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ABSTRACT. Steffensen’s inequality is generalised to allow bounds involving any two subinter-
vals rather than restricting them to include the end points. Further results are obtained involving
an identity related to the generalised Chebychev functional in which the difference of the mean of
the product of functions and the product of means of functions over different intervals is utilised.
Bounds involving one subinterval are also presented.
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1. I NTRODUCTION

For two measurable functionsf, g : [a, b] → R, define the functional, which is known in the
literature as Chebychev’s functional

(1.1) T (f, g; a, b) := M (fg, a, b)−M (g; a, b)M (f ; a, b) ,

where the integral mean is given by

(1.2) M (f ; a, b) =
1

b− a

∫ b

a

f (x) dx,

provided that the involved integrals exist.
The following inequality is well known in the literature as the Grüss inequality [10]

(1.3) |T (f, g; a, b)| ≤ 1

4
(M −m) (N − n) ,
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2 P. CERONE

provided thatm ≤ f ≤ M andn ≤ g ≤ N a.e. on[a, b], wherem,M, n,N are real numbers.
The constant1

4
in (1.3) is the best possible.

Another inequality of this type is due to Chebychev (see for example [14, p. 207]). Namely,
if f, g are absolutely continuous on[a, b] andf ′, g′ ∈ L∞ [a, b] with ‖f ′‖∞ := ess sup

t∈[a,b]

|f ′ (t)| ,

then

(1.4) |T (f, g; a, b)| ≤ 1

12
‖f ′‖∞ ‖g

′‖∞ (b− a)2

and the constant1
12

is the best possible.
Finally, let us recall a result by Lupaş ([11], see also [14, p. 210]), which states that:

(1.5) |T (f, g; a, b)| ≤ 1

π2
‖f ′‖2 ‖g

′‖2 (b− a) ,

providedf, g are absolutely continuous andf ′, g′ ∈ L2 [a, b]. The constant1
π2 is the best possi-

ble here.
For other Grüss type inequalities, see the books [13] and [14], and the papers [4]-[10], where

further references are given.
Recently, Cerone and Dragomir [3] have pointed out generalisations of the above results for

integrals defined on two different intervals[a, b] and[c, d]. They defined a generalised Cheby-
chev functional involving the mean of the product of two functions, and the product of the
means of each of the functions, where one is over a different interval by

(1.6) T (f, g; a, b, c, d) := M (fg, a, b)−M (g; a, b)M (f ; c, d) ,

with M (·, ·, ·) as defined in (1.2). They proved the following theorem.

Theorem 1.1. Let f, g : I ⊆ R → R be measurable onI and the intervals[a, b], [c, d] ⊂ I. In
addition, letm1 ≤ f ≤ M1 andn1 ≤ g ≤ N1 a.e. on[a, b] with n2 ≤ f ≤ N2 a.e. on[c, d].
Then the following inequalities hold

|T (f, g; a, b, c, d)|(1.7)

≤
[
T (g; a, b) + M2 (g; a, b)

] 1
2

×
[
T (f ; a, b) + T (f ; c, d) + (M (f ; a, b)−M (f ; c, d))2] 1

2

≤

[(
N1 − n1

2

)2

+M2 (g; a, b)

] 1
2

×

[(
M1 −m1

2

)2

+

(
M2 −m2

2

)2

+ (M (f ; a, b)−M (f ; c, d))2

] 1
2

,

whereT (f ; a, b) ≡ T (f, f ; a, b) which is as given by (1.1) andM (f ; a, b) by (1.2).

Proof. The proof was based on the identity

(1.8) T (f, g; a, b, c, d) =
1

(b− a) (d− c)

∫ b

a

∫ d

c

g (x) (f (x)− f (y)) dydx,
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STEFFENSEN’ S INEQUALITY 3

and the Cauchy-Buniakowski-Schwartz inequality for double integrals to give

|T (f, g; a, b, c, d)|2

=

[
1

(b− a) (d− c)

∫ b

a

∫ d

c

g (x) (f (x)− f (y)) dydx

]2

≤
(

1

b− a

∫ b

a

g2 (x) dx

) (∫ b

a

∫ d

c

(f (x)− f (y))2 dydx

)
= M2 (g; a, b) T (f, f, a, b, c, d) .

