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Abstract

Anillustration is given showing the advantage of the definition given by Telyakovskif
for the class introduced by Sidon. It is also verified that if a sequence {a,,} be-
longs to the recently defined subclass S, of S, y > 0, then the sequence {n"a, }
belongs to the class S, but the converse statement does not hold.
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A great number of mathematicians have studied the question ‘What conditions
for a sequencéa, } guarantee that the trigopnometric series
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to be Fourier series, or to convergelirmetric?’. We refer only to W.H. Young Title Page

[17], A.H. Kolmogorov [7], S. Sidon [], S. A. Telyakovski[9] and the plentiful

references given irt] and in the excellent monograph by R.P. Boas, . If is Contents
also known that conditions were established with monotone, quasi-monotone, 4« 44
convex and quasi-convex sequences, with null-sequences of bounded variation, < >
and also sequences given by Sidon via a nice special construction.

In 1973 S. A. Telyakovski[1(] introduced a very effective idea, defined a GoBack
“new” class of coefficient sequences. He denoted this class; lilge letterS Close
refers to an esteemed result.®f Sidon [], and to the class defined by him Quit
in the same paper. Namely, Telyakovskiso showed that his class and that of
Sidon are identical, but to apply his definition is more convenient. This is the Page 3 of 13
reason, in my view, that later most of the authorg,([5], [14]), dealing with
similar problems, wanted to extend the definition of Telyakavski 3. Ineq. Pure and Appl. Math. 2(3) Art. 32, 2000
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In [3] and [4] we showed that some of these “extensions” are equivalent to
the classS, and some others are real extensionsSpbut they are identical
among themselves.

All of these facts show that the claSgdefined by Telyakovskplays a very
important role in the studies of the problems mentioned above.

The definition of the clasS is the following: A null-sequence := {a,, } be-
longs to the class, or brieflya € S, if there exists a monotonically decreasing
sequencé A, } suchthad "~ A, < oo and|Aa,| < A, hold for alln.

The aim of the present note is to give one further illustration which underlies
the central position of the class and the following theorems proved in the
same paper where the definition®fvas given.

In [10] Telyakovski, among others, proved the next two theorems.

Theorem 1.1. Let the coefficients of the serieis 1) belong to the class. Then
the series1.1) is a Fourier series and

Clo
+ E Ay, COSTLT
0

whereC' is an absolute constant.

dx<CZAn,
n=0

Theorem 1.2. Let the coefficients of the serieis%) belong to the class. Then
foranyp =1,2,...

T

g a, sinne

n=1

dx—z| Gl + O (i/ln)
p+1 n=1

holds uniformly.
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In particular, the series!.2) is a Fourier series if and only if
i lan] _
—n

Recently Z. Tomovskil”] defined certain subclasses$fand denoted them
by S.,r = 1,2,... (see also11] and in [5] the definition of the clas$'(«)).
A null-sequence€{a, } belongs to the clasS,, if there exists a monotonically
decreasing sequendel’} such thaty"> | n" A} < oo and|Aa,| < A\ for On the Utiity of the
all n. (Forr =0 clearly Sy, = S andAY = Ayl Tebakovsid Ts Class 5

In [11] Tomovski established, among others, two theorems in connection L. (Ll
with the classes, as follows:

Theorem 1.3. Let the coefficients of the series.{) belong to the class,, Tite Page

r =0,1,.... Then the-th derivative of the seriesi(1) is a Fourier series and Contents
if £ () denotes its sum function we have that

44 44
g > < »
/ FO@) de < MS WAD, M = M(r) > 0.
0 n=0 Go Back
Theorem 1.4. Let the coefficients of the serie%.?) belong to the class,, Close
r = 0,1,..., furthermore lety(x) denote the sum function of the seriés?. Quit
Then forany =1,2,...
Page 5 of 13
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In particular, ther-th derivative of the seried.(2) is a Fourier series if and only

if
o0
Z |an|n" ™t < oo.
n=1

It is obvious that ifr = 0 then the Theorem&.3 and 1.4 reduce to the
Theoremsl.1and1.2 respectively.

