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ABSTRACT. Inthe present article we study the asymptotic behavior of the Sums, ;ﬁ — ;—"
[e3
n n H oo n n 7
andy_, _, [¢* — 2|, and of the serie}_ 7 | | = — 2| wherep,, denotes the-th prime

number whilec,, stands for the:-th composed number.
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1. INTRODUCTION

We are going to use the following notation

m(x) the number of prime numbers. z,
C'(z) the number of composed numbessz,
pn, then-th prime number,
¢, then-th composed numbet; =4,¢, =6, ...,
log, n = log(logn).

The present work originates in a result due to Erdos and Prachar [2]: they proved that there
existd, ¢” > 0 such that

dlog®x > Z

Pr<T

> " log? z for z > 2,

k+1 k

Pr+1 Pk
+
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that is
Pr+1 Dk 2
1.1 — - = =<1 )
(1.1) D liry k| =l
PE<T

In a recent paper [3], Panaitopol proved that

E+1 k
1.2 — —| < loglog z.
(12) Z Pr+1 Pk 5708

pLp<w

The proofs of these results rely on the following result due to Schnirelmann: if parsitive
andn a positive integer one denotes By(n, x) the number of the indicels such thap, < x
andpy.1 — pr = n, then

1
M < /1 x -
(n,z) <e log? z ; d’

wherec” is a positive constant.
In the present paper, several well known results will be used:

X
1.3 ~ :
(L3) m) ~ o
(1.4) Pn ~ nlogn;
- 1 . : :
(1.5) the serlesz is convergent if and only i > 1;
— nlogn(loglogn)®
(1.6) Z L _ loglogz + O(1);
nlogn ’
2<n<lzx
1.7) Z 1_ logz + O(1);
n 7
2<n<x
1
(1.8) Yy B g

p prime <z

We also need the following result of Bojarincév [1]:

(2.9) Ch =N+ n

- u,, where lim u, = 1.
10g7l n—oo

2. PROPERTIES OF THE SEQUENCE (pﬂ)
n>1

n

ntl _ n
Pn+1 Pn

The seriey " |
following result.
Theorem 2.1. The series

is divergent by). In connection with this fact we prove the

f: n+l n 1
“—~|Pnt1 Pa| (loglogn)®

is convergent if and only ik > 1.
Let us first prove the following auxiliary result.
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Lemma 2.2. Consider the sequencés, ), >1, (zn)n>1 and(s,),>1, wheres,, = > a,. If the
sequencés,z,),>1 IS convergent, then one of the series

o0 o0
Z Sp(ZTpt1 — x,) and Z Cn T,
n=1 n=1

is convergent if and only if the other one is convergent.

Proof. If >~ | s,(zn11 — z,) is convergent, therdim, .. s,(z,41 — x,) = 0. But
lim, . spz, = k for somek € R, hencelim,, ., $,T,+1 = k andlim,, . (Sp11 — Sn)Tni1
= 0.

On the other hand, ¥ | a,z, is convergent, then
limy, 00 Gpy1Zn41 = 0, hencdim,, oo (Sp11 — $p)Tne1 = 0.

Now let us denote,, = > | a;x; ando, = > | si(z;41 — 2;). Then for eactp we have

(2.1) Sntp — Sn = Ontp — On + SntpToip — Snt1Znt1 + (Sng1 — Sn)Tnt1-
Since we have just seen that in either case we Have(s, ., — s,)z,.1 = 0, relation )
n—oo

implies that in either case one of the sequer(¢gs,>; and(o,,),>1 is Cauchy if and only if
the other one is Cauchy. Now, by Cauchy’s criterion, one of the two series is convergent if and
only if the other one is convergent. O

Proof of Theorer 2]1lf o < 0, then the series is divergent By (1.2). Next assume 0 and

1 1
choosen,, = " — 2t andz, = oo

If we consider the functiorf : [n,n + 1] — R, f(z) = (loglogz)~*, then Lagrange’s
theorem implies

_a(loglogf,) !

log 1 1))"* — (logl Y=
(loglog(n + 1))~ — (loglogn) Py

wheren < 6,, < n + 1. Sinced,, ~ n, it follows that

—Q

2.2 — Ty, ~ .
(2:2) Tt T dn nlogn(loglogn)at!

By (1.2) and[(T.}) it follows that,, < loglog n and [2.2) implies

1
2.3 Tyl — Tp) <X — .
(2:3) Sn(Tns1 = Tn) nlog n(loglogn)«
If « > 1, then we have
_ ) log logn
lim s,z, = lim ——— =
n—o00 n—o00 (log IOg n)o‘

while for « = 1 we getlim,, ., s,x, = 1. Thus, fora > 1, the above lemma implies that
one of the serie "~ . s,,(z,41 —2,) @nd> ", a,x, is convergent if and only if the other one
is convergent. In view 05) an.3), the ser}e$. ; a,xz, is convergent forv > 1 and
divergent fora = 1.

Finally, if 0 < o < 1, then

n+1 n 1 n+1 n
Tn - — - —
pn+1 Pn lOg log n pn+1 Pn
and the desired conclusion follows. O
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Consequence 1If « > 1, then the series

Z

=1

07

n+1 n

Pn+1 Pn
is convergent.

