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Abstract

The paper is concerned with the solvability of variational inequalities that con-
tain second-order quasilinear elliptic operators and convex functionals. Appro-
priate concepts of sub- and supersolutions (for inequalities) are introduced and
existence of solutions and extremal solutions are discussed.
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We are concerned in this paper with the existence of solutions and extremal
solutions of noncoercive variational inequalities of the form:
(L(w),v = u) = (G(u),v —u) + j(v) = j(u) >0, Vv € W;"(Q)

(1.1)
u € WyP(Q).

Here() is a bounded region iR" with smooth boundaryL is (the weak form
of) the second order quasi-linear elliptic operator

N
(1.2) - ; 8?1:1- [A;(z,u, Vu)| + Ag(x, u, Vu)
and G is the lower-order term (cf.2(1) and @.6)). j is a convex functional,
representing obstacles or unilateral conditions imposed on the solutions. De-
pending on the choice gf the variational inequalityl(1) is the weak form of
an equation or a complementarity problem that contains the opetaBpmw(th
various types of free boundaries or constraints (cf. €.4.5, 17]).

SinceG may have superlinear growth, the operator G is noncoercive in
general. The solvability of problem (1) can be studied by several approaches,

for example, bifurcation methods (ci.4, 27, 29, 19, etc.), recession arguments
([4, 2, 28, 1, 21, 22, 2(], etc.), variational approaches’(], 32, 21], etc.), or
topological/fixed point methodsp, 31], etc.).

We are concerned here with another way to study the solvability. .gj, (

based on sub- and supersolutions. Recession methods have been quite populak
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recently in studying noncoercive problems. There are essential differences be-
tween these two approaches. Following recession approaches, the solvability
of the problem is usually established by assuming conditions on asymptotic be-
haviors (i.e., behaviors when the involved variables are large) of the lower order
terms (e.g.(= in problem (..1)). Problems of typel(.1) have been investigated

in detail by recession arguments inl[ 27]. Improvements on the existence re-
sults based on recession approaches,ifid, 1, 21, 27] were presented recently
in[20).

Compared to other methods, the sub-supersolution approach when appli- sub- Supersolutions and the
cable (i.e, when sub- and supersolutions exist) usually permits more flexible S®tence of Bxtremal Solutions
requirements on the growth rate of the perturbing téfrtnormally, one only Inequalities
needs to know the behaviors@fon bounded intervals). Moreover, based on the

lattice structure of the spad&’?((2), the sub- and supersolution method could o
also give insight into the ordering properties of the solution set between the sub-

and supersolutions, and especially, the existence of maximal and minimal solu- Title Page
tions. We refer the reader ta{] or [1¢] for more discussions on the difficulties Contents
arising when the sub-supersolution method is extended from equations (with « o

natural symmetric structure) to variational inequalities (without symmetric set-
tings), together with advantages of the method. More remarks on our approach < >
here for (L.1), compared with the recession approach, are given in Retark

This paper is the next step of our study plan proposed:ihdn sub- super- Go Back
solution methods applied to variational inequalities. In that paper, we consider Close
inequalities on closed convex sets, that is the particular case wieetiee indi- Quit
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cator function of a closed convex g&t

0 if uek
oo If ué¢ K.

J(u) =

However, many interesting problems in mechanics and applied mathematics
lead to other types of convex functionals, for example,

jlu) = / W(z,u(z))dz or j(u) = WU(z, u|aa(z))dsS, Sub- Supersolutions and the
Q a0 Existence of Extremal Solutions
) in Noncoercive Variational
(cf. [12, 11]). Because of the nonsymmetric nature of the problem, sub- super- Inequalities
solution methods for smooth equations (cf. elg][[10], [9], or [15]) and also Vy Khoi Le

the arguments in![Z] for inequalities on convex sets are not directly applicable
to (1.1). The goal of this paper is to study the variational inequality)(with
more generality on the convex functionaby a sub- supersolution approach.
The main difficulty we face here is defining sub- and supersolutions for the Contents
inequality (L.1) in an appropriate way such that the truncation—penalization ma-
chinery used for smooth, symmetric equations and for inequalities on convex S L
sets can be extended to our nonsmooth, nonsymmetric case. Basically, we need < >
to define sub- and supersolutions ©f1) such that: (i) under reasonable condi-

Title Page

. . . . Go Back
tions, one can show the existence of solutions and extremal solutions between
sub- and supersolutions, (ii) there is some way to find sub- supersolutions or Close
to check whether a given function is a sub- or supersolution, and (iii) sub- and Quit
supersolutions in inequalities extend those in equations.

