(t) = det (/Ot O (x + sh) hds, ¢y (x + th) h>
+ det (gp’l’(x+th)h,/otgp’2'(x+sh)hds)
= /Otdet( ' (z + sh) h, oy (x4 th) h)ds

t
/ det (¢} (x + th) h, ¢y (x + sh) h) ds > 2% ||’ .
0

SinceF (0) = 0 we getF (1 fo F'(t)dt > 2797 |h)* . Thus
det (gp (z+h)—¢' () =F (1) > 2P |h].

Then Jy, ,, (k) > 2798 |h|?, and the lemma follows, as in Lemr@z.z, from the Hardy—
Littlewood—Sobolev theorem of fractional integration. The other case is similar. 0J

For fixedz(), 2® € R?, let
B, (2)_{ ceR*: z—2W cU,;,; andr — 2? € Uuyi},i=1,2,34.

a,j,i
We have
Lemma2.6.Let0 < a < 1and letz™, 22 € R2. Suppose that there existc N, j, € Nand a
positive constant such thatdet (% () h, @4 (y) h)| > 2797 |h|* forall h € R%, 2,y € U, 4,
j > joandi = 1,2,3,4. Then there existg; € N independent of™"), ) such that for all
j > 71,1 =1,2,3 4 and all nonnegativg € S (R?) it holds that

/(1) 2) f(y_@(l'—x(l))’y—gp(x—x ))d:cdy<J
B* T xR2 .

a,3,1

2

m
@ =20y f,

a,j,i

Proof. We assert that, if > j, then for eachz,w) € R? x R? andi = 1,2, 3,4, the set
{( y) € Bf(;)zx@) xR*: z=y—p(z—2W) andw=y — ¢ (z - x(Q))}
is a finite set with at mosh? elements. Indeed, if = y—¢ (z — zV) andw = y—¢ (z — 2?)
with z € ngix@), Lemm says that, fgrlarge enough,
|det (¢ (z — W) — ¢ (v — x(Q)))‘ > 2777 |n|?.

Thus the Bezout's Theorem (See é.9.[1, Lemma 11.5.1, p. 281]) implies that fofeaghe

R? x R? the set
{x e Br ¢ (z— ZL‘(Q)) —p(z— x(l)) =z— w}

a,j,

is a finite set with at mosi? points. Sincer determineg;, the assertion follows.
For a fixedn > 0 and fork = (ky,....ks) € Z*, let Q. = [Ti<pey [Fnn, (1 + Ky) 7] . Let

Dy i (Bx(l) 2@ IR{2> N Q. — R? x R? be the function defined by

a,j,i
(I)kvj,i (Jf,y) = (y — @ (fL’ — I(l)) Y — (I’ — I(Q))>
and |eth7j7i its image. Alsadet ((I);c]z) ( ) = det ((70’ (SC _ l’(Q)) o (10/ ($ . l‘(l))) Thus

(2.4) |det () (x,9)| > Ju,,, (@ — 2®)
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2D 22

for (z,y) € (Bam X R2> N Q.

Since®y ;; (z,y) = Py, (Z,y) implies thaty (z — 2V) — ¢ (Z — 2W) = p (z — 2?@) —
® (I— x(z)) , taking into account Lemm@.l, from Lemma|2.3 it follows the existence of
j € N with j independent of:()), 2 such that forj > j there existsj = 7(j) > 0
satisfying that for0 < n < 77(j) the map®, ,; is injective for allk € Z*. Let ¥, ,; :
Wi — (B”E(l)’”ﬁm X R2> NQy its inverse. Lemm.5 says tHatt (¢}, ;;)| > c277% [h|* on

a’j’i
2 2 9
B, ;" xR?)NQy. We have

/Bzm «® o f (y - ¥ (75 - 37(1)) Y= (96 - x(Q))) dzdy
’ X

:Z/ f(y—gp(m—x(l)),y—gp(m—x@)))dxdy
<B‘T(1)”‘(2) ><]R2>0Qk

kez4 a5y
= Z/ f(z,w) - ! dzdw
=
< > i, (0) f (v) dv
2) — 2@ kg
JUa,j,i (x T ) R4 kJEZ4
2
m
<
o JUa,j,i (x(Q) - x(l)) R4 f
where we have usef (2.4). O

Proposition 2.7. Let0 < a < 1. Suppose that there exigst € N, j, € N and a positive
constante such thatdet (¢? () h, ¢4 (y) h)| > 2797 |n|* forall h € R?, 2,y € U, 4, 7 > o,
i =1,2,3,4. Then, there exist, € N, ¢ > 0 such that for allj > j;, f € S (R*)

o8
|To, £, < €25 1515

Proof. Fori = 1,2, 3,4, let
Ko = {(:U,y,m(l),x(z),x(3)) ER?XxRZxRZxR2xR?:z— 2 e Uajis 8= 1,2,3} .
We can proceed as in Theorem 0[in [3] to obtain, as there, that
1w, * Flls = / II f @iy =@ —a;)) dedydada® da®
Kaji1<5<3

taking into account of Lemmnja 2.6 and reasoning, with the obvious changes| as in [3], Theorem
0, we obtain that

10, % F2 < m? (A1 AsAg)s

with
A= / Fi(@) [ R™'Fu(z)ds
R? 1<m<3m#j
and£; (z) = || (x,.)||s . Now the proof follows as in Propositi.4. O
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3. ABOUT THE TYPE SET
Proposition 3.1. For § > 0 let V5 be defined by (2]1). Suppose that the set of the non elliptic
points fory in Vs are those lying in ther; axis and leta be defined b 3).Thei,, con-
tains the closed trapezoidal region with vertig@so) , (1,1), (&1, 2=2) (2, 1), except
perhaps the closed edge parallel to the principal diagonal.

Proof. We first show thatl — 6) (1,1) + 6 (%3*, %:2) € E,,,, if 0 <6 < 1,

Ta

If w= (w,ws) € Us, then2=7=! < |wy| < 2791, Thus, from Lemm.@.s and Propo-
sition, follows the existence gf € N and of a positive constant= ¢ (ngl les(p) - H%HCs(B))
such that ifr; = ¢277*, then

ITus, o £ < 2% 011

ri)? |5 2
for somec > 0 and allj > jo,w € U%’j, feSMRY. Foro <t < 1letp,q be defined
by (pit, q—i) =t(%,1)+(1—-1)(1,1). We have als# T,wrj(me1 < w274 f||, , thus, the
Riesz-Thorin theorem gives

|

Sincel’; ; can be covered withV' of such ballsB, (w) with N ~ 2/~1 we get that

T,

KBy (w)

fHQt = C2j( e ) ”prt

< CQj(gatfl).
pt,qt

T,

2%

L.

LetU = Uj»;,Us ;. We have thaf|T,,, |1, ., < >, || Tuw < o0, fort < 2. Since for

Pt,qt

L
t ==, we have - = 1— = and_ = 1 — 3 and since every point ii;\U is an elliptic point

, < 00), we getthafl — 6) (1,1)+6 (Te=1 T=2) ¢

(and so, from Theorem 3 in [Bb Lo

3

By for 0 < 6 < 1. On the other hand,2a standard computation shows that the adjoint operator
Y

T;Va is given byT;V(;f = (TW(S (fV)) , Wwhere we write, fory : R* — C, ¢V (z) = g(—z).

ThusEW(S is symmetric with respect to the nonprincipal diagonal. Finally, after an application

of the Riesz-Thorin interpolation theorem, the proposition follows. O

For¢o > 0, IetA(; = {(1’1,.@2) € B: ’$2| <9 |l’1‘}
Remark 3.2. Fors > 0, z = (x1,...,74) € R* we sets e & = (sx1, 579, ™13, 5™1y) . If
ECR), FCR'wesetsE ={sr:zx € E}andse F = {sex:x e F}.Forf:R'— C,
s > 0, let f; denotes the function given b (z) = f (s e z) . A computation shows that

(3.1) (T, f) @7 o) =272 (T, o) (0)
forall f € S(RY), z € R,
From this it follows easily that

‘ T

) q P
Ha—jvy

. 2_j<2(m+1)_2(m+1) +2) ‘

Hvg

p,q pq

This fact implies that
11
(3.2) E, C {(—, —) :
P q
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and that if. > > — 5 then( ) € E,,_ ifand only if (%, %) SO

m+1
Theorem 3.3. Suppose that for some > 0 the set of the non elliptic points fgr in A are
those lying on the:; axis and letn be defined b){_(_Z}B) Thefd eff, ,, contains the intersection of
the two closed trapezoidal regions with vertiqes0) , (1,1), (m+1, n2), (25 741) and
(0,0), (1,1), (Tet, 2=2) (£, L) respectively, except perhaps the closed edge parallel to
the diagonal.
Moreover, iffa < m+1 then the interior OEMA(; is the open trapezoidal region with vertices