Proof. We have
n+1 nl*t (n—l—l n)a_l
- — < max , — .
Prn+1 Pn Pn+1 Pn
7=y 1 K 1
ForK > Qandn > 3, we haveg et < qormgne @nd (1 .) implies thagth ~ 2 ~ L.
There existdK’ such that

n+1 nl®

Pn+1 Pn

n+1 n 1
pn| (loglogn)«
" follows by Theorel. O

< K’

Pn+1

and the convergence of the sergg n+1 _n

3. PROPERTIES OF THE SEQUENCE (;—n>
"/ n>1

Sincec,, ~ n (see )), for the sequené%) we obtain properties which are similar to
"/ n>1

those of the sequenc(ep”:)

n>1
In connection with[(T]2) we have the following fact.
Theorem 3.1. We have

pr<w

Ck+1 Ck

Pr+1 Pk

= loglog x

for everyz > e.

Proof. If we denotea, = ¢,11 — ¢ — 1, then it follows thatow, = 0 if ¢, + 1 is a composed
number, andy, = 1if ¢, + 1is prime In the last case, + 1 = p,,. Settingk = k(m), we
deduce by9) thaik —k ~ £ andlogk ~ log ¢y ~ logp,, ~ logm. It then follows that

k(m) — pm ~ —iEe and (1.4 l) |mpI|esthat

(3.1) k(m) = ppm — my, with lim y,,, = 1.
m—00
We have by[(1.9)
1 Gk _ et ldar o ap+1 cr(Perr — p)
Pr+1 Dk N Prk+1 Dk B Pr+1 PkPk+1
o+l k(e —pr) Ky,
e PkPk+1 (log k)prpr+1

(k +1 ﬁ) ak  kup(pres — pr)
Pk+1 yZ3 Pr+1 (log k>pkpk+1 '

We have the inequality

(3.2) ‘k+1 k|| o | | Ruk(prsr — pr)
Pe+1 Dk Pr+1 (log k) prpr+1
) k+1 k Qg kur(Pey1 — pr)
| Pk+1 Dk Pk+1 Dk Dh+1 (log k) prpr+1
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We have
kup(peis —pr)  F(Prkir —Pr) _ Pria — Dr
(log k)prprs1 k2log® k klogk
Panaitopol proves iri [4] that fgf > 2 the seriesy >~ , M is convergent, hence the series

oo kuy (Pr+1—Pk)
D k=2 Tlog P Is also convergent.

We have furthermore

o0

>y

iy Pk+1 Prt1’
where}"’ extends over the values #fsuch thaty, = 1, that is,c; + 1 = p,,. Then by [2.2)
and [1.4) we get
(3.3) Pk+1 ™~ Pk~ Pp,, ~ mlog2 m.
Since the serie3" ~_, mlog is convergent, it then follows that the serie§”,
convergent. Now/ (3]2) |mpI|es that

“e c k+1 k
oy |Pk+1 Pk De+1 Pk
and the desired conclusion follows. O

Analogously to the Erdds-Prachar theorem, we shall prove the following fact.
Theorem 3.2. We have

PE<x

Pe+1 Pk
Ck+1 Ck

= log?x

for everyz > 1.

Proof. We have

Dk+1 Dk Pr+1 Dk 1 Ch+1 — Ck
3.4 ——= = + —
( ) Ck+1 Cr (k +1 k ) Pr <l€(l€ -+ 1) Ck+1Ck )

(Pr1 — pr)(k+ 1 — crq1)

+
(k + 1)cksa

By (1.9) we get

D

prx

(Pe+1 — pr)(k+ 1 — crq1)
(k + ekt

_ Z pk+1 —pk Uk 41
cpr1log(k + 1)

m(x)
N P41 — Pk
=0 klogk

x S 1 1
= O\ T Tos (@) ;p’“ <(k “Dloglhi—1) k;logk)

By (1.3) we haver(z)log 7(z) ~ z,

1 1 pr log k 1
PR\ e —Dlog(k — 1)  klogk) ~ klog®k &
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and [1.7) implies

(3.5) S e _(i’ﬁ (]f);i_ ) _ Ofloga).

Pz
We have also

Z pk( 1 _Ck-i-l_ck)‘
P k’(k’ + 1) Cr+1Ck
<3

ez

Pk
ce(cr +2)|

o ( +1) Ck(0k1+ 1)) ' +2pzl

k<T

whereY"’ extends over the values éfsuch that, + 1 is a prime number, whil&~" extends
over the values of such that;, + 1 = p,, is composed. By (1]9) we deduce

| pr(ce — k) (cx +k+ 1) klogk
=0 —— - k“log k
g;x k(k + 1)c(cr +1) 2 = o8

Pr<x

=0 (Z %) = O(log ).

Pr<x

By (1.4) and[(1.B) it follows that

! Pk ' e logey
Z Ck(Ck+2)' Z Ck(Ck—i-Q)

Pp<® k<m(x)

Z’ log(cr +1)

cp+1

cp<x

1
_ Z ngm o IOg[E)

pm<x

Thus
(3.6) >

pp<z
P41 _ Pk

Now by 1), ') .5) an. 6) it follows thEka oy T = log? z and the proof is

completed. O

e
/{Z + 1 Ck+1Ck

= O(log x).
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