Page 5 of 37

To meet these requirements, in the next section, we need to make non straight-
forward extensions on the usual sub- and supersolution concepts for equations
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and also on those presented iri][to the more general situation of inequality
(1.1 (cf. Definition 2.1). In Section3, we prove several existence results for
the inequality {.1) based on the sub- supersolution concepts in Sectiolt

is shown in Theorem8.1 and3.3 that if there exist a subsolution and a super-
solution or merely a subsolution (or a supersolution) and a one-sided growth
condition, then probleml(1) is solvable. We also consider the existence of
maximal or minimal (extremal) solutions, which are the biggest and smallest
solutions of (.1) (in certain ordering) within the interval between a subsolution

and a supersolution (Theore@<, 3.4). In Sectiord, we consider some exam- Sub- Supersolutions and the
ples where one can actually find sub- and supersolutions. Combining with the EXiiSrfeﬁgﬁc%feixiggn\}Z:iiﬁéﬁns
results in Sectio®, we obtain the existence of nonnegative nontrivial solutions Inequalities
and extremal solutions in eigenvalue problems for variational inequalities. The o e
first problem is about an inequality containing a quasilinear elliptic operator
and the convex term is given by an integral. By using constants as sub- and su-
persolutions, we find conditions such that the inequality has bounded solutions. Title Page
The second example is an eigenvalue problem for an inequality that contains the TETETE
p-Laplacian. By using sub- and supersolutions constructed from the principal
eigenfunctions of the-Laplacian, we show the existence of positive solutions b 4
of the inequality. < >

Compared with sub- supersolution methods for equations or for inequalities
on convex sets, the development of the method for inequalities with general Go Back
convex functionals (not necessarily indicators of convex sets) requires some Close
nontrivial adaptation and modifications and new arguments in several places. Quit
Note that our presentation here is somewhat related to the resulisdn 1]

Page 6 of 37

about sub- supersolution methods for differential inclusions with convex terms
given by certain integrals. The concepts of sub- and supersolutions there are
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for (pointwise) inclusion are defined mostly pointwise, while our concepts here
are for inequalities and are based on the dual betWige(2) and[I1V 17 (2)]*.
An interesting question is to possibly compare the approach here with that in

[6, 8, 7].

Sub- Supersolutions and the
Existence of Extremal Solutions
in Noncoercive Variational

Inequalities

Vy Khoi Le

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 7 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/

In this section, we consider the assumptions imposed on the inequaliyatd
next define sub- and supersolutions for it. We use the notaioa: 1717((2)
and X, := W, *(Q) for the usual first-order Sobolev spaces. 1nl), L is a
mapping fromX to X*, defined by

(2.2)

(L0 = |

where, foreach € {0,1,..., N}, A, is a Carathéodory function frofa x RV +!
toR. Fori € {1,...,N}N,

N
ZAi(x,u, Vu)ow + Ag(z, u, Vu)v | dz, Yu,v € X,

=1

(22) ’Ai(x>u7 5)‘ S GO(m) _'_ bU(’u‘pil + ‘5’17*1)’
and
(2.3) |Ao(,u, )] < ar(@) + by (Jul?™ + [¢]7),

for aimost allz € , allu € R, ¢ € RY with by, b, > 0, ag € LP(Q),a; €
L (Q), 1 < ¢q < p*. (As usual,p’ is the Holder conjugate qf andp* is its
Sobolev conjugate.) Moreover,

(2.4)

N

Z[Al(x7 u, f) _Ai(xv ula 5/)](51_51,)—’—["40(1’7 u, f) —Ao(x, u/’ 6,)](U_u/) > 07

=1
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if (u,&) # (v, &), and
(25) ZAZ(‘Ta u7§>§l + AO(I7 u?&)u > a(|£‘p + |u|p) - 6(I)7

foraer € Q, allu € R, £ € RY, wherea > 0 andj3 € L'(Q2). The
lower-order operatof is defined by

(2.6) (G(u),v) :/QF(JJ,u, Vu)vdz,

whereF : Q x R¥*! — R is a Carathéodory function with certain growth
conditions to be specified later. We also assume tligt mapping fromX to
R U {00} such that the restrictioﬁwg,pm) Is convex and lower semicontinuous

on Wol’p(Q) with non empty effective domain. Before stating our theorem about
existence of solutions, we need to define subsolutions and supersolutions for
inequalities with convex functionals. These definitions extend those definitions

presented in1g] for inequalities on closed convex sets. As seen in the following
definitions, they are more complicated. As usual, we use the notation

u Vv =max{u,v}, uAv=min{u,v}.

