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ABSTRACT. lItis well-known thatinequalities between means play a very important role in many
branches of mathematics. Please refertol[1] 3, 7], etc. The main aims of the present article are:
(i) to show that there are monotonic and continuous functiéy, K (t), P(t) andQ(t) on
[0, 1] such that for alk € [0, 1],

H,<H() <G, <K(t) <A, and
H,/(1-H,) < P(t) < Gn/G,, < Q(t) < An/A,,,
whereA,,, G,, and H,, are respectively the weighted arithmetic, geometric and harmonic
means of the positive numbers, xo, ..., z,, in (0, 1/2], with positive weightsy, , aa, ..., a;
while A/, andG], are respectively the weighted arithmetic and geometric means of the
numbersl — zy, 1 — 9, ..., 1 — x,, with the same positive weights,, as, ..., a;,;
(i) to present more general monotonic refinements for the Ky Fan inequality as well as some
inequalities involving means; and
(i) to present some generalized and new inequalities in this connection.
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1. INTRODUCTION

Let n be a positive integer. To two given sequences of positive numhbets,, . .., z,, and
a1, s, ..., ap, such thata; + as + -+ - + «,, = 1, we denote by4,,, G,, andH,, respectively
the weighted arithmetic, geometric and harmonic means, that is,

n
A, = g Oy,
i=1
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2 K. K. CHONG

H, = <Zal/xl> )

We use the symbols,, g,, andh,, to denote the corresponding unweighted arithmetic, geomet-

ric and harmonic means of thepositive numbers;, s, ..., x,. The following well-known
inequality has been proved, using many different methods: (Please refer to [3].)
(1.1) H, <G, <A,

Let the real numbers; be such thad < x; < 1/2, foralli = 1,2,...,n. We denote
by A!, G and H, the weighted arithmetic, geometric and harmonic means of the numbers
1—x1,1—2o,...,1—x, namely,

Also, letal, g/ andh/, denote the corresponding unweighted arithmetic, geometric and har-
monic means of the numbets— z;,1 — z5,...,1 — z, respectively. In recent years many
interesting inequalities involving these mean values have been published, in particular, the fol-
lowing well-known Ky Fan and Wang-Wang inequalities :

H, G, A,

. — < —

-2 G ,
with equality holding if and only ifz; = --- = z,,. Please refer to the following papers by

H. Alzer [1] — [2] and Wang-Wand [10] of [7], etc. The right-hand inequality[of](1.2) is the
famous Ky Fan inequality; the left-hand inequality for the unweighted case was first discovered
by Wang-Wang in 1984 [10]. The main purpose of this paper is to present some new monotonic
continuous functiongf (), K (), P(A) andQ(X) on |0, 1] such that

H, <H\) <G, <K\ <A,

and

In fact, our theorems here generalize results of Wang and Yang in [9] and a theorem of K.M.
Chong [6]. In Sectiofi ]2, we shall generalize refinements of inequalities between means. In
Sectior| B, we shall present generalizations to refinements of the Ky Fan inequality, with some
new inequalities deduced. Finally, in Sectign 4, we shall show that Th¢orém 3.1 can be used to
deduce many other established refinements of the Ky Fan inequality.

In a recent paper of Wang and Yang [9], the following two interesting theorems were put
forward. In fact, they are refinements of inequalitjes](1.1) (1.2) in Sggtion 1, for the discrete
unweighted case. They are restated here without proof. For the details of the proof, please refer
to [9].

Theorem 1.1.Given a sequencgz, xo, . . ., x, } Of positive numbers, which are not all equal:
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(a) Foranytin [0,1/n], let

(1.3) h(t) = H

Then,h(t) is continuous, strictly decreasing agl = 2 (1/n) < h(t) < h(0) = g, on
[0,1/n].
(b) For anytin [0,1/n], let

(1.4) k(t) = H

Then,k(t) is continuous, strictly increasing angl, = k£(0) < k(t) < k(1/n) = a,, on
[0,1/n].
Theorem 1.2. Given a sequencg z1, zs, ..., x, } With z; in (0,1/2], ¢ = 1,2,...,n, which

are not all equal:
Ly (4 1
xX; =

(a) Foranytin [0,1/n], let
(1.5) =11
=1
Then,p(t) is continuous, strictly decreasing, and, /(1 —h,) = p(1/n) < p(t)
p(0) = gn/g, 0N [0, 1/n].
(b) Foranytin [0,1/n], let

—1/n

IN

n
[
i=1

1/n
ri+t)y (x;— xz)]

=1

(1.6) q (t) = 1/n
I1 [1 -z — tj; (x; — xl)]