�

They noted that equivalent results to the second inequality in (1.7) could be obtained if (1.4)
and (1.5) relating to the Chebyshev and Lupaş inequalities were used in the first inequality in
(1.7).

The following inequality is due to Steffensen ([15], see also [14, p. 181]).

Theorem 1.2.Letf, g : [a, b] → R be integrable mappings on[a, b] such thatf is nonincreasing
and0 ≤ g (t) ≤ 1 for t ∈ [a, b]. Then

(1.9)
∫ b

b−λ

f (t) dt ≤
∫ b

a

f (t) g (t) dt ≤
∫ a+λ

a

f (t) dt,

where

(1.10) λ =

∫ b

a

g (t) dt.

Hayashi obtains a similar result [14, p. 182] which may ostensibly be obtained from Theorem
1.2 be replacingg (t) by g(t)

A
whereA is some positive constant.

For Steffensen type inequalities with integrals over a measure space, see the work of Gauch-
man [9].

It may be noted that both the generalised Chebyshev functional (1.6) and Steffensen’s in-
equality (1.9) – (1.10) involve integrals of functions and of products of functions. The current
article aims at investigating the relationship further.

2. STEFFENSEN TYPE RESULTS FOR GENERAL SUBINTERVALS

The following lemma will be useful for the results that follow.

Lemma 2.1. Let f, g : [a, b] → R be integrable mappings on[a, b]. Further, let[c, d] ⊆ [a, b]

with λ = d− c =
∫ b

a
g (t) dt. Then the following identities hold. Namely,∫ d

c

f (t) dt−
∫ b

a

f (t) g (t) dt(2.1)

=

∫ c

a

(f (d)− f (t)) g (t) dt +

∫ d

c

(f (t)− f (d)) (1− g (t)) dt

+

∫ b

d

(f (d)− f (t)) g (t) dt
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4 P. CERONE

and ∫ b

a

f (t) g (t) dt−
∫ d

c

f (t) dt(2.2)

=

∫ c

a

(f (t)− f (c)) g (t) dt +

∫ d

c

(f (c)− f (t)) (1− g (t)) dt

+

∫ b

d

(f (t)− f (c)) g (t) dt.

Proof. Let

(2.3) S (c, d; a, b) =

∫ d

c

f (t) dt−
∫ b

a

f (t) g (t) dt, a ≤ c < d ≤ b,

then

S (c, d; a, b) =

∫ d

c

(1− g (t)) f (t) dt−
[∫ c

a

f (t) g (t) dt +

∫ b

d

f (t) g (t) dt

]
=

∫ d

c

(1− g (t)) (f (t)− f (d)) dt + f (d)

∫ d

c

(1− g (t)) dt

+

∫ c

a

(f (d)− f (t)) g (t) dt− f (d)

∫ c

a

g (t) dt

+

∫ b

d

(f (d)− f (t)) g (t) dt− f (d)

∫ b

d

g (t) dt.

The identity (2.1) is readily obtained on noting that

f (d)

[∫ d

c

dt−
∫ b

a

g (t) dt

]
= 0.

Identity (2.2) follows immediately from (2.1) and (2.3) on realising that (2.2) isS (d, c; b, a) or,
equivalently,−S (c, d; a, b). �

Remark 2.2. If c = a in (2.1) andd = b in (2.2) then the identities obtained by Mitrinović [12]
using an idea of Apéry, are recaptured.

Theorem 2.3.Letf, g : [a, b] → R be integrable mappings on[a, b] and letf be nonincreasing.
Further, let0 ≤ g (t) ≤ 1 andλ =

∫ b

a
g (t) dt = di − ci, where[ci, di] ⊂ [a, b] for i = 1, 2 and

d1 ≤ d2.
Then the result

(2.4)
∫ d2

c2

f (t) dt− r (c2, d2) ≤
∫ b

a

f (t) g (t) dt ≤
∫ d1

c1

f (t) dt + R (c1, d1) ,

holds where,

r (c2, d2) =

∫ b

d2

(f (c2)− f (t)) g (t) dt ≥ 0

and

R (c1, d1) =

∫ c1

a

(f (t)− f (d1)) g (t) dt ≥ 0.
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STEFFENSEN’ S INEQUALITY 5