and
AxB={axb:a€ A, be B},

where A, B ¢ W'?(Q) andx € {A,V}. As is well known, W'?(Q) and
W, (Q) are closed under the operationsind A, that is,

u,v € WHP(Q)(resp. W, P(Q)) = u Vv, u Av € WHP(Q)(resp.W, 7 (Q)).
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Definition 2.1. A functionu € W'?(Q) is called alV-subsolution of {.1) if
there exists a functional (depending on):

J=J,: WP(Q) — RU {c0},
such that
(i) uw<00onoQ
(2.7) (i) F(,u,Vu) € L7(Q)

(iii) J(u) < oo, and

(2.8) Jo V) +J(vAu) < )+ J(w), Yo e Wy"(Q) N D(j),

and
(2.9)
(iv) (L(w), v—w)—(G(w),v—u)+J (v)=J () >0, v € uA[Wy"(Q)ND(j)],

(D(j) = {v € X : j(v) < oo} is the effective domain of). We have
a similar definition forl¥/-supersolutionz: w is a W-supersolution of 1.1) if
there exists/ = J; : W'?(Q) — R U {oo} such that:
(i) w>00noQ
(2.10) (i) F(-,@, Va) € LY(Q)

(ii) J(u) < oo, and
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(2.11) JwAT) + J(vVau) < j)+ J@), Yo e WP (Q)N D)),

and
(2.12)
(iv) (L(u),v—u)—(G(@),v—u)+J(v)—J(u) >0, v € ﬂv[Wg’p(Q)mD(j)].

A subsolution of {.1) is a finite maximum o#//-subsolutions and a supersolu-
tion is a finite minimum ofi}/-supersolutions.

Suppose there exist a subsolutior= max{u, : 1 < i < k} and a superso-
lutionw = min{w, : 1 <1 < m} of (1.1). We assume thaf has the following
growth condition:

(2.13) |F(x,u,8)] < as(x) + baf¢[P/0

for ae.x € Q, all ¢ € RY, all u such thatuy(z) < u < To(z)), where
as € L9(Q), by >0, ¢ < p* (p* is the Sobolev conjugate @, and

uy =min{y; : 1 <i <k}, 4y =max{w; : 1 <1 <m}.
We conclude this section with some remarks.

Remark 2.1. (i) If u is a solution of {.1), thenw is a subsolution of1.1),

provided; satisfies the following condition:
(2.14) JoVu)+jlvAu) < jv) + 5w,

for all u,v € WHP(Q). Infact, if u is a solution of {.1) then it satisfies (i) — (ii).
By choosingJ = j, we see that4.8) follows from 2.14). If v = u A w,w €
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WyP(Q), thenv = 0 0ondQ, i.e.,v € W,P(Q). Hence, 2.9) is a consequence
of (1.1). Similarly, if (2.14) holds, then any solution is a supersolution.
(i) (2.19) is satisfied for several usual convex functional&or example, if

j is given by
= / Y(x,u)dr
E

whereE is a subset of2 or 092, ¢ : 2 x R — R U {0}, is a Carathéodory
function such that
(2.16) Y(x,u) > az(z) + bslul®,

whereas € L'(Q) and0 < s < p*. j is well defined fromiV () to RU {oo}
andj is convex ifiy)(z, -) is convex for a.ex € ). Also, by Fatou’s lemmayj is
weakly lower semicontinuous. Let v € W1?(Q) and denote

(2.15)

r€eQ ueR,

={zeQ:v(z)<u(z)}, Q={reQ:v(x)>ux)}.
Then,
(2.17)
jAu)+j5(vVu) (/91 /92) (v Au) (/914—/92)1#(vvle)
 YEut | v(e)+ Qlw(ﬂ%v)Jr ng(az,m
/wxu /wxv
u) +j(v)
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Hence, £.14) is satisfied. Note that fron2(16), ¢)(x, u) is bounded from below
by a function inL'(Q2). Thus, the integrals ir2(17) are inR U {oc} and we can
split and combine them as done.

(i) If j = I, K is a closed convex set i, ”(12), then we recover the
cases considered in§]. Moreover, @.14) holds providedk satisfied the con-
dition
(2.18) u,v € K =uAv, uvVuveK.

As noted in [Lg], (2.19 is satisfied wheneveK is defined by obstacles or by
certain conditions on the gradients. We can also check that by using.(

(iv) If j = 0, we have an equation irL(l). By choosing = 0 also, we
see that Z.8) — (2.11) obviously hold and4.9) — (2.12 reduce to the usual
definitions of sub- and supersolutions of equationg.# I, as in (iii), then by
choosing/ = 0, we see that the definition of subsolutions ir][is equivalent
to the definition in (i) — (iv) here. Thus, Definitidh1is an extension of that in
[14].