=1
Then,q(t) is continuous, strictly increasing angl,/g,, = ¢(0) < q(t) < ¢(1/n) =
a,/al, on|0,1/n].
2. SOME GENERALIZATIONS

In this section, we are going to present and prove a generalization of Thgoijem 1.1 and Theo-
rem[1.2(a), in particular, to the case for weighted means. Its statement runs as follows:

Theorem 2.1. Let ay,as,...,a,, anday, as, ..., a, be two sequences of positive numbers,
with a; not all equal and ;" , «; = 1. Leta be any positive number such thé&j, < a, where
A, =31 aa;, andk is a constant such that < ;, forall i = 1,2,... n. Let
(2.1) H Ma+ (1—X\) a; — k™
i=1
(2.2) =[[Pa+ @ =N a;—k™
=1
Then,

(i) F(\) is continuous and strictly increasing o, 1] ;
(i) G(A) is continuous and strictly decreasing @i 1].
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Proof. (i) Taking the logarithm ofF'(\), we have,

In F (\) :zn:oziln[)\a—i—(l—)\)ai—k]

=1

Differentiating the last expression with respeci\tave have:

F'(\) u a; (a — a;)
F () _Z[Aa+(1—A)ai—k]

i=1

Differentiating again, we obtain:

PO~ aia—a)’
(2.3) {F()\)l a ;[Aa+(1—>\)ai—k]2

for all Ain [0, 1], as thea, are not all equal. Hencd,’'(\)/F()) is strictly decreasing
on|0,1]. Also, asA,, < a andk < a, we have :

n

F'(1) a(a—a;) a—A,
@4 m_z a—k  a—k =0

Therefore,F'(\)/F(\) > 0, for all Ain [0,1). As F'()) is positive for allX in [0, 1],
F'(A\) > 0for Ain [0,1). Hence,F'(\) is strictly increasing off0, 1] . The continuity of
F(X\)on|0,1] is obvious.
(i) As F'()\) is positive for allX in [0,1] andG(\) = 1/F()X), G()) is continuous and
strictly decreasing ofv, 1]. Hence, the proof of Theorejn 2.1 is complete.
0

Now, we use Theorein 2.1 to deduce some established theorems.
Remark 2.2. (i) From Theoren) 2]1, we have, for alle (0, 1),

F(0) < F(A\) < F(1),

which yields for not all equat;,

n

(2.5) [[(-#*<a—k

=1
In particular, ifa = A,,, for not all equakl:; we have,

n

(2.6) [ (e —k)™ <A,
=1
which is a generalization of the weighted arithmetic-geometric means inequality.
(i) Again, in Theoren 2.1, we lét = 0,a = Y_ | a;a; = A,. Then,F()) will reduce to,
say

n

27 K\ =[] M, + (1= Nai)™

=1
It is clear that/(\) is continuous and strictly increasing in1] , and for all € (0,1),
(2.8) K0)=G,< K\ < K(1) = A,.

This is a refinement of the weighted arithmetic-geometric means inequality.
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(i) Furthermore, if we put\ = nt,o; = %,i =1,2,...,n, into K(\), we obtain for all
te0,1/n],

n

n 1/n
HntA —nt) Z]l/”:H al—l—tz —az] :
1=1 i=1

The last expression is in fact the functiéft) of Theoren'(b). Hence, we have
shown that Theorem 1.1(b) is a particular case of Thegrem 2.1.
Remark 2.3. If, in Theorem, we lek = 0, a; = zii, i =1,2,...n, a = ¢ =
St + -+ 2=, thenG()) will reduce to,

2.9) 1) =1 {Hin . A)%} -

i=1
Then,H () is continuous and strictly decreasing [0n1] , and for all\ € (0, 1),
(2.10) H(1) = H, < H\) < H(0) = G,.

(2.1Q) is a refinement of the weighted means inequality. Furthermore, if we-putt, o; = =,
a; = 1/x;, i =1,2,...,n, into H(\), we obtain for allt in [0, 1/n],

n 1 —-1/n n 1 n 1 1
U{”t” N -1l —”Z(a‘z)]

7=1
This is the function(t) in Theoren{ 1/i(a). Hence, we have deduced The¢rein 1.1(a) as a
particular case of Theorgm 2.1.

Theorem 2.4.Letxy, xo, . . ., z,, ben positive numbers, not all equal, with € (0, 1/2] for all
1=1, 2,. ,n.Letay, as, ..., a, bethe corresponding weights, i.e;,> 0, i =1,2,...,nand
a1 +--+a, =1 Lety be a constant such that< - foralli =1,2,...,n. We defineP?(\)
as:

(2.11) P =]]

Then,

(i) P()\) is continuous and strictly decreasing @in1] ;
(i) forall XA € (0,1), we have,

2.12) P(1) = % <P < PO)=]] (1 _xm) N

=1
Proof. (i) P()\) is continuous and strictly decreasing n1], as we getP(\) from the
continuous and strictly decreasing functi6fi)\), by puttingk = ~, a; = 1/x; with
€(0,1/2], 1 =1,2,...,n,a=1/H, = ai/x1+- -+ a,/z, iInto G(\) of Theorem
2.1. o
(i) We have :P(0) = G(0) =TT, (25 )
P(1)=G(1) = H,/(1 —~vH,).
Hence, for all\ € (0,1),

= <o <[ (r227)

—1/n
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This completes the proof of Theor¢m|[2.4. O
Remark 2.5. If we put X = nt, a; = 1/n, i =1,2,...,n,v = 1linto P ()\) of Theorenj 2.4,

we obtain for any in [0,1/n],
1 —~ /1 1
()
7j=1

This is the functiorp(t) of Theoreni 1.2(a), and we have deduced The¢repn 1.2(a) as a particular
case of Theoref 2.1.

The only part in Sectiop|1, which is not yet dealt with, is Theofem 1.2(b). Its proof is post-
poned to the next section, with some additional theorems. We end this section by considering
another similar theorem. 10][6], K.M. Chong presented the following theorem:

Theorem 2.6.Letay, as, . . ., a, be positive numbers and, as, . . ., a,, be their corresponding
weights, i.eq; >0, i =1,2,...,nand) ", a; = 1. Let f ()\) be defined as:

(2.13) FO=TTI2D e+ (1 =N a

i=1 j=1

n —1/n

P<ms>_H{z—zﬂl—nt)ai—lr/n—ﬁ

i=1 =1

Qg

Then f ()) is a strictly increasing function of for A € [0, 1], unlessa; = ag = -+ = a,; in
which casef (0) = G, = A, = f(1).

Proof. It is obvious that wherk = 0 anda = A,, in Theoren| 2.l we obtain K.M. Chong’s
theorem at once. O

3. MONOTONIC REFINEMENTS OF THE KY FAN INEQUALITY

In the previous section, we have seen that Thegrein 2.1 is a generalization of various theo-

rems. In this section, we shall present a refinement of the well-known Ky Fan inequality, which
is a generalization of Theorgm 1..2(b).
Theorem 3.1.Letxy, zo, ..., x, ben positive numbers, not all equal, such thate (0,1/2]
forall: = 1,2,...,n and letay, as, . . ., a, be their corresponding weights i.e;; > 0,7 =
1,2,...,nand> "  «; = 1. Let5 andd be two constants such that< 5 andj < x;, for all
i=1,2,...,n. Letr(\) be defined as :

ﬁ[)\z + (1 — )\) — 6]0%'
(31) 7“()\) — i=1
[T = 2) + (1 = A)(1 — @) — &

forany\ € [0, 1], and any real number such thaty " | oz; < 2z < 1/2.
Then,

(i) »(X) is continuous and strictly increasing ¢, 1] ; and

(i) wheng = 4§ = 0, we have, forall\ € (0,1),
(3.2) G,/G., =71(0) <r(\) <r(l) =

z
1—2z

Proof. (i) Taking the logarithm, we have,

In{r(\)} = Zalln)\z+ (1 —=MNx; — Zazln (1—2)+ (1 =XM1 —x;)— 4]
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Differentiating with respect ta, we have :
r'(\) B z— x; (1—2)—(1—x)
r(\) Z N+ (1= N, — Z N1=2)+1=N(1—z;)—06

Z_xz zZ— X
B Z ‘Az + (1 +Z% AMl=—2)+(1 =XM1 —x) =06

Letu(\) = 7;8)) .

We are going to show thah{r(\)} and hence:(\) are both strictly increasing by
showing thatu(\) > 0 forall A € [0, 1).
Differentiatingu () with respect to\, we have :

Sy " a;(z — x;)? a;(z — ;)?
UO\)—_;[Az—l—(l— Nz, — 3 +Z Al —2) 1—>\)(1—xi)—5]2<0
as
1 1
et (T=Nai— B2~ A=z + (1= N1 =) -3
i=1,2,...,n,unless =y =2y =... =x, = 1/2,andf = 6.

Henceu(\) is strictly decreasing oft), 1] .

o g z—

= Z— Zaz 1_2_ Z@z z
= (z— Zazxz) 1 )—(f_ 25_ 5 >0, for iiaixi <z<1/2

Henceu(\) = =) > 0, forall A € [0, 1).
As r()\) is always positive, we havé(\) > 0 for all A € [0,1) andr(\) is strictly
increasing orf0, 1] .
(i) Itis easy to see that wheh = § = 0, 7(0) = G,,/G,,, r(1) = T
r(1)on(0,1).

(0) < r()) <
O

It is remarked, that if 3 = 0 = 0, z = "', oz, in Theorem[3]1, then the chain of
inequalities in[(3.2), withr(\) replaced byQ (), will become : for anyA € (0, 1),

Gn R _ﬂ
G Qo< <Q ==

n n

(3.3)

This is a refinement of the Ky Fan inequality.

Remark 3.2. (3.3) is a refinement of the weighted Ky Fan inequality and we haog <
r(A) <r(1), unlesst; =z, = ... = z,. In general,[(3.2) yields a generalization of the Ky Fan
inequality as follows :
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ForA, <z<1/2andé < g <uz; € (0,1/2],foralli =1,2,...,n, we have,

[T i = 51" z—p
(3.4) r(0) = == <7 5=,
[[[1——d™ ST
=1
with equality if and only ifzy = 29 = -+ = z,,.
Ifin (B.4) we letz = A, the weighted arithmetic mean of, z,, . . ., z,,, we obtain a gener-
alization of the weighted Ky Fan inequality :
1 [z - 5 )
(3.5) it éi? ?
a—e—g 7
=1
with equality if and only ifzy = 29 = -+ = z,,.

Remark 3.3. Ifwe putey; =1/n, i =1,2,...,n,z=>""  a;z;, § =09 = 0and\ = nt into
(3.1), we then obtain after simplification,

j=1"

=1

. n 1 1/n
I1 [nt > —xi+ (1= nt)xZ]

r(nt) =

This is the functiony(¢) in Theoreni 1.2(b), showing that Theorém|3.1 is a generalization of
Theorenj 1.2(b).

Remark 3.4. In [5], we have the following theorem, which can be easily seen to follow as a
particular case of Theorem 3.1, whén= 0 ands =0 :

Theorem 3.5. Let x4, 2o, ..., x, ben positive numbers, such that € (0,1/2], for all i =
1,2,...,n,and letay, as, .. ., a, be their corresponding positive weights, with+ i + - - - +
a, = 1. Letz be a constant such that,, < z < 1/2, whereA4,, = >""" | o;x;. We definav()\),
forany \ € [0, 1], to be the function :

[T 2+ (1= X)xz;]™
(3.6) w(\) = =1 .
AL =2) + (L= A)(1 — 2™

i=1
Then,
(i) w(A) is continuous and strictly increasing ¢i 1], unlessr; = x5 = -+ - = xy;
(i) G,/G,, =w(0) <w(\) <w(l) ==, forA e [0,1].

1
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4. SECOND PROOF OF THEOREM 2.1

In this section, we shall show that Theorém|3.1 is not only a generalization of Theorem
[1.7(b), but also it can be used to deduce some elementary theorems.

Second proof of Theorgm 2.$uppose the numbersey, zo, . . ., x,, are not all equal.
Forz; € (0,1/2], i = 1,2,...,n, z lying between """  o,;x; and1/2, the functionr(\) of
Theorenj 3] is strictly increasing ¢ 1], where for\ € [0,1], r()) is defined as :
[Tz + (1 = N)z; — g™
(4.1) r(\) = -— :
[TIAL = 2) + (1= A1 — ) — o]

Now, we putz; = %, i =1,2,...,n, wherel is a large positive number, and let= 7, 5 = %
with 6 = 3. Then, the functiom(\) becomes :

1 n
7 Ha+ (1= Aa; — k]
i=1

(4.2) r(\) = — _ — —.
[T A=)+ =0 -7) -]
By Theorenm 3.11,
[Tia+ (1= Na; — K
(4.3) v(\) = =1

- 5H+a-na-2%-5"

=1
is strictly increasing as increases frond to 1.
We let! tend to+o0, the denominator tends tband we have shown that the function in
Theoreni 2L

(4.4) FO) =[]Pa+ (1= Na; — k]*™
=1
is an increasing function 0o, 1] .
Differentiation calculations as in Theordm [2.1 easily reveal that inF4éf) is strictly in-
creasing ori0, 1] . This completes the proof of Theor¢m[2.1. O

Remark 4.1. From the discussions in Sectiph 2, it can be seen that Theorém 2.1 generalizes
Theorem 1.[1, Theorem 1.2(a), Theoreni 2.4 and Theprem 2.6. From the discussions of the last
two sections, it can be seen that Theofen) 3.1 generalizes Theorem 1.2(b), The¢rem 3.5 and
Theoren{ 2L. As a whole, we have shown that Thedrein 3.1 is a generalization of all other
refinements of inequalities (1.1) ard (1.2), appearing in this paper.
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