The proof of Theoreni.3 has not yet appeared, the proof of Theorem
given in [L1] is a constrictive one, follows similar lines as that of Telyakovski

Now, we shall verify that if a sequenge,, } belongs taS,, then the sequence
{n"a,} belongs taS, with such a sequended,, } which satisfies the inequality

(1.3) SN A< +1)Y nrAD, (4, =AD).
n=1 n=1

Thus, this result and the Theorefng and1.2immediately imply the Theorems
1.3and1.4, respectively.
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We shall deduce our assertion from a somewhat more general result. In the
Introduction we have already referred to that i, we also defined a certain
subclass of' as follows:

Leta := {«,} be a positive monotone sequence tending to infinity. A null-
sequencqa, } belongs to the clasS(«), if there exists a monotonically de-
creasing sequene[eﬁl,(f)} such that

S On the Utility of the
> a, A < oo, and |Aa,| < AY) forall n. Telyakovski Ts Class S
=l L. Leindler

If we denote the clasS(«), wherea,, := n®, a > 0, by S, that is, if we
introduce the definitiory,, := S(n“), we immediately get the generalization of

- Title Page
the classes,, r = 1,2, ..., for any positiven.

We shall prove our result for the class&s a > 0. Contents
Theorem 2.1.Lety > 8 > 0. If {a, } belongs to the clasS,, then the sequence 4 dd
{n”a,} belongs to the class,_; and < >
(2.1) Z Y PADP) < (B41) Z n’ AW Go Back

n=1 n=1 Close
holds. Quit

It is clear that ify = 5 = r then @.1) gives (L.3). Thus the inequality(.3), Page 7 of 13
utilizing the assumptions of Theorein3and1.4, and the statements of Theo-
remsl.landl.2 implies the assortions of Theoremhsand1.4, respectively. 3. Ineq, Pure and Appl. Math. 2(3) Art. 32, 2000
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Remark 2.1. The statement of the theorem is not reversible in general.
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Proof of Theoren2.1 In order to prove our theorem we have to verify that there

exists a monotonically decreasing seque{&?‘ﬁ)} such that?.1) and
(3.1) |A(nPa,)| < A0
hold. Since{a,} € S, thusif3 > 1 then

B2 A4yl = [n(an = anir) = ana((n +1)7 =0
< 0|Aa| + B(n+ 1) an]|

IN

nPAD + B(n+ 1) 3 A
k=n+1
Now define .
Ag—ﬁ) — nﬁAg) + 3 Z k‘ﬁ_lA,(:).
k=n+1

By this definition and §.2) it is clear that 8.1) holds. Next we show that the
sequence{Af]_ﬁ)} is monotonic, that is
Aflr_lﬁ) S AS{Y*/B).

Since(n +1)% < nf + (n+ 1) andA"), < AY, thus

AL = 1)PAY 8 Y KA
k=n-+2
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<nPAD + Bn+ 1) AD) + 8 Y KTTAY = ALY
k=n+2
Finally we verify 2.1). Since

i nv—ﬁAg—ﬁ) — i nVAgy) + ﬁi nY=P i kﬁ_lAl(:)
n=1 n=1 n=1

k=n+1
[e's) 00 k
< Z n”Aq(]) + Z kﬂ_lA,(:) Z nY—8
n=1 k=2 n=1

< (B+1)> nAY.
n=1

If 0 < B < 1then, using the first equality 08(2), we get that
IA(nPa,)| < nPAD) + grft Z A,(:).
k=n+1
Henceforth the proof follows the lines given far> 1 if we define
A;”‘B) — nﬁAS) + ﬁnﬁ_l Z A,(j).
k=n+1
Herewith the proof is complete. O

Proof of Remark.1 It suffices to prove the remark for the cage= 5 = 1.
We know that if{a, } € S; then{na,} € S. Our next example will show that
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there exists a sequenge, } such that{nc,} € S but{c,} ¢ Si. This verifies
that the implication
{a,} € S1 = {na,} €8S

is not reversible.
Put

1
Cpi=—————, n>1
nlog(n + 1) -
Then the sequencguc,, } is monotonically decreasing, tends to zero, and thus N
On the Utility of the

clearly belongs to the class Telyakovski T's Class S
On the other hand

L. Leindler
1
|ACTL| Z 9
n(n+1)log(n + 1) Title Page
whence Contents
> nAl) =0 «“ >
" < S
obviously follows if A} > |Ac,,| holds, consequentlic, } does not belong to
S, Go Back
This proves Remark. L O Close
Quit
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