(v) By choosing/ = 0in (2.8) and @.9), we see that if; is a subsolution of
the equation

(L(u),v) — (G(u),v) =0, Yo € Wy*(Q)
and;j(v VvV u) < j(v), Yo € W, ?(Q) N D(j), thenu is a subsolution of1(.1).
Similar observations hold for supersolutions.

(vi) Compared to the definitions inLg, 10, 9, 15, 1¢], the new ingredient
here is the introduction of the functiondl in Definition 2.1, which permits
more flexibility in constructing sub- and supersolutions (by choosing different
J).
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In this section, we state and prove our existence results for solutions and ex-
tremal solutions of1.1), based on the concepts of sub- and supersolutions in
Section2.

Theorem 3.1.AssumeX.1) has a subsolution and a supersolutionm such that
u < w and that .13 holds. Then,1.1) has a solution: such thatu < u < u.

Proof. We follow the usual truncation—penalization technique as i §, 15] o Sl s e

or [1€]. Therefore, we just outline the main arguments and present only the Existence of Extremal Solutions
in Noncoercive Variational

different points and modifications needed for our situation hereb betefined [l
by (Cf. [ ]) Vy Khoi Le
[t —u(x)]t  if t>u(x)
. Title Page
(3.1) b(x,t) = 0 if wu(r) <t<u(x)
] Contents
—[—t+ulx)t if t<u(x).
<4 >
We have the following estimates (cf. (49) and (50)r]): < >
b(x,t)] < az(x) + cslt]?, Go Back
with a3 € L7 (), and Close
Quit
[ b el — e ———
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forallu € LY(Q), where the:;'s (: = 3,4, 5) are positive constants independent
of u. We definel}; (1 <i<k, 1 <l<m)andT by:

u,(x) if wu(z)<w
Ta(u)(z) = u(z) if w(z) <ulz) <wo)
w(x) i wu(z)>w(x),
and
u(z) if wu(z) <
T()() = § u(x) i u(z) < u(x) < ()
u(x) if wu(z)>u(z).

Let us consider the variational inequality
(3.2)
(L(u) + BB(w) = C(u), v = u) +j(u) = j(u) >0, Vv € Wy"(Q)

u e W,"(Q),

with 3 > 0 sufficiently large. Consider the (nonlinear) operatBrandC' given
by
(B).) = [ o).
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and

(33)C(u),¢) = / [F (- T(u), VT(u))
+Z|F 0), VTu(u) — F(, T(u), VT(0))[16,

‘v’u, b€ WyP(Q).

Let us prove thafl = L + B — C'is pseudo-monotone div!?(Q). In fact, o Sl s e
assumew,, — w in WHr(Q) ("—" denotes the weak convergence) and Existence of Extremal Solutions
in Noncoercive Variational
. Inequalities
(3.4) lim sup(H (wy,), w, — w) < 0.
n—00 Vy Khoi Le
We show that
Title Page
(3.5) lim (H(w,),w, —v) > (H(w),w —v), Yv € W'P(Q).
n—0oo Contents
Since the embedding/!*(Q2) — LP(Q2) is compact, we havey, — w in <« (33
LP(Q)). By passing to a subsequence, if necessary, we can assume that there is
. . < >
a functionh in L?(Q2) such that
Go Back
w, — w a.e.inf, and
(3.6) Close
lw,| < h a.e.inQ, Vn. Quit

Since the sequendev, } is bounded if?’'*(), the sequences e A aE

{F(-, Ty(wy), VTy(w,))} and{F (-, T(w,), VT (w,))} are uniformly bounded
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in L7 (Q). From @.3), it follows that the sequendd 3B — C)(w,,)} is bounded
in L7 (Q). (3.6) thus implies that

(BB = C)(wn), wn, —w) — 0.
Hence, from §.4),
(3.7) limsup(L(w,) — L(w),w, — w) = limsup{L(w,), w, —w) < 0.

Since{A;} (i = 0,1,...,n) satisfy .2) — (2.4), it follows from (3.6) and
(3.7) thatw, — w in W'?(Q). ConsequentlyH (w,) — H(w) in L (Q)
and @.5) follows. This shows thal. + B — C'is pseudo-monotone. Using
arguments similar to those in{], we can prove that. + B — C'is coercive

on W, ”(Q). Moreover, this mapping is obviously continuous and bounded.