Proof. From (2.1) and (2.3) of Lemma 2.1

S (c1, d1; a, b) +

∫ c1

a

(f (t)− f (d1)) g (t) dt

=

∫ d1

c1

(f (t)− f (d1)) (1− g (t)) dt +

∫ b

d1

(f (d1)− f (t)) g (t) dt ≥ 0

by the assumptions of the theorem.
Hence, from (2.3)∫ d1

c1

f (t) dt +

∫ c1

a

(f (t)− f (d1)) g (t) dt−
∫ b

a

f (t) g (t) dt ≥ 0

and thus the right inequality is valid.
Now, from (2.2) and (2.3) of Lemma 2.1

− S (c2, d2; a, b) +

∫ b

d2

(f (c2)− f (t)) g (t) dt

=

∫ c2

a

(f (t)− f (c2)) g (t) dt +

∫ d2

c2

(f (c2)− f (t)) (1− g (t)) dt ≥ 0

from the assumptions.
Thus, from (2.3)∫ b

a

f (t) g (t) dt−
[∫ d2

c2

f (t) dt−
∫ b

d2

(f (c2)− f (t)) g (t) dt

]
≥ 0,

giving the left inequality.
Both r (c2, d2) andR (c1, d1) are nonnegative sincef is nonincreasing andg is nonnegative.

The theorem is now completely proved. �

Remark 2.4. If in Theorem 2.3 we takec1 = a and sod1 = a + λ, thenR (a, a + λ) = 0.
Further, takingd2 = b so thatc2 = b− λ givesr (b− λ, b) = 0. The Steffensen inequality (1.9)
is thus recaptured. Since (1.10) holds, thenc2 ≥ a andd1 ≤ b giving [ci, di] ⊂ [a, b]. Theorem
2.3 may thus be viewed as a generalisation of the Steffensen inequality as given in Theorem
1.2, to allow for two equal length subintervals that are not necessarily at the ends of[a, b].

It may be advantageous at times to gain coarser bounds that may be more easily evaluated.
The following corollary examines this aspect.

Corollary 2.5. Let the conditions of Theorem 2.3 hold. Then∫ b

c2

f (t) dt− (b− d2) f (c2) ≤
∫ b

a

f (t) g (t) dt(2.5)

≤
∫ d1

a

f (t) dt− (c1 − a) f (d1) .

Proof. From Theorem 2.3 on using the fact that0 ≤ g (t) ≤ 1, gives

0 ≤ r (c2, d2) =

∫ b

d2

(f (c2)− f (t)) g (t) dt

≤
∫ b

d2

(f (c2)− f (t)) dt = (b− d2) f (c2)−
∫ b

d2

f (t) dt
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6 P. CERONE

and so ∫ d2

c2

f (t) dt− r (c2, d2) ≥
∫ d2

c2

f (t) dt− (b− d2) f (c2) +

∫ b

d2

f (t) dt.

Combining the two integrals produces the left inequality of (2.5). Similarly,

0 ≤ R (c1, d1) =

∫ c1

a

(f (t)− f (d1)) g (t) dt ≤
∫ c1

a

f (t) dt− (c1 − a) f (d1) ,

producing ∫ d1

c1

f (t) dt + R (c1, d1) ≤
∫ d1

a

f (t) dt− (c1 − a) f (d1)

giving the right inequality. �

Remark 2.6. If we takec1 = a and sod1 = a + λ andd2 = b such thatc2 = b − λ then (2.5)
again recaptures Steffensen’s inequality as given in Theorem 1.2.

The following lemma produces alternative identities to those obtained in Lemma 2.1. The
current identities involve the integral mean off (·) over the subinterval[c, d].

Lemma 2.7. Letf, g : [a, b] → R be integrable mappings on[a, b]. Define

G (x) =

∫ x

a

g (t) dt

and
λ = G (b) = d− c

where[c, d] ⊂ [a, b].
The following identities hold

(2.6)
∫ b

a

f (x) g (x) dx−
∫ d

c

f (y) dy = λ [f (b)−M (f ; c, d)]−
∫ b

a

G (x) df (x)

and

(2.7)
∫ d

c

f (y) dy −
∫ b

a

f (x) g (x) dx = λ [M (f ; c, d)− f (a)]−
∫ b

a

[λ−G (x)] df (x) ,

whereM (f ; c, d) is the integral mean off (·) over [c, d].