(0,0), (1,1), (m+17 m+1) and (m_+1’ m;ﬂ)
Proof. Taking into account Propositign 3.1, the theorem follows from the facts of Rgmark 3.2.
0

For0 <a < landd > O0wesetlV,s = {(z1,22) € B:a <|z;| <1land|zy] <J|xq|}. We
have
Proposition 3.4.Let0 < a < 1. Suppose that for sonfle< a < 1, jo, 3 € N and some positive
constantc we haveldet (¢ () h, ¢! (y) h)| > 2% |h> forall h € R, z,y € Uaji, 7 > Jo
andi = 1,2, 3,4. Then, ford positive and small enouglEW contains the closed trapezoidal
region with verticeg0,0), (1,1), (%, %) , (ﬁig, ﬁ+3) except perhaps the closed edge
parallel to the principal diagonal.

Proof. Proposition 2.]7 says that there existc N and a positive constantsuch that forj > j;
andf € S (RY)

Also, for some: > 0and allf € S (R*) we hav%

T, ||, < 2% 1115

'U'Ua 375t

o, F|, < 277 151l Then|

<
R

2/ (15-01-1) 1£1l,, wherep, ¢; are defined as in the proof of Proposi3.1. Uet U5, U, ;.

Then|T,,, fll,,,, < ocif t < 5i5. Now, the proof follows as in Proposition 3.1. O

Theorem 3.5. Suppose that for sonte< a < 1, jo, 5 € N and for some positive constantve
have|det (7 (x) b, & (y) h)| > 2799 |n|* for all z,y € U, 4, 7 > jo andi = 1,2,3,4. Then
for ¢ positive and small enougIEHA contains the intersection of the two closed trapezoidal

regions with vertice$0,0) , (1,1), (527, 2=), (557, 7=05) and(0,0), (1,1), (%,%)
<ﬁiz7 6+3) respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if 3 < m — 2 then the interior off), is the open trapezoidal region with vertices

(0’ O) (1 1) <m+17 m+1) and (m_—l—l’ m;—i—l)
Proof. Follows as in Theorein 3.3 using now Proposifior] 3.4 instead of Propdsitipn 3.1
Remark 3.6. We now turn out to the case wheris a homogeneous polynomial function whose
set of non elliptic points is a finite union of lines through the oridip.,..,L

Foreach, 1 <! <k, letA} = {z € R?: |r{ x| < §|r,x|} wherer,, andr{, denote the
orthogonal projections frof? into L; and L;- respectively. Thus eacH} is a closed conical
sector around,;. We choosé small enough such thati, N A% = () for [ # i.

It is easy to see that there exists (a uniqueg N and positive constants, ¢/ such that

(3.3) o |mw]™ < “ilI‘l_fl |det (" (w) h)| < ¢ |nf,z|™

for all w € AY. Indeed, after a rotation the situation reduces to that considered in Remlark 3.2.
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Theorem 3.7. Suppose that the set of non elliptic points is a finite union of lines through the
origin, Ly,....Ly. Forl = 1,2, ..., k, let ; be defined by (3}3), and let = max;<;<; ;. Then
E,, contains the intersection of the two closed trapezoidal regions with veitice$, (1,1),
(27, 25) (27, -5) and (0,0, (11), (%1, 7222) (2, 1), respectively, except per-
haps the closed edge parallel to the diagonal.

Moreover, if7ac < m+ 1 then the interior off,, is the interior of the trapezoidal regions with

vertices(0,0), (1,1), (2. 23), (25, -=7) -

Proof. Forl = 1,2, ..., k, let AL be as above. From Theor3.3, we obtain E@g contains

the intersection of the two closed trapezoidal regions with vertiegs) ,(1,1) , (25, 2),

(=2;,-1) and (0,0) , (1,1), <M M) , ( 2 1 ) respectively, except perhaps the

m+17 m+1 Tag 7 T Tay) Ty
closed edge parallel to the diagonal.

Since everyr € B\ U; AL is an elliptic point fory, Theorem 0 in[[3] and a compactness
argument give thaliT,,,||s ; < oo whereD = {z € B\ U, A5 : 5 <|z|} . Then (using the
symmetry ofE, , the fact of thatup is a finite measure and the Riesz-Thorin theoréfy)
is the closed triangle with verticg9,0), (1,1), (%, %) . Now, proceeding as in the proof of
Fe\u L , %

theorem is true. The second one follows also using the facts of Rgmark 3.2. O

Theore c we get th — 7. Then the first assertion of the

<ooif$>

For0 < a < 1, we set
U, ={zeR*:a<|mp(2)] <land2 7 |rp (2)] < |mp ()] <27 7y (@)}

letU! ,;,i=1,2,3,4 be the connected components.gf; .

Theorem 3.8. Suppose that the set of non elliptic points §ois a finite union of lines through
the origin, L4,...,.L;. Let0 < a < 1 and letj, € N such that

Forl = 1,2,...,k, there exists3, € N satisfying|det (¢! () h, ¢" (y) k)| > 279 |h|? for
all x,y € U}iji,j > joandi = 1,2,3,4. Let 3 = max;<;<; 8;. Thenk, contains the intersec-

tion of the two closed trapezoidal regions with verticed) , (1,1), (;21, 2) , (725, 729)
1

and(0,0), (1,1), <%, %) : (ﬁ, m), respectively, except perhaps the closed edge par-

allel to the diagonal.
Moreover, if3 < m — 2 then the interior off,, is the interior of the trapezoidal region with

vertices(0,0), (1,1), (m’il, zjr}) , (mil, mﬁrl) .

Proof. Follows as in Theorein 3.7, using now Theotfen) 3.5 instead of Thgor¢gm 3.3. [

Example 3.1. ¢ (1, 15) = (2229 — 2123, 2339 + 2123)

Itis easy to check that the set of non elliptic points is the union of the coordinate axes. Indeed,
for h = (hy, hy) we havedet ¢ (z1,22) h = 8z2h? + 8x w90 hy + 822h3 and this quadratic
formin (hy, he) has non trivial zeros only if; = 0 or z» = 0. The associated symmetric matrix
to the quadratic form is

8217% 433'15(,’2
4179 8:10%
and forz; # 0 and|zs| < ¢ || with 6 small enough, its eigenvalue of lower absolute value
IS\ (21, m2) = 42? + 422 — 4y/(23 — 2222 + 2f). Thus )\, (21, 22) ~ 623 for such(zy, x5) .
Similarly, for o # 0 and|z;| < § |x»| with § small enough, the eigenvalue of lower absolute
value is comparable withz2. Then, in the notation of Theoreim 8.7, we obtain= 2 and so

E, contains the closed trapezoidal region with verti@$) , (1,1), (£, &) and (3, ;) except
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perhaps the closed edge parallel to the principal diagonal. Observe that, in this case, Theorem
does not apply. In fact, far= (2, 25) , 7 = (21, 72) andh = (hy, hy) we have

det (@7 () h,, @5 () h)
= 4]7)% (fol — %21’1 + QZEQEQ) + 4h1h2 (1]1%2 + %11‘2) + 4h§ (IlfQ — 5(72%1 + 21‘2351) .

Taker; = 7; = 1 and letA = A (x5, %) the matrix of the above quadratic form (hy, h,) .
Forzy, = 277, 7, = 277" we havedet A < 0 for j large enough but if we take, = 277! and
T, = 277, we getdet A > 0 for j large enough, so, for ajl large enoughdet A = 0 for some
277 < x4y, 79 < 2771 Thus, for suche,, 7,

inf det (('0/1,(]_,.'])2) (h17h2>,§0g(1,%2) (hl,h2>) =0.
|(h1,h2)|=1

Example 3.2. Let us show an example where Theov@ 3.8 charactel?];elset
¢ (21, 29) = (xi’arg 3x,25, 303 — x%)
In this case the set of non elliptic points foiis thex; axis. Indeed,
det (¢ (w1, 79) (R, ha)) = 18 (2% + 23) ((haw1 + 22h1)® + 222h3 + 6h323) .
In order to apply Theorein 3.8, we consider the quadratic form=n(h, h,)
det (@] (z1,22) h, oy (T1,T2) h) .
If © = (z1,22) andz = (71, 75) , let A = A (x, 7) its associated symmetric matrix. An explicit
computation ofA shows that, for a giveth < a < 1 and for allj large enough and= 1,2, 3, 4,
if z andz belong toU, ;;, then
a® <tr(A) <20
thus, if \; (z, 7) denotes the eigenvalue of lower absolute valud ¢f, z) , we have, for, = €
W, that
cp |det Al < A (z,7)| < o |det A|
wherecy, c; are positive constants independeng dNow, a computation gives

det A = 324 (=277} — 92375 — 12312901 % + 22773)
X (m%x% 20373 — 4T, 19T To + T x%)
Now we writeZ, = tx,, with £ <t < 2. Then
det A = 324z} [—aiT] — 9Pay — 12tw 2371 + 2672507 | [T — 26°05 — dta Ty + 727