Classical existence results for variational inequalities (cf. €.g.14]) give the
existence of at least one solutianc W, ”(Q) of (3.2). Also, it is clear that
u € D(j). We prove thaty < u. Letu, (1 < ¢ < k) be al¥/-subsolution.

Sinceu € W, P(Q) N D(3), (2.9 with u = u, andv = u A u gives
<(ﬂq)7gq ANu— gq> - <G(gq)7uq ANu— Qq> + J<gq A U) - ‘](Qq) > 0.
Sinceu, A u = u, — (v, — u)", the above inequality becomes

(3.8) —((uy) (uy —u)") = (Gluy), (g, —u)*) + J(uy, Au) — J(u,) > 0.

q

On the other hand, sineg vV u = 00ndQ, v = u, V u € Wy (Q). Lettingwv
into (3.2 and noting thaty, V u = u + (v, — u)™, we get

(3.9) (L(u) + BB(u) — C(u), (g, —u) ") +j(y, V u) = j(u) = 0.
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Adding (3.8) and (3.9), one gets

(L(u) — L(w,), (u, —u)™) + (G(u,), (u, —u)")
+{(BB(u) = C(u), (u, —u)")j(u, Vu) = ju) + J(u, Au) = J(u,) >0,

From 2.9),
3wy Vu) = j(u) + J(uy Au) = J(u

Using the integral formulation aB, C' andG, we get

) <0.

q

(3.10) (L(u) — L(u,), (u, —u)™) + /QF(x, g, V) (u, —u)™

9 [ b~ = [

F(x,T(u), VT(u)) + Z |F(x, Ty(u), VTy(w))
— F(z,T(u), VT(u))] (u, —u)™ > 0.
We have
(L(u) — L(y,), (v, — u) +ﬁ/ (u, —u)"

+ [ | Peom) = PT) = S IFCTaw) = FCT()

(u,—u)™ > 0.

Sub- Supersolutions and the
Existence of Extremal Solutions
in Noncoercive Variational

Inequalities

Vy Khoi Le

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 18 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/

F(z,u,(z)) — F(x Z!F z, Tu(u — F(z,T(u)(z))]
< F(z,u,(z)) — F(:B,T(u>(x>> — |F(z, Ty, (u)(z)) — F(z,T(u)(z))]
= F(z,u,(7)) — F(z, T(u)(2)) — [F(2, u,(z)) — F(z,u(z))|
<0,

we obtain

(3.11)

/Q F(u,) = F(,T(w) = > |F(-, Tu(u)) = F(-, T(u)|| (u, —u)*

Using the fact that

(L(u) = L), (ug —u)")

a _/{u —u>0} {

+HAo(w, 1y, Vi) — Ao(, u, V)| (u, — u)] }
<0,

Mz

i(7, 1y, Vu,) — Ai(z, u, Vu)] (i,

=q

q
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(by (2.4)), we have from .10 and @.11) the following estimate

= - (u—u)" ' (u, —u) (sincea < u, < u)
{uy>u}

Thus,
0= [ lta, = )y,

and(u, —u)* = 0a.e.inQ,i.e.,u >y, a.e.inQ. Using these arguments for all
q € {1,...,k}, we see that > u. We can show in the same way thakK w.
Now, from (3.1), we haveb(z,u(x)) = 0 for almost allz € Q, i.e., B = 0.
Also, T;;(u) = T(u) = u, for all i, [ and thus

(C(w), ) = / Feyu, Va)p = (Glu), ).

Hence, since; satisfies 8.2), it also satisfies!(.1), i.e.,u is a solution of {.1)
andu < u < 7. O]

We now prove thatX.1) has a maximal and a minimal solution within the
interval between, andw.
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Theorem 3.2. AssumeX.1) has a subsolution and a supersolutionm such that
u < uw. Moreover, £.13 and 2.14) hold. Then, {.1) has a maximal solution
uv* and a minimal solution:, such that

(3.12) u < u, <u* <,

that is,u, andu* are solutions of {.1) that satisfy 8.12 and if u is a solution
of (1.1) such thatu < u < wthenu, < u < u* onf).

The proof is similar to that of the particular cage- I, which was already .
X . . Sub- Supersolutions and the
presented n [ ] Therefore, it is omitted. Existence of Extremal Solutions
As in the case of variational inequalities on convex sets, we still have exijs- " Noncoercive variational

) . . - Inequalities
tence of solutions and extremal solutions provided only subsolutions (or super- _
solutions) exist together with certain one-sided growth conditions. We have in vy Khoi Le
fact the following result.

Theorem 3.3.Assume.1) has a subsolