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ABSTRACT. In this paper we prove certain inequalities involving matrices and operators on
Hilbert spaces. In particular inequalities involving the trace and the determinant of the product
of certain positive definite matrices.
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1. INTRODUCTION

Inequalities have proved to be a powerful tool in mathematics , in particular in modeling error
analysis for filtering and estimation problems, in adaptive stochastic control and for investiga-
tion of quantum mechanical Hamiltonians as it has been shown by Patel and Toda [10, 11, 12]
and Lieb and Thirring [5].

It is the object of this paper to prove new interesting matrix and operator inequalities. We
refer the reader td [4] 7] 8] for the basics of matrix and operator inequalities and for a survey of
many other basic and important inequalities.

Through out the paper ifl is ann x n matrix, we writetr A to denote the trace od and
det A for the determinant ofl. If A is positive definite we writel > 0. The adjoint ofA (a
matrix or operator) is denoted by".

2. MATRIX |NEQUALITIES

Through out this section, we work with square matrices on a finite dimensional Hilbert space.
Theorem 2.1.1f A > 0 and B > 0, then
(2.1) 0<tr(AB)™ < (tr (AB))"
for any integerm > 0.
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2 Fozi M. DANNAN

Proof. The equality holds forn = 1. Form > 1, let B = I, and )\, o, ..., A, be the eigen-
values ofA. Since} " A" < (3.7, \)™, then

(2.2) 0<tr(A™) < (trA)™.

Since ) is true for anyl > 0, we letD = Bz AB:. Then inequality2) holds fab. Thus
0 < tr (D™) < (trD)™, from which the result follows. O
Theorem 2.2.Let A, B be positive definite matrices. Then

(2.3) 0 < tr (AB)™ < [tr (AB)*]* ,

provided thatn ands are positive integers anth > s.

Proof. Clearly tr (AB)™ = tr (A%BA%yn > 0. Letly,l,..., I, be the eigenvalues of
A2 BAz. Then from Hardy’s inequality [3]17 + 17" + - - - + lfﬁ)% <B4+ + l;i)é for

m > s > 0, we get 1 1

[tr (A%BA%W "< [tr (A%BA%)T :
This implies [2.8). O
Theorem 2.3.1f A; >0andB; >0 (i=1,2,...,k), then

k 2 k k
(2.4) (trZAiBi) < <trZA§) : (trZBf) .

If A;B;, >0(i=1,2,...,k),then

k 2 k k
(2.5) (trZAiBZ) < (trZAf) . (trZBf) .

Proof. Since
k

k k k
0<tr) (0A;+ Bi)* = 0°tr (Z A?) + 20tr (Z AiBZ-> +tr (Z Bf) :
=1 =1 =1

i=1

we conclude[(2]4). To prove (2.5), it suffices to prove that
k 2 k 2
=1 i=1

SinceA;B;, > 0fori = 1,2,...,k, thenU = Zle A;B; > 0. Therefore the inequality
tr (U)2 < (trU)2 for positive definitel/ implies ) and the proof is complete. O

Remark 2.4. The condition4; B; > 0 in (2.5) is essential as the following example shows.

Example 2.1. Let
4 -3 2 4
() ()
3 3 1 =3
¢ = <3 6)’ B‘(—3 10)‘
It is clear thatA, B, C, andD are positive definite matrices . Now

(=10 10 > (10 560
(AB+CD)_( 9 66)’ (AB+CD) _(_504 4266)'
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Thus
tr (AB + CD)? = 4276 > [tr (AB + CD)]* = 3136.

Remark 2.5. R. Bellman[1] proved that- (AB)* < tr (A2B?) (*) for positive definite matri-
cesA andB. Further he asked: “Does the above inequality (*) hold for higher powers?”. Such
a question had been solved by E.H.Lieb and W.E. Thirring [5] ,where they proved

2.7) tr (AB)™ < tr (A™B™)

for any positive integem, and for A, B positive definite matrices. In 1995, Changgin Xu [2]
proved a particular case ¢f (2.7): that is whéandB are2 x 2 positive definite matrices. Notice
that(tr AB)™ andtr (A™B™) are upper bounds far (AB)™ in (2.1) and[(2.]7) . One may ask
what is maxir (A" B™),tr (AB)™}. The following examples show that eith@rAB)™ or
tr (A™B™) can be the least.

2

N

Example 2.2. Let
3 -1
(A0 e
Thentr (AB)® = 144 < 204 = tr (A2B?).
Example 2.3. Let
3 =2 2 1

() e-(12)
Thentr (A2B?) = 25 < 36 = tr (AB)”.
Theorem 2.6.1f 0 < A; < By and0 < A, < By, then
(28) 0<tr (AlAQ) S tr (BlBQ) .

5
2

Proof. Since0 < A; < By and0 < A, < Bs, it follows that

and
1 1 1 1
(2.9) 0 < B}A;B} < BlByB}.
Since trace is a monotone function on the definite matrices, we get
(210) 0<tr (AlAQ) <tr (BlAQ) .
and
(211) 0<tr (BlAQ) <tr (BlBQ) .
This implies [2.8). O

Remark 2.7. The conditions4; > 0 and A, > 0 in Theorenj 2.p. are essential everiifA,
and B, B, are symmetric as the following example shows.

Example 2.4. Let
-1 1 10
Al_(l —3)7 Bl_(o 2)’

1 2 30
_ 2 —
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Itis clear thatd; < B; andA, < B,. We have also

i I 30
ady = 2 52) BB:( )
1412 <_% 1? 122 04

andtr (A1A2> =8>T7T=tr (BlBg) .
Theorem 2.8.1f A > 0 and B > 0, then
(2.12) n(det A-det B)» < tr (A™B™)
for any positive integem.

Proof. SinceA is diagonalizable, there exists an orthogonal maktriand a diagonal matrid
suchthat\ = PTAP. Soifthe eigenvalues of are);, Ao, ..., A\, thenA = diag (A, X, ..., \n) .
Letbyy (m),bas (m) ..., by, (m) denote the elements ¢PBPT)™. Then

(2.13) %tr(AmBm) = %tr (PA"PTB™)
= Ly (A" P"B™P)
n
. l m T m
= —ir [A™ (P"BP)™]

1
= = [AT"D11 (m) + A5'baz (m) 4+ -+ + A'biy (m)] -
Using the arithmetic-mean geometric- mean inequélity [9], we get

(2.14) o (A7) > AR AT (b (m) b (m) - b ()]
Sincedet A < ajia99 - - - a,, for any positive definite matrix, [4] we conclude that
(2.15) det (PTBP)™ < byy (m) - bas (m) - -+ - bon (1)

and

(2.16) det A < APAST - AT

Therefore from[(2.14) it follows that

%tr (A"B™) > [det (A™)]" - [det (PTBP)"]

1
n

m m
n n

= [det (PTAP)]
= (det A-det B)
Here we used the fact that > 0 and B > 0. The proof is complete. 0J

- [det (P"BP)]

m
n

Corollary 2.9. [6] Let A and X be positive definite x n- matrices such thatet X = 1. Then

(2.17) n (det A) < tr (AX).

Proof. Take B = X andm = 1 in Theorenj 2.B. O
Theorem 2.10.1f A > 0, B > 0and AB = BA, then

(2.18) 2m=n det (A™ + B™) > [det (A + B)|"

and

(2.19) 2"y (A™ + B™) > tr (A+ B)™

for any positive integem.
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Proof. To prove inequality[(2.18), it is enough to prove

A"+ B > (A+B>

(2.20) . .

for any pair of commuting positive definite matricdsand B. We use induction to provg (2.20).
Clearly [2.20) holds true fom = 2. Assume that[(2.20) is true fon = k. We have to prove
(2.20) form = k + 1. Indeed, since

Ak + BF A+B A+B Ak + Bk

2 2 2 2 '
it follows that
k+1
(2.21) (A+B)+ - A+B A"+ B
2 2 2
Ak+1 +Bk+1 Ak+1 +Bk+1 BAk —f—ABk
B 2 a 4 * 4
ALy Bt AR 4 R — BAY — AB*
B 2 - 4
Ak+1 + Bk+1 (Ak _ Bk) (A . B)
2 4

Now the equality
(A* —B*) (A-B) = (A" + A" B+ ...+ AB*? + B*') (A- B)®
forA>0,B>0andAB = BA, impliesAB > 0 [8]. Consequently
L=A""+A"?B+. ...+ AB" >+ B! > 0.

Sincel - (A— B)’ = (A— B)* - L, then(A* — B¥) (A — B) > 0. Therefore, from[(2.21) we
obtain

2 - 2
The proof is complete. Inequality (2]19) follows directly fragm (2.20). O

(A + B)’““ ARH1 4 R+l
<

Remark 2.11. The conditionAB = BA in inequality [2.2D) is essential as the following ex-

ample shows.
1 -1 3 -2
=(AE) (A

Example 2.5. Let

Itis clear thatd > 0, B > 0 andAB # BA. Form = 3 inequality [2.20) becomes
(2.22) 4(A*+B%) > (A+B)*.

Easily we find that

s o [ 256 —216 s (84 —15
L4 +B)_<—216 196 ) (A+B)_(—45 24)

anddet C' = —9 which implies thatC < 0.
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3. OPERATOR INEQUALITIES
In this section we consider inequalities involving operators on separable Hilbert5pate
start with the following simple well-known inequality.

Theorem 3.1.Let S and T be self-adjoint bounded linear operators on the Hilbert spate
Then

(3.1) . 5

S+T\* ST+TS (S+T)
2 2 2
and since the square of the self-adjoint operator is a non-negative operator, @g%)@t > 0.
The claim of the theorem now follows. O

ST+TS<(S+T>2

Proof. Since

Now we present a similar type result as Theofenm 3.1 but for non-self-adjoint case . More
precisely:
Theorem 3.2.Let S andT be bounded linear operators on a Hilbert spake Assumeés to be
self-adjoint . Then

(3.2) }LKZ + H, < Hyg,
where

2
(3.3) P = %(ST+TS), Q:(—S;T> ,
(3.4) Hp = %(P+P*), %(Q+Q)

andK = (T'+1T7).

Proof. For any bounded linear operattrwe have

T_%KT+TyMT—Tﬂ_Hf+K

where Hy = % (T + T%) . Inequality ) can be applied to the self-adjoint operatdend
Hr, so we get

(3.5) (Uz,x) >0,

wherelU = (S + Hy)?> — 2(SHy + HypS) . Now we have

(3.6) U = (S4+H)—S(T+T)—(T+T"S
= (S+ Hyp)’ —4Hp

T? 4+ (T%)?* 1

5+ 5 (TT" +T°T) — 4Hp

E
2
% (28% + T + (T*)* — 4Hp — 2K?)
% (8Ho — 4Hp — 4Hp — 2K?)

4

1
Hy— Hp — ZKQ) .

J. Inequal. Pure and Appl. Math2(3) Art. 34, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MATRIX AND OPERATORINEQUALITIES 7

Therefore the required inequalify (8.2) follows from (3.6) gnd](3.5). O

Remark 3.3. When bothS andT" are not self-adjoint operators , Theorem| 3.2 does not hold.
The following example illustrates this fact.

Example 3.1.Let S andT be defined oiR? — R? by the following matrices

s=(1 7). t=(49)

By computation we find that

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

[11]

[12]

1
P - (ST+TS):( ’ }2)

Q =

2

7 3 -1 2
He = (3 14)7 HQ:( 2 7)’
1, 7
Ho— Hp - K* =
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