Proof. Consider

L :=

∫ b

a

f (x) g (x) dx−
∫ d

c

f (y) dy

then from the postulatesG(b)
d−c

= 1 giving

L =

∫ b

a

f (x) g (x) dx− 1

d− c

∫ b

a

g (x) dx

∫ d

c

f (y) dy.

Combining the integrals gives

(2.8) L =

∫ b

a

g (x) [f (x)−M (f ; c, d)] dx,

whereM (f ; c, d) is the integral mean off over [c, d] as given by (1.2).
Integration by parts from (2.8) gives

L = G (x) [f (x)−M (f ; c, d)]

]b

a

−
∫ b

a

G (x) df (x)
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STEFFENSEN’ S INEQUALITY 7

and so

L = λ [f (b)−M (f ; c, d)]−
∫ b

a

G (x) df (x)

sinceG (b) = λ andG (a) = 0.
Now for the second identity.
Let

U :=

∫ d

c

f (y) dy −
∫ b

a

f (x) g (x) dx

then, from (2.6),

U = −L = −λ [f (b)−M (f ; c, d)] +

∫ b

a

G (x) df (x) .

Hence

U = λ [M (f ; c, d)− f (a)]− λ [f (b)− f (a)] +

∫ b

a

G (x) df (x)

and so combining the last two terms gives (2.7). �

Theorem 2.8.Letf, g : [a, b] → R be integrable mappings on[a, b] and letf be nonincreasing.
Further, letg (t) ≥ 0 andG (x) =

∫ x

a
g (t) dt with λ = G (b) = di − ci where[ci,di] ⊂ [a, b] for

i = 1, 2 andd1 < d2. Then

(2.9)
∫ d2

c2

f (y) dy − λ [M (f ; c2, d2)− f (b)]

≤
∫ b

a

f (x) g (x) dx ≤
∫ d1

c1

f (y) dy + λ [f (a)−M (f ; c1, d1)]

whered2 > d1.

Proof. From (2.6) together with the facts thatf is nonincreasing andg (t) ≥ 0 then

−
∫ b

a

G (x) df (x) ≥ 0

gives ∫ b

a

f (x) g (x) dx−
[∫ d2

c2

f (y) dy + λ [f (b)−M (f ; c2, d2)]

]
≥ 0

and so the left inequality is obtained.
Similarly, from (2.7) and the postulates we have

−
∫ b

a

[λ−G (x)] df (x) ≥ 0,

which gives ∫ d1

c1

f (y) dy + λ [M (f ; c1, d1)− f (a)]−
∫ b

a

f (x) g (x) dx ≥ 0.

�

Remark 2.9. The lower and upper inequalities in (2.9) may be simplified toλf (b) andλf (a)
respectively since ∫ d

c

f (y) dy = λM (f ; c, d) .
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8 P. CERONE

That is,

(2.10) λf (b) ≤
∫ b

a

f (x) g (x) dx ≤ λf (a) .

The result should not be overly surprising since it may be obtained directly from the postulates
since

inf
x∈[a,b]

f (x)

∫ b

a

g (x) dx ≤
∫ b

a

f (x) g (x) dx ≤ sup
x∈[a,b]

f (x)

∫ b

a

g (x) dx.

As a referee suggested, the result (2.10) readily follows on noting that∫ b

a

g (x) [f (x)− f (b)] dx ≥ 0

and ∫ b

a

f (x) [f (a)− f (x)] dx ≥ 0

.
The motivation behind Lemma 2.7 and Theorem 2.8 was to obtain a Steffensen like inequality

and it was not predictable in advance that the result would reduce to (2.10).

3. STEFFENSEN AND THE GENERALISED CHEBYSHEV FUNCTIONAL

Bounds will be obtained for the difference between the integral of the product of two func-
tions from the integral over a subinterval of one of the functions.

