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ABSTRACT. In this paper we study convolution operatorsTµ with measuresµ in R4 of the
form µ (E) =

∫
B

χE (x, ϕ (x)) dx, whereB is the unit ball ofR2, andϕ is a homogeneous
polynomial function. Ifinfh∈S1

∣∣det
(
d2

xϕ (h, .)
)∣∣ vanishes only on a finite union of lines, we

prove, under suitable hypothesis, thatTµ is bounded fromLp into Lq if
(

1
p , 1

q

)
belongs to a

certain explicitly described trapezoidal region.
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1. I NTRODUCTION

It is well known that a complex measureµ on Rn acts as a convolution operator on the
Lebesgue spacesLp (Rn) : µ ∗ Lp ⊂ Lp for 1 ≤ p ≤ ∞. If for somep there existsq > p such
thatµ ∗ Lp ⊂ Lq, µ is calledLp− improving. It is known that singular measures supported on
smooth submanifolds ofRn may beLp− improving. See, for example, [2], [5], [8], [9], [7] and
[4].

Let ϕ1, ϕ2 be two homogeneous polynomial functions onR2 of degreem ≥ 2 and letϕ =
(ϕ1, ϕ2) . Let µ be the Borel measure onR4 given by

(1.1) µ (E) =

∫
B

χE (x, ϕ (x)) dx,
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2 E. FERREYRA, T. GODOY, AND M. URCIUOLO

whereB denotes the closed unit ball around the origin inR2 anddx is the Lebesgue measure
onR2. Let Tµ be the convolution operator given byTµf = µ ∗ f, f ∈ S (R4) and letEµ be the
type set corresponding to the measureµ defined by

Eµ =

{(
1

p
,
1

q

)
: ‖Tµ‖p,q < ∞, 1 ≤ p, q ≤ ∞

}
,

where‖Tµ‖p,q denotes the operator norm ofTµ from Lp (R4) into Lq (R4) and where theLp

spaces are taken with respect to the Lebesgue measure onR4.
Forx, h ∈ R2, let ϕ′′ (x) h be the2×2 matrix whosej− th column isϕ′′j (x) h, whereϕ′′j (x)

denotes the Hessian matrix ofϕj at x. Following [3, p. 152], we say thatx ∈ R2 is an elliptic
point forϕ if det (ϕ′′ (x) h) 6= 0 for all h ∈ R2\ {0} . ForA ⊂ R2, we will say thatϕ is strongly
elliptic onA if det (ϕ′′1 (x) h, ϕ′′2 (y) h) 6= 0 for all x, y ∈ A andh ∈ R2\ {0} .

If every pointx ∈ B\ {0} is elliptic for ϕ, it is proved in [4] that form ≥ 3, Eµ is the closed
trapezoidal regionΣm with vertices(0, 0) , (1, 1) ,

(
m

m+1
, m−1

m+1

)
and

(
2

m+1
, 1

m+1

)
.

Our aim in this paper is to study the case where the set of non elliptic points consists of a finite
union of lines through the origin,L1, ..., Lk. We assume from now on, that forx ∈ R2 − {0},
det (ϕ′′ (x) h) does not vanish identically, as a function ofh. For eachl = 1, 2, ..., k, let πLl

and
πL⊥l

be the orthogonal projections fromR2 ontoLl andL⊥
l respectively. Forδ > 0, 1 ≤ l ≤ k,

let

V l
δ =

{
x ∈ B : 1/2 ≤ |πLl

(x)| ≤ 1 and
∣∣∣πL⊥l

(x)
∣∣∣ ≤ δ |πLl

(x)|
}

.

It is easy to see (see Lemma 2.1 and Remark 3.6) that forδ small enough, there existsαl ∈ N
and positive constantsc andc′ such that

c
∣∣∣πL⊥l

(x)
∣∣∣αl

≤ inf
h∈S1

|det (ϕ′′ (x) h)| ≤ c′
∣∣∣πL⊥l

(x)
∣∣∣αl

for all x ∈ V l
δ . Following the approach developed in [3], we prove, in Theorem 3.7, that if

α = max1≤l≤k αl and if7α ≤ m + 1, then the interior ofEµ agrees with the interior ofΣm.

Moreover in Theorem 3.8 we obtain that
◦
Eµ =

◦
Σm still holds in some cases where7α >

m + 1, if we require a suitable hypothesis on the behavior, near the linesL1, ..., Lk, of the map
(x, y) → infh∈S1 |det (ϕ′′1 (x) h, ϕ′′2 (y) h)| .

In any case, even though we can not give a complete description of the interior ofEµ, we
obtain a polygonal region contained in it.

Throughout the paperc will denote a positive constant not necessarily the same at each oc-
currence.

2. PRELIMINARIES

Let ϕ1, ϕ2 : R2 → R be two homogeneous polynomials functions of degreem ≥ 2 and let
ϕ = (ϕ1, ϕ2). Forδ > 0 let

(2.1) Vδ =

{
(x1, x2) ∈ B :

1

2
≤ |x1| ≤ 1 and |x2| ≤ δ |x1|

}
.

We assume in this section that, for someδ0 > 0, the set of the non elliptic points forϕ in Vδ0 is
contained in thex1 axis.

For x ∈ R2, let P = P (x) be the symmetric matrix that realizes the quadratic formh →
det (ϕ′′ (x) h) , so

(2.2) det (ϕ′′ (x) h) = 〈P (x) h, h〉 .
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Lp IMPROVING PROPERTIES FOR SOME MEASURES ONR4 3

Lemma 2.1. There existδ ∈ (0, δ0) , α ∈ N and a real analytic functiong = g (x1, x2)on Vδ

with g (x1, 0) 6= 0 for x1 6= 0 such that

(2.3) inf
|h|=1

|det (ϕ′′ (x) h)| = |x2|α |g (x)|

for all x ∈ Vδ.