Note that the the first bracket is negative fofrr € W, if j is large enough. To study the sign
of the second one, we consider the functioiit, z,, 7,) = 77 — 4tx 7, + t?23. SinceF has
a negative maximum ofil} x {1} x [1,2], it follows easily that we can choosesuch that
for x,x € W, andj large enough, the same assertion holds for the second brackdtt 3o
is comparable witl2=2/| thus the hypothesis of the Theorém|3.8 are satisfied with 2 and
sucha. Moreover, we haved = m — 2, then we conclude that the interior &, is the open
trapezoidal region with vertice®), 0) (1 1), (5,5) (2,1).

On the other hand, in a similar way than in Examplg 3.1 we can seexthat2 (in fact

det A (z,2) = 648 (22 + 922) (22 + 22)° 22), so in this case Theor.8 gives a better result
(a precise description df ;) than that given by Theorem 3.7, that asserts only H)atontains

the trapezoidal region with verticés, 0), (1,1), (12, &) and(

142 7 7714)
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Example 3.3. The following is an example where Theor3.7 characterfothsLet
¢ (11, m0) = (xg Re (z1 + ix2)12 ,xo Im (21 + ixg)m) .
A computation gives that for = (21, z2) andh = (hq, hs)
det (" (2) h) = 288 (22 + 22)"* (6622h% + 11ayw9h1hy + (23 + T822) h2)
and this quadratic form ifh4, hy) does not vanish fok # 0 unlessz, = 0. So the set of non
elliptic points fory is thex; axis. Moreover, its associate symmetric matrix

2 11
A=A(z) =288 (a2 +22) " §§f§2 xff%i ,
satisfies; < trA (z) < c;forz € B, 5 < |z;], and|z,| < 6 |21, § > 0 small enough.

Thus if \; = \; (x) denotes the eigenvalue of lower absolute valud @f) , we have, forz
in this region, that

ki |det A] < |A\| < ko |det A,

wherek; andk, are positive constants.

Sincedet A (1,z5) = (288)> (1 + 23)” (4222 + 5148z3) , we have thatr = 2. So7a =
m+1 and, from Theorern 3,7, we conclude that the interiaEpfs the open trapezoidal region
with vertices(0,0), (1, 1@% 8, (%, 4).

REFERENCES
[1] J. BOCHNAK, M. COSTEAND M. F. ROY, Real Algebraic Geometnppringer, 1998.
[2] M. CHRIST. Endpoint bounds for singular fractional integral operatdfsl.A Preprint,(1988).

[3] S. W. DRURY AND K. GUO, Convolution estimates related to surfaces of half the ambient dimen-
sion.Math. Proc. Camb. Phil. Soc110(1991), 151-159.

[4] E. FERREYRA, T. GODOYAND M. URICUOLO. The type set for some measuresitt with n
dimensional supporzech. Math. .J (to appear).

[5] A.IOSEVICH AND E. SAWYER, Sharp.? — L4 estimates for a class of averaging operatars)
Inst. Fourier, 46(5) (1996), 359-1384.

[6] T. KATO, Perturbation Theory for Linear OperatorsSecond edition. Springer Verlag, Berlin
Heidelberg- New York, 1976.

[7] D. OBERLIN, Convolution estimates for some measures on cukRes,. Amer. Math. Soc99(1)
(1987), 56-60.

[8] F. RICCI, Limitatezzal.,? — L9 per operatori di convoluzione definiti da misure singolariRif,
Bollettino U.M.I, (7) 11-A (1997), 237-252.

[9] F. RICCI AND E. M. STEIN, Harmonic analysis on nilpotent groups and singular integrals I,
fractional integration along manifold3, Funct. Anal.86 (1989), 360-389.

[10] E. STEIN, Singular Integrals and Differentiability Properties of Functigi&inceton University
Press, Princeton, New Jersey, 1970.

J. Inequal. Pure and Appl. Math2(3) Art. 37, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries
	3. About the Type Set
	References