Theorem 3.1.Letf, g : [a, b] → R be integrable mappings on[a, b] such thatf is nonincreasing
and0 ≤ g (t) ≤ 1 for t ∈ [a, b]. Further, let[c, d] ⊆ [a, b] with λ = d− c =

∫ b

a
g (t) dt, then the

following inequality holds. Namely,

|S| : =

∣∣∣∣∫ b

a

f (x) g (x) dx−
∫ d

c

f (y) dy

∣∣∣∣(3.1)

≤ (b− a)

[
1

4
+

(
λ

b− a

)2
] 1

2

×

[(
f (a)− f (b)

2

)2

+

(
f (c)− f (d)

2

)2

+ (M (f ; a, b)−M (f ; c, d))2

] 1
2

,

whereM (f ; a, b) is the integral mean.

Proof. Sinced− c =
∫ b

a
g (t) dt, then

S =

∫ b

a

f (x) g (x) dx− 1

d− c

∫ b

a

g (x) dx

∫ d

c

f (y) dy

that is

(3.2) S =

∫ b

a

f (x) g (x) dx−M (f ; c, d)

∫ b

a

g (x) dx,

whereM (f ; c, d) is as defined by (1.2).
Thus, from (3.2),S may be expressed in terms of the generalised Chebyshev functional as

defined in (1.6), namely

(3.3) S = (b− a) T (f, g; a, b, c, d)

J. Inequal. Pure and Appl. Math., 2(3) Art. 28, 2001 http://jipam.vu.edu.au/
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STEFFENSEN’ S INEQUALITY 9

and so, from (1.7)

|S| = (b− a) |T (f, g; a, b, c, d)|(3.4)

≤ (b− a)

[
T (g; a, b) +

(
λ

b− a

)2
] 1

2

×
[
T (f ; a, b) + T (f ; c, d) + (M (f ; a, b)−M (f ; c, d))2] 1

2 ,

where

T (f ; a, b) = M
(
f 2; a, b

)
− (M (f ; a, b))2

andM (g; a, b) = λ
b−a

.
Hence, using the second inequality from (1.7) and (3.4) produces the stated result (3.1) upon

using (1.3) and the facts thatf is nonincreasing and0 ≤ g (t) ≤ 1 . �

Remark 3.2. If we had more stringent conditions onf ′ andg′ such that the Chebyshev and
Lupaş results (1.4) and (1.5) could be utilised in (3.4), then bounds in terms of the‖·‖∞ and
‖·‖2 norms of the derivatives would result. This will not be pursued further here however.

The following theorem expressesS as a double integral over a rectangular region to obtain
bounds for the Steffensen functional.

Theorem 3.3. Let the conditions of Theorem 3.1 hold. The following inequality is then valid.
Namely,

|S| : =

∣∣∣∣∫ b

a

f (x) g (x) dx−
∫ d

c

f (y) dy

∣∣∣∣(3.5)

≤ (a + b + c + d)M (f ; c, d)− 4

d− c
µ (f ; c, d)

+

∫ c

a

f (x) dx−
∫ b

d

f (x) dx

≤ (c− a) f (a)− (b− d) f (b) + (a + b + c + d) f (c)

−2 (d + c) f (d) ,

whereM (f ; c, d) is the integral mean and

(3.6) µ (f ; c, d) =

∫ d

c

xf (x) dx.

Proof. From (3.3) and (1.8)

|S| =
1

d− c

∣∣∣∣∫ b

a

∫ d

c

g (x) (f (x)− f (y)) dydx

∣∣∣∣(3.7)

≤ ‖g‖∞
d− c

∫ b

a

∫ d

c

|f (x)− f (y)| dydx,

where‖g‖∞ := ess sup
x∈[a,b]

|g (x)| = 1, from the postulates.

Thus,

(3.8) |S| ≤ 1

d− c

∫ b

a

∫ d

c

|f (x)− f (y)| dydx := I.
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10 P. CERONE

Now, using the fact thatf is nonincreasing and that[c, d] ⊆ [a, b], we have

(d− c) I =

∫ c

a

∫ d

c

(f (x)− f (y)) dydx +

∫ d

c

∫ x

c

(f (y)− f (x)) dydx

+

∫ d

c

∫ d

x

(f (x)− f (y)) dydx +

∫ b

d

∫ d

c

(f (y)− f (x)) dydx

= (d− c)

∫ c

a

f (x) dx− (c− a)

∫ d

c

f (y) dy

+

∫ d

c

∫ x

c

f (y) dydx−
∫ d

c

(x− c) f (x) dx

+

∫ d

c

(d− x) f (x) dx−
∫ d

c

∫ d

x

f (y) dydx

+ (b− d)

∫ d

c

f (y) dy − (d− c)

∫ b

d

f (x) dx

= (d− c)

[∫ c

a

f (x) dx−
∫ b

d

f (x) dx

]
+

∫ d

c

[a + b + c + d− 4x] f (x) dx.

Here we have used the facts that∫ d

c

∫ x

c

f (y) dydx =

∫ d

c

(d− x) f (x) dx

and ∫ d

c

∫ d

x

f (y) dydx =

∫ d

c

(x− c) f (x) dx.

Some elementary simplification gives

(3.9) I =

∫ c

a

f (x) dx−
∫ b

d

f (x) dx +
4

d− c

∫ d

c

(
a + b + c + d

4
− x

)
f (x) dx

and hence the first inequality results.
The coarser inequality is obtained using the fact thatf is nonincreasing, giving, from (3.9)

I ≤ (c− a) f (a)− (b− d) f (b) + (a + b + c + d) f (c)− 4

d− c
f (d)

∫ d

c

xdx,

which upon simplification gives the second inequality in (3.5). The theorem is thus completely
proved. �

Corollary 3.4. Let the conditions of Theorem 3.1 hold. Then

(3.10) −2cM (f ; c, d)− φ (c, d) ≤
∫ b

a

f (x) g (x) dx ≤ 2dM (f ; c, d) + φ (c, d) ,

where

(3.11) φ (c, d) = (a + b)M (f ; c, d) +

∫ c

a

f (x) dx−
∫ b

d

f (x) dx− 4

d− c
µ (f ; c, d)

withM (f ; c, d) being the integral mean andµ (f ; c, d) the mean off over the subinterval[c, d]
given by (1.2) and (3.6) respectively.

J. Inequal. Pure and Appl. Math., 2(3) Art. 28, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


STEFFENSEN’ S INEQUALITY 11

Proof. From (3.5) and (3.8) we have that

−I ≤
∫ b

a

f (x) g (x) dx−
∫ d

c

f (y) dy ≤ I

so that from (3.9)

I = φ (c, d)−
∫ d

c

f (x) dx

giving the result as stated after some minor algebra. �

Remark 3.5. Equation (3.10) gives bounds for
∫ b

a
f (x) g (x) dx in terms of information known

over the subinterval[c, d]. Let [c1, d1] and[c2, d2] be two such subintervals withd1 < d2 and
di − ci = λ. Then

(3.12) m ≤
∫ b

a

f (x) g (x) dx ≤ M,

where

M = min {2d1M (f ; c1, d1) + φ (c1, d1) , 2d2M (f ; c2, d2) + φ (c2, d2)}

and

m = max {−2c1M (f ; c1, d1)− φ (c1, d1) ,−2c2M (f ; c2, d2)− φ (c2, d2)} ,

with φ (·, ·) being as given in (3.11).
Particularising the result (3.12) on takingd2 = b and hencec2 = b − λ, c1 = a and so

d1 = a + λ, produces bounds in terms of subintervals at the ends of[a, b]. That is,

(3.13) me ≤
∫ b

a

f (x) g (x) dx ≤ Me,

where

Me = min{2 (a + λ)M (f ; a, a + λ) + φ (a, a + λ) ,(3.14)

2bM (f ; b− λ, b) + φ (b− λ, b)}

and

me = max{−2aM (f ; a, a + λ)− φ (a, a + λ) ,

−2 (b− λ)M (f ; b− λ, b)− φ (b− λ, b)}

with φ (·, ·) defined in (3.11).
For (3.14) on using (3.11), (1.2) and (3.6) gives

φ (a, a + λ) = (a + b)M (f ; a, a + λ)−
∫ b

a+λ

f (x) dx− 4

λ

∫ a+λ

a

xf (x) dx

and

φ (b− λ, b) = (a + b)M (f ; b− λ, b) +

∫ b−λ

a

f (x) dx− 4

λ

∫ b

b−λ

xf (x) dx.

It may be possible thatMe can either be tighter or coarser than the
∫ a+λ

a
f (x) dx bound in (1.9)

and similarly withme and
∫ b

b−λ
f (x) dx.
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