Proof. SinceP (x) is real analytic onVδ andP (x) 6= 0 for x 6= 0, it follows that, forδ small
enough, there exists two real analytic functionsλ1 (x) andλ2 (x) wich are the eigenvalues of
P (x) . Also, inf |h|=1 |det (ϕ′′ (x) h)| = min {|λ1 (x)| , |λ2 (x)|} for x ∈ Vδ. Since we have
assumed that(1, 0) is not an elliptic point forϕ and thatP (x) 6= 0 for x 6= 0, diminishingδ
if necessary, we can assume thatλ1 (1, 0) = 0 and that|λ1 (1, x2)| ≤ |λ2 (1, x2)| for |x2| ≤ δ.
SinceP (x) is homogeneous inx, we have thatλ1 (x) andλ2 (x) are homogeneous inx with
the same homogeneity degreed. Thus|λ1 (x)| ≤ |λ2 (x)| for all x ∈ Vδ. Now, λ1 (1, x2) =
xα

2 G (x2) for some real analytical functionG = G (x2) with G (0) 6= 0 and soλ1 (x1, x2) =

xd
1λ1

(
1, x2

x1

)
= xd−α

1 xα
2 G

(
x2

x1

)
. Takingg (x1, x2) = xd−α

1 G
(

x2

x1

)
the lemma follows. �

Following [3], for U ⊂ R2 let JU : R2 → R ∪ {∞} given by

JU (h) = inf
x, x+h∈U

|det (ϕ′ (x + h)− ϕ′ (x))| ,

where the infimum of the empty set is understood to be∞. We also set, as there, for0 < α < 1

RU
α (f) (x) =

∫
JU (x− y)−1+α f (y) dy.

For r > 0 andw ∈ R2, let Br (w) denotes the open ball centered atw with radiusr.
We have the following

Lemma 2.2. Let w be an elliptic point forϕ. Then there exist positive constantsc and c′ de-
pending only on‖ϕ1‖C3(B) and‖ϕ2‖C3(B) such that if0 < r ≤ c inf |h|=1 |det (ϕ′′ (w) h)| then

(1) |det (ϕ′ (x + h)− ϕ′ (x))| ≥ 1
2
|det (ϕ′′ (w) h)| if x, x + h ∈ Br (w) .

(2)
∥∥∥R

Br(w)
1
2

(f)
∥∥∥

6
≤ c′r−

1
2 ‖f‖ 3

2
, f ∈ S (R4) .

Proof. Let F (h) = det (ϕ′ (x + h)− ϕ′ (x)) and letdj
xF denotes thej−th differential ofF at

x. Applying the Taylor formula toF (h) aroundh = 0 and taking into account thatF (0) = 0,
d0F (h) = 0 and thatd2

0F (h, h) ≡ 2 det (ϕ′′ (x) h) we obtain

det (ϕ′ (x + h)− ϕ′ (x)) = det (ϕ′′ (x) h) +

∫ 1

0

(1− t)2

2
d3

thF (h, h, h) dt.

Let H (x) = det (ϕ′′ (x) h) . The above equation gives

det (ϕ′ (x + h)− ϕ′ (x)) = det (ϕ′′ (w) h) +

∫ 1

0

dw+t(x−w)H (h) dt

+

∫ 1

0

(1− t)2

2
d3

thF (h, h, h) dt.

Then, forx, x + h ∈ Br (w) we have

|det (ϕ′ (x + h)− ϕ′ (x))− det (ϕ′′ (w) h)| ≤ M |h|3 ≤ 2Mr |h|2
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4 E. FERREYRA, T. GODOY, AND M. URCIUOLO

with M depending only‖ϕ1‖C3(B) and‖ϕ2‖C3(B) . If we choosec ≤ 1
4M

, we get, for0 < r <

c inf |h|=1 |det (ϕ′′ (w) h)| that

|det (ϕ′ (x + h)− ϕ′ (x))| ≥ 1

2
|det (ϕ′′ (w) h)|

and that

JBr(w) (h) ≥ 1

2
|det (ϕ′′ (w) h)| ≥ 1

2c
r |h|2

Thus
∥∥∥R

Br(w)
1
2

(f)
∥∥∥

6
≤ c′r−

1
2 ‖I2 (f)‖6 ≤ c′r−

1
2 ‖f‖ 3

2
, whereIα denotes the Riesz potential

on R4, defined as in [10, p. 117]. So the lemma follows from the Hardy–Littlewood–Sobolev
theorem of fractional integration as stated e.g. in [10, p. 119]. �

Lemma 2.3. Letw be an elliptic point forϕ. Then there exists a positive constantc depending
only on‖ϕ1‖C3(B) and ‖ϕ2‖C3(B) such that if0 < r ≤ c inf |h|=1 |det (ϕ′′ (w) h)| then for all
h 6= 0 the mapx → ϕ (x + h)−ϕ (x) is injective on the domain{x ∈ B : x, x + h ∈ Br (w)} .

Proof. Suppose thatx, y, x + h andy + h belong toBr (w) and that

ϕ (x + h)− ϕ (x) = ϕ (y + h)− ϕ (y) .

From this equation we get

0 =

∫ 1

0

(ϕ′ (x + th)− ϕ′ (y + th)) hdt =

∫ 1

0

∫ 1

0

d2
x+th+s(y−x)ϕ (y − x, h) dsdt.

Now, for z ∈ Br (w),∣∣(d2
zϕ− d2

wϕ
)
(y − x, h)

∣∣ =

∣∣∣∣∫ 1

0

d3
z+u(w−z)ϕ (w − z, y − x, h) du

∣∣∣∣
≤ Mr |y − x| |h|

then

0 =

∫ 1

0

∫ 1

0

d2
x+th+s(y−x)ϕ (y − x, h) dsdt

= d2
wϕ (y − x, h) +

∫ 1

0

∫ 1

0

[
d2

x+th+s(y−x)ϕ− d2
wϕ

]
(y − x, h) dsdt.

So|d2
wϕ (y − x, h)| ≤ Mr |y − x| |h| with M depending only on‖ϕ1‖C3(B) and‖ϕ2‖C3(B) .

On the other hand,w is an elliptic point forϕ and so, for|u| = 1, the matrixA := ϕ′′ (w) u
is invertible. AlsoA−1 = (det A)−1 Ad (A) , then∣∣A−1x

∣∣ = |det A|−1 |Ad (A) x| ≤ M̃

|det A|
|x| ,

whereM̃ depends only on‖ϕ1‖C2(B) and‖ϕ2‖C2(B). Then, for|v| = 1 andx = Av, we have

|Av| ≥ |det A| /M̃. Thus∣∣d2
wϕ (y − x, h)

∣∣ ≥ |y − x| |h| inf
|u|=1,|v|=1

∣∣d2
wϕ (u, v)

∣∣
= |y − x| |h| inf

|u|=1,|v|=1
|〈ϕ′′ (w) u, v〉|

≥ 1

M̃
|y − x| |h| inf

|u|=1
|det ϕ′′ (w) u| .
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Lp IMPROVING PROPERTIES FOR SOME MEASURES ONR4 5

If we chooser < 1

MM̃
inf |u|=1 | det ϕ′′ (w) u| the above inequality impliesx = y and the lemma

is proved. �

For any measurable setA ⊂ B, let µA be the Borel measure defined by
µA (E) =

∫
A

χE (x, ϕ (x)) dx and letTµA
be the convolution operator given byTµA

f = µA ∗ f.

Proposition 2.4. Let w be an elliptic point forϕ. Then there exist positive constantsc and c′

depending only on‖ϕ1‖C3(B) and‖ϕ2‖C3(B) such that if0 < r < c inf |h|=1 |det ϕ′′ (w) h| then∥∥∥TµBr(w)
f
∥∥∥

3
≤ c′r−

1
3 ‖f‖ 3

2
.

Proof. Taking account of Lemma 2.3, we can proceed as in Theorem 0 in [3] to obtain, as there,
that ∥∥∥µ

Br(w)
∗ f

∥∥∥3

3
≤ (A1A2A3)

1
3 ,

where

Aj =

∫
R2

Fj (x)
∏

1≤m≤3,m 6=j

RBr(w)
1
2

Fm (x) dx

andFj (x) = ‖f (x, .)‖ 3
2

Then the proposition follows from Lemma 2.2 and an application of the triple Hölder in-
equality. �

For0 < a < 1 andj ∈ N let

Ua,j =
{
(x1, x2) ∈ B : |x1| ≥ a, 2−j |x1| ≤ |x2| ≤ 2−j+1 |x1|

}
and letUa,j,i, i = 1, 2, 3, 4 the connected components ofUa,j.

We have

Lemma 2.5. Let 0 < a < 1. Suppose that there existβ ∈ N, j0 ∈ N and a positive constant
c such that|det (ϕ′′1 (x) h, ϕ′′2 (y) h)| ≥ c2−jβ |h|2 for all h ∈ R2, x, y ∈ Ua,j,i, j ≥ j0 and
i = 1, 2, 3, 4. Thus

(1) For all j ≥ j0, i = 1, 2, 3, 4 if x andx + h belong toUa,j,i then

|det (ϕ′ (x + h)− ϕ′ (x))| ≥ c2−jβ |h|2 .

(2) There exists a positive constantc′ such that for allj ≥ j0, i = 1, 2, 3, 4∥∥∥R
Ua,j,i
1
2

(f)
∥∥∥

6
≤ c′2

jβ
2 ‖f‖ 3

2
.

Proof. We fix i andj ≥ j0. Forx ∈ Ua,j,i we have

det (ϕ′ (x + h)− ϕ′ (x)) = det

(∫ 1

0

ϕ′′ (x + sh) hds

)
.

For eachh ∈ R2\ {0} we have eitherdet (ϕ′′1 (x) h, ϕ′′2 (y) h) > c2−jβ |h|2 for all x, y ∈ Ua,j,i

or det (ϕ′′1 (x) h, ϕ′′2 (y) h) < −c2−jβ |h|2 for all x, y ∈ Ua,j,i. We consider the first case. Let
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6 E. FERREYRA, T. GODOY, AND M. URCIUOLO

F (t) = det
(∫ t

0
ϕ′′ (x + sh) hds

)
. Then

F ′ (t) = det

(∫ t

0

ϕ′′1 (x + sh) hds, ϕ′′2 (x + th) h

)
+ det

(
ϕ′′1 (x + th) h,

∫ t

0

ϕ′′2 (x + sh) hds

)
=

∫ t

0

det (ϕ′′1 (x + sh) h, ϕ′′2 (x + th) h) ds

+

∫ t

0

det (ϕ′′1 (x + th) h, ϕ′′2 (x + sh) h) ds ≥ c2−jβ |h|2 t.

SinceF (0) = 0 we getF (1) =
∫ 1

0
F ′ (t) dt ≥ c2−jβ |h|2 . Thus

det (ϕ′ (x + h)− ϕ′ (x)) = F (1) ≥ c2−jβ |h|2 .

Then JUa,j,i, (h) ≥ c2−jβ |h|2, and the lemma follows, as in Lemma 2.2, from the Hardy–
Littlewood–Sobolev theorem of fractional integration. The other case is similar. �

For fixedx(1), x(2) ∈ R2, let

Bx(1),x(2)

a,j,i =
{
x ∈ R2 : x− x(1) ∈ Ua,j,i andx− x(2) ∈ Ua,j,i

}
, i = 1, 2, 3, 4.

We have
Lemma 2.6.Let0 < a < 1 and letx(1), x(2) ∈ R2. Suppose that there existβ ∈ N, j0 ∈ N and a
positive constantc such that|det (ϕ′′1 (x) h, ϕ′′2 (y) h)| ≥ c2−jβ |h|2 for all h ∈ R2, x, y ∈ Ua,j,i,
j ≥ j0 and i = 1, 2, 3, 4. Then there existsj1 ∈ N independent ofx(1), x(2) such that for all
j ≥ j1, i = 1, 2, 3, 4 and all nonnegativef ∈ S (R4) it holds that∫

Bx(1),x(2)

a,j,i ×R2

f
(
y − ϕ

(
x− x(1)

)
, y − ϕ

(
x− x(2)

))
dxdy ≤ m2

JUa,j,i
(x(2) − x(1))

∫
R4

f.

Proof. We assert that, ifj ≥ j0 then for each(z, w) ∈ R2 × R2 andi = 1, 2, 3, 4, the set{
(x, y) ∈ Bx(1),x(2)

a,j,i × R2 : z = y − ϕ
(
x− x(1)

)
andw = y − ϕ

(
x− x(2)

)}
is a finite set with at mostm2 elements. Indeed, ifz = y−ϕ

(
x− x(1)

)
andw = y−ϕ

(
x− x(2)

)
with x ∈ Bx(1),x(2)

a,j,i , Lemma 2.5 says that, forj large enough,∣∣det
(
ϕ′

(
x− x(1)

)
− ϕ′

(
x− x(2)

))∣∣ ≥ c2−jβ |h|2 .

Thus the Bezout’s Theorem (See e.g.[1, Lemma 11.5.1, p. 281]) implies that for each(z, w) ∈
R2 × R2 the set {

x ∈ Bx(1),x(2)

a,j,i : ϕ
(
x− x(2)

)
− ϕ

(
x− x(1)

)
= z − w

}
is a finite set with at mostm2 points. Sincex determinesy, the assertion follows.

For a fixedη > 0 and fork = (k1, ..., k4) ∈ Z4, let Qk =
∏

1≤n≤4 [knη, (1 + kn) η] . Let

Φk,j,i :
(
Bx(1),x(2)

a,j,i × R2
)
∩Qk → R2 × R2 be the function defined by

Φk,j,i (x, y) =
(
y − ϕ

(
x− x(1)

)
, y − ϕ

(
x− x(2)

))
and letWk,j,i its image. Alsodet

(
Φ′

k,j,i

)
(x, y) = det

(
ϕ′

(
x− x(2)

)
− ϕ′

(
x− x(1)

))
. Thus

(2.4)
∣∣det

(
Φ′

k,j,i

)
(x, y)

∣∣ ≥ JUa,j,i

(
x(2) − x(1)

)
J. Inequal. Pure and Appl. Math., 2(3) Art. 37, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


Lp IMPROVING PROPERTIES FOR SOME MEASURES ONR4 7

for (x, y) ∈
(
Bx(1),x(2)

a,j,i × R2
)
∩Qk.

SinceΦk,j,i (x, y) = Φk,j,i (x, y) implies thatϕ
(
x− x(1)

)
− ϕ

(
x− x(1)

)
= ϕ

(
x− x(2)

)
−

ϕ
(
x− x(2)

)
, taking into account Lemma 2.1, from Lemma 2.3 it follows the existence of

j̃ ∈ N with j̃ independent ofx(1), x(2) such that forj ≥ j̃ there exists̃η = η̃ (j) > 0
satisfying that for0 < η < η̃ (j) the mapΦk,j,i is injective for all k ∈ Z4. Let Ψk,j,i :

Wk,j,i →
(
Bx(1),x(2)

a,j,i × R2
)
∩Qk its inverse. Lemma 2.5 says that

∣∣det
(
Φ′

k,j,i

)∣∣ ≥ c2−jβ |h|2 on(
Bx(1),x(2)

a,j,i × R2
)
∩Qk. We have∫

Bx(1),x(2)

a,j,i ×R2

f
(
y − ϕ

(
x− x(1)

)
, y − ϕ

(
x− x(2)

))
dxdy

=
∑
k∈Z4

∫
(

Bx(1),x(2)

a,j,i ×R2

)
∩Qk

f
(
y − ϕ

(
x− x(1)

)
, y − ϕ

(
x− x(2)

))
dxdy

=
∑
k∈Z4

∫
Wk,j,i

f (z, w)
1∣∣det

(
Φ′

k,j,i

)
(Ψk,j,i (z, w))

∣∣dzdw

≤ 1

JUa,j,i
(x(2) − x(1))

∫
R4

∑
k∈Z4

χWk,j,i
(v) f (v) dv

≤ m2

JUa,j,i
(x(2) − x(1))

∫
R4

f

where we have used (2.4). �

Proposition 2.7. Let 0 < a < 1. Suppose that there existβ ∈ N, j0 ∈ N and a positive
constantc such that|det (ϕ′′1 (x) h, ϕ′′2 (y) h)| ≥ c2−jβ |h|2 for all h ∈ R2, x, y ∈ Ua,j,i, j ≥ j0,
i = 1, 2, 3, 4. Then, there existj1 ∈ N, c

′
> 0 such that for allj ≥ j1, f ∈ S (R4)∥∥∥TµUa,j
f
∥∥∥

3
≤ c

′
2

jβ
3 ‖f‖ 3

2
.

Proof. For i = 1, 2, 3, 4, let

Ka,j,i =
{(

x, y, x(1), x(2), x(3)
)
∈ R2 × R2 × R2 × R2 × R2 : x− x(s) ∈ Ua,j,i, s = 1, 2, 3

}
.

We can proceed as in Theorem 0 in [3] to obtain, as there, that∥∥µUa,j,i
∗ f

∥∥3

3
=

∫
Ka,j,i

∏
1≤j≤3

f (xj, y − ϕ (x− xj)) dxdydx(1)dx(2)dx(3)

taking into account of Lemma 2.6 and reasoning, with the obvious changes, as in [3], Theorem
0, we obtain that ∥∥µUa,j,i

∗ f
∥∥3

3
≤ m2 (A1A2A3)

1
3

with

Aj =

∫
R2

Fj (x)
∏

1≤m≤3,m 6=j

R
Ua,j,i
1
2

Fm (x) dx

andFj (x) = ‖f (x, .)‖ 3
2
. Now the proof follows as in Proposition 2.4. �
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3. ABOUT THE TYPE SET

Proposition 3.1. For δ > 0 let Vδ be defined by (2.1). Suppose that the set of the non elliptic
points forϕ in Vδ are those lying in thex1 axis and letα be defined by (2.3).ThenEµVδ

con-
tains the closed trapezoidal region with vertices(0, 0) , (1, 1) ,

(
7α−1
7α

, 7α−2
7α

)
,
(

2
7α

, 1
7α

)
, except

perhaps the closed edge parallel to the principal diagonal.

Proof. We first show that(1− θ) (1, 1) + θ
(

7α−1
7α

, 7α−2
7α

)
∈ EµVδ

if 0 ≤ θ < 1.

If w = (w1, w2) ∈ U 1
2
,j then2−j−1 ≤ |w2| ≤ 2−j+1. Thus, from Lemmas 2.2, 2.3 and Propo-

sition 2.7, follows the existence ofj0 ∈ N and of a positive constantc = c
(
‖ϕ1‖C3(B) , ‖ϕ2‖C3(B)

)
such that ifrj = c2−jα, then ∥∥∥TµBrj(w)

f
∥∥∥

3
≤ c′2

jα
3 ‖f‖ 3

2

for somec′ > 0 and allj ≥ j0, w ∈ U 1
2
,j, f ∈ S (R4) . For 0 ≤ t ≤ 1 let pt, qt be defined

by
(

1
pt

, 1
qt

)
= t

(
2
3
, 1

3

)
+ (1− t) (1, 1) . We have also

∥∥∥TµBrj(w)
f
∥∥∥

1
≤ πc22−2jα ‖f‖1 , thus, the

Riesz-Thorin theorem gives∥∥∥TµBr(w)
f
∥∥∥

qt

≤ c2j( tα
3
−(1−t)2α) ‖f‖pt

.

SinceU 1
2
,j can be covered withN of such ballsBr (w) with N ' 2j(2α−1) we get that∥∥∥∥TµU 1

2 ,j

∥∥∥∥
pt,qt

≤ c2j( 7
3
αt−1).

Let U = ∪j≥j0U 1
2
,j. We have that‖TµU

‖pt,qt
≤

∑
j≥j0

∥∥∥∥TµU 1
2 ,j

∥∥∥∥
pt,qt

< ∞, for t < 3
7α

. Since for

t = 3
7α

we have1
pt

= 1− 1
7α

and 1
qt

= 1− 2
7α

and since every point inVδ\
◦
U is an elliptic point

(and so, from Theorem 3 in [3],
∥∥∥TµVδ\U

∥∥∥
3
2
,3

< ∞), we get that(1− θ) (1, 1)+θ
(

7α−1
7α

, 7α−2
7α

)
∈

EµVδ
for 0 ≤ θ < 1. On the other hand, a standard computation shows that the adjoint operator

T ∗
µVδ

is given byT ∗
µVδ

f =
(
TµVδ

(f∨)
)∨

, where we write, forg : R4 → C, g∨ (x) = g (−x) .

ThusEµVδ
is symmetric with respect to the nonprincipal diagonal. Finally, after an application

of the Riesz-Thorin interpolation theorem, the proposition follows. �

For δ > 0, let Aδ = {(x1, x2) ∈ B : |x2| ≤ δ |x1|}.
Remark 3.2. For s > 0, x = (x1, ..., x4) ∈ R4 we sets • x = (sx1, sx2, s

mx3, s
mx4) . If

E ⊂ R2, F ⊂ R4 we setsE = {sx : x ∈ E} ands • F = {s • x : x ∈ F} . For f : R4 → C,
s > 0, let fs denotes the function given byfs (x) = f (s • x) . A computation shows that

(3.1)
(
Tµ

2−jVδ
f
) (

2−j • x
)

= 2−2j
(
TµVδ

f2−j

)
(x)

for all f ∈ S (R4) , x ∈ R4.
From this it follows easily that∥∥∥Tµ

2−jVδ

∥∥∥
p,q

= 2−j( 2(m+1)
q

− 2(m+1)
p

+2)
∥∥∥TµVδ

∥∥∥
p,q

.

This fact implies that

(3.2) Eµ ⊂
{(

1

p
,
1

q

)
:
1

q
≥ 1

p
− 1

m + 1

}
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and that if1
q

> 1
p
− 1

m+1
then

(
1
p
, 1

q

)
∈ EµAδ

if and only if
(

1
p
, 1

q

)
∈ EµVδ

.

Theorem 3.3. Suppose that for someδ > 0 the set of the non elliptic points forϕ in Aδ are
those lying on thex1 axis and letα be defined by (2.3). ThenEµAδ

contains the intersection of
the two closed trapezoidal regions with vertices(0, 0) , (1, 1) ,

(
m

m+1
, m−1

m+1

)
,
(

2
m+1

, 1
m+1

)
and

(0, 0) , (1, 1) ,
(

7α−1
7α

, 7α−2
7α

)
,
(

2
7α

, 1
7α

)
respectively, except perhaps the closed edge parallel to

the diagonal.
Moreover, if7α ≤ m+1 then the interior ofEµAδ

is the open trapezoidal region with vertices
(0, 0) , (1, 1) ,

(
m

m+1
, m−1

m+1

)
and

(
2

m+1
, 1

m+1

)
.

Proof. Taking into account Proposition 3.1, the theorem follows from the facts of Remark 3.2.
�

For0 < a < 1 andδ > 0 we setVa,δ = {(x1, x2) ∈ B : a ≤ |x1| ≤ 1 and |x2| ≤ δ |x1|} . We
have
Proposition 3.4.Let0 < a < 1. Suppose that for some0 < a < 1, j0, β ∈ N and some positive
constantc we have|det (ϕ′′1 (x) h, ϕ′′1 (y) h)| ≥ c2−jβ |h|2 for all h ∈ R2, x, y ∈ Ua,j,i, j ≥ j0

andi = 1, 2, 3, 4. Then, forδ positive and small enough,EµVa,δ
contains the closed trapezoidal

region with vertices(0, 0) , (1, 1) ,
(

β+2
β+3

, β+1
β+3

)
,
(

2
β+3

, 1
β+3

)
, except perhaps the closed edge

parallel to the principal diagonal.

Proof. Proposition 2.7 says that there existj1 ∈ N and a positive constantc such that forj ≥ j1

andf ∈ S (R4) ∥∥∥TµUa,j,i
f
∥∥∥

3
≤ c2

jβ
3 ‖f‖ 3

2
.

Also, for somec > 0 and allf ∈ S (R4) we have
∥∥∥TµUa,j,i

f
∥∥∥

1
≤ c2−j ‖f‖1 . Then

∥∥∥TµUa,j,i
f
∥∥∥

qt

≤

c2j(t β
3
−(1−t)) ‖f‖pt

wherept, qt are defined as in the proof of Proposition 3.1. LetU = ∪j≥j1Ua,j.

Then‖TµU
f‖pt,qt

< ∞ if t < 3
β+3

. Now, the proof follows as in Proposition 3.1. �

Theorem 3.5.Suppose that for some0 < a < 1, j0, β ∈ N and for some positive constantc we
have|det (ϕ′′1 (x) h, ϕ′′1 (y) h)| ≥ c2−jβ |h|2 for all x, y ∈ Ua,j,i, j ≥ j0 and i = 1, 2, 3, 4. Then
for δ positive and small enough,EµAδ

contains the intersection of the two closed trapezoidal

regions with vertices(0, 0) , (1, 1) ,
(

m
m+1

, m−1
m+1

)
,
(

2
m+1

, 1
m+1

)
and (0, 0) , (1, 1) ,

(
β+2
β+3

, β+1
β+3

)
,(

2
β+3

, 1
β+3

)
, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, ifβ ≤ m − 2 then the interior ofEµ is the open trapezoidal region with vertices
(0, 0) , (1, 1) ,

(
m

m+1
, m−1

m+1

)
and

(
2

m+1
, 1

m+1

)
.

Proof. Follows as in Theorem 3.3 using now Proposition 3.4 instead of Proposition 3.1.�

Remark 3.6. We now turn out to the case whenϕ is a homogeneous polynomial function whose
set of non elliptic points is a finite union of lines through the origin,L1,...,Lk.

For eachl, 1 ≤ l ≤ k, let Al
δ =

{
x ∈ R2 :

∣∣π⊥Ll
x
∣∣ ≤ δ |πLl

x|
}

whereπLl
andπ⊥Ll

denote the
orthogonal projections fromR2 into Ll andL⊥

l respectively. Thus eachAl
δ is a closed conical

sector aroundLl. We chooseδ small enough such thatAl
δ ∩ Ai

δ = ∅ for l 6= i.
It is easy to see that there exists (a unique)αl ∈ N and positive constantsc′l, c′′l such that

(3.3) c′l
∣∣π⊥Ll

w
∣∣αl ≤ inf

|h|=1
|det (ϕ′′ (w) h)| ≤ c′′l

∣∣π⊥Ll
x
∣∣αl

for all w ∈ Al
δ. Indeed, after a rotation the situation reduces to that considered in Remark 3.2.
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Theorem 3.7. Suppose that the set of non elliptic points is a finite union of lines through the
origin, L1,...,Lk. For l = 1, 2, ..., k, let αl be defined by (3.3), and letα = max1≤l≤k αl. Then
Eµ contains the intersection of the two closed trapezoidal regions with vertices(0, 0) , (1, 1) ,(

m
m+1

, m−1
m+1

)
,
(

2
m+1

, 1
m+1

)
and (0, 0) , (1, 1) ,

(
7α−1
7α

, 7α−2
7α

)
,
(

2
7α

, 1
7α

)
, respectively, except per-

haps the closed edge parallel to the diagonal.
Moreover, if7α ≤ m+1 then the interior ofEµ is the interior of the trapezoidal regions with

vertices(0, 0) , (1, 1) ,
(

m
m+1

, m−1
m+1

)
,
(

2
m+1

, 1
m+1

)
.

Proof. For l = 1, 2, ..., k, let Al
δ be as above. From Theorem 3.3, we obtain thatEµ

Al
δ

contains

the intersection of the two closed trapezoidal regions with vertices(0, 0) ,(1, 1) ,
(

m
m+1

, m−1
m+1

)
,(

2
m+1

, 1
m+1

)
and (0, 0) , (1, 1),

(
7αl−1
7αl

, 7αl−2
7αl

)
,

(
2

7αl
, 1

7αl

)
respectively, except perhaps the

closed edge parallel to the diagonal.
Since everyx ∈ B\ ∪l Al

δ is an elliptic point forϕ, Theorem 0 in [3] and a compactness
argument give that‖TµD

‖ 3
2
,3 < ∞ whereD =

{
x ∈ B\ ∪l Al

δ : 1
2
≤ |x|

}
. Then (using the

symmetry ofEµD
, the fact of thatµD is a finite measure and the Riesz-Thorin theorem)EµD

is the closed triangle with vertices(0, 0) , (1, 1) ,
(

2
3
, 1

3

)
. Now, proceeding as in the proof of

Theorem 3.3 we get that
∥∥∥Tµ

B\∪lA
l
δ

∥∥∥
p,q

< ∞ if 1
q

> 1
p
− 1

m+1
. Then the first assertion of the

theorem is true. The second one follows also using the facts of Remark 3.2. �

For0 < a < 1, we set

U l
a,j =

{
x ∈ R2 : a ≤ |πLl (x)| ≤ 1 and2−j |πLl (x)| ≤

∣∣π⊥Ll (x)
∣∣ ≤ 2−j+1 |πLl (x)|

}
let U l

a,j,i, i = 1, 2, 3, 4 be the connected components ofU l
a,j .

Theorem 3.8. Suppose that the set of non elliptic points forϕ is a finite union of lines through
the origin,L1,...,Lk. Let0 < a < 1 and letj0 ∈ N such that

For l = 1, 2, ..., k, there existsβl ∈ N satisfying|det (ϕ′′1 (x) h, ϕ′′1 (y) h)| ≥ c2−jβj |h|2 for
all x, y ∈ U l

a,j,i, j ≥ j0 andi = 1, 2, 3, 4. Letβ = max1≤j≤k βj. ThenEµ contains the intersec-
tion of the two closed trapezoidal regions with vertices(0, 0) , (1, 1) ,

(
m

m+1
, m−1

m+1

)
,
(

2
m+1

, 1
m+1

)
and(0, 0) , (1, 1) ,

(
β+2
β+3

, β+1
β+3

)
,
(

2
β+3

, 1
β+3

)
, respectively, except perhaps the closed edge par-

allel to the diagonal.
Moreover, ifβ ≤ m − 2 then the interior ofEµ is the interior of the trapezoidal region with

vertices(0, 0) , (1, 1) ,
(

m
m+1

, m−1
m+1

)
,
(

2
m+1

, 1
m+1

)
.

Proof. Follows as in Theorem 3.7, using now Theorem 3.5 instead of Theorem 3.3. �

Example 3.1.ϕ (x1, x2) = (x2
1x2 − x1x

2
2, x

2
1x2 + x1x

2
2)

It is easy to check that the set of non elliptic points is the union of the coordinate axes. Indeed,
for h = (h1, h2) we havedet ϕ′′ (x1, x2) h = 8x2

2h
2
1 + 8x1x2h1h2 + 8x2

1h
2
2 and this quadratic

form in (h1, h2) has non trivial zeros only ifx1 = 0 or x2 = 0. The associated symmetric matrix
to the quadratic form is [

8x2
2 4x1x2

4x1x2 8x2
1

]
and forx1 6= 0 and |x2| ≤ δ |x1| with δ small enough, its eigenvalue of lower absolute value
is λ1 (x1, x2) = 4x2

1 + 4x2
2 − 4

√
(x4

2 − x2
1x

2
2 + x4

1). Thusλ1 (x1, x2) ' 6x2
2 for such(x1, x2) .

Similarly, for x2 6= 0 and|x1| ≤ δ |x2| with δ small enough, the eigenvalue of lower absolute
value is comparable with6x2

1. Then, in the notation of Theorem 3.7, we obtainα = 2 and so
Eµ contains the closed trapezoidal region with vertices(0, 0) , (1, 1) ,

(
13
14

, 6
7

)
and

(
1
7
, 1

14

)
except
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perhaps the closed edge parallel to the principal diagonal. Observe that, in this case, Theorem
3.8 does not apply. In fact, forx = (x1, x2) , x̃ = (x̃1, x̃2) andh = (h1, h2) we have

det (ϕ′′1 (x) h, , ϕ′′2 (x̃) h)

= 4h2
1 (x2x̃1 − x̃2x1 + 2x2x̃2) + 4h1h2 (x1x̃2 + x̃1x2) + 4h2

2 (x1x̃2 − x2x̃1 + 2x2x̃1) .

Takex1 = x̃1 = 1 and letA = A (x2, x̃2) the matrix of the above quadratic form in(h1, h2) .
Forx2 = 2−j, x̃2 = 2−j+1 we havedet A < 0 for j large enough but if we takex2 = 2−j+1 and
x̃2 = 2−j, we getdet A > 0 for j large enough, so, for allj large enough,det A = 0 for some
2−j ≤ x2, x̃2 ≤ 2−j+1. Thus, for suchx2, x̃2,

inf
|(h1,h2)|=1

det (ϕ′′1 (1, x2) (h1, h2) , ϕ′′2 (1, x̃2) (h1, h2)) = 0.

Example 3.2.Let us show an example where Theorem 3.8 characterizes
◦
Eµ. Let

ϕ (x1, x2) =
(
x3

1x2 − 3x1x
3
2, 3x

2
1x

2
2 − x4

2

)
.

In this case the set of non elliptic points forϕ is thex1 axis. Indeed,

det (ϕ′′ (x1, x2) (h1, h2)) = 18
(
x2

1 + x2
2

) (
(h2x1 + x2h1)

2 + 2x2
2h

2
1 + 6h2

2x
2
2

)
.

In order to apply Theorem 3.8, we consider the quadratic form inh = (h1, h2)

det (ϕ′′1 (x1, x2) h, ϕ′′2 (x̃1, x̃2) h) .

If x = (x1, x2) andx̃ = (x̃1, x̃2) , let A = A (x, x̃) its associated symmetric matrix. An explicit
computation ofA shows that, for a given0 < a < 1 and for allj large enough andi = 1, 2, 3, 4,
if x andx̃ belong toUa,j,i, then

a2 ≤ tr (A) ≤ 20

thus, ifλ1 (x, x̃) denotes the eigenvalue of lower absolute value ofA (x, x̃) , we have, forx, x̃ ∈
Wa that

c1 |det A| ≤ |λ1 (x, x̃)| ≤ c2 |det A|
wherec1, c2 are positive constants independent ofj. Now, a computation gives

det A = 324
(
−x2

1x̃
2
1 − 9x2

2x̃
2
2 − 12x1x2x̃1x̃2 + 2x2

1x̃
2
2

)
×

(
x2

2x̃
2
1 − 2x2

2x̃
2
2 − 4x1x2x̃1x̃2 + x2

1x̃
2
2

)
.

Now we writex̃2 = tx2, with 1
2
≤ t ≤ 2. Then

det A = 324x2
2

[
−x2

1x̃
2
1 − 9t2x4

2 − 12tx1x
2
2x̃1 + 2t2x2

2x
2
1

] [
x̃2

1 − 2t2x2
2 − 4tx1x̃1 + t2x2

1

]
.

Note that the the first bracket is negative forx, x̃ ∈ Wa if j is large enough. To study the sign
of the second one, we consider the functionF (t, x1, x̃1) = x̃2

1 − 4tx1x̃1 + t2x2
1. SinceF has

a negative maximum on{1} × {1} ×
[

1
2
, 2

]
, it follows easily that we can choosea such that

for x, x̃ ∈ Wa andj large enough, the same assertion holds for the second bracket. Sodet A
is comparable with2−2j, thus the hypothesis of the Theorem 3.8 are satisfied withβ = 2 and
sucha. Moreover, we haveβ = m − 2, then we conclude that the interior ofEµ is the open
trapezoidal region with vertices(0, 0) , (1, 1) ,

(
3
5
, 4

5

)
,
(

2
5
, 1

5

)
.

On the other hand, in a similar way than in Example 3.1 we can see thatα = 2 (in fact
det A (x, x) = 648 (x2

1 + 9x2
2) (x2

1 + x2
2)

2
x2

2), so in this case Theorem 3.8 gives a better result

(a precise description of
◦
Eµ) than that given by Theorem 3.7, that asserts only that

◦
Eµ contains

the trapezoidal region with vertices(0, 0) , (1, 1) ,
(

13
14

, 6
7

)
and

(
1
7
, 1

14

)
.
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Example 3.3.The following is an example where Theorem 3.7 characterizes
◦
Eµ. Let

ϕ (x1, x2) =
(
x2 Re (x1 + ix2)

12 , x2 Im (x1 + ix2)
12) .

A computation gives that forx = (x1, x2) andh = (h1, h2)

det (ϕ′′ (x) h) = 288
(
x2

1 + x2
2

)10 (
66x2

2h
2
1 + 11x1x2h1h2 +

(
x2

1 + 78x2
2

)
h2

2

)
and this quadratic form in(h1, h2) does not vanish forh 6= 0 unlessx2 = 0. So the set of non
elliptic points forϕ is thex1 axis. Moreover, its associate symmetric matrix

A = A (x) = 288
(
x2

1 + x2
2

)10
[

66x2
2

11
2
x1x2

11
2
x1x2 x2

1 + 78x2
2

]
satisfiesc1 ≤ trA (x) ≤ c2 for x ∈ B, 1

2
≤ |x1| , and|x2| ≤ δ |x1| , δ > 0 small enough.

Thus ifλ1 = λ1 (x) denotes the eigenvalue of lower absolute value ofA (x) , we have, forx
in this region, that

k1 |det A| ≤ |λ1| ≤ k2 |det A| ,
wherek1 andk2 are positive constants.

Sincedet A (1, x2) = (288)2 (1 + x2
2)

20 (
143
4

x2
2 + 5148x4

2

)
, we have thatα = 2. So 7α =

m+1 and, from Theorem 3.7, we conclude that the interior ofEµ is the open trapezoidal region
with vertices(0, 0) , (1, 1) ,

(
13
14

, 6
7

)
,
(

1
7
, 1

14

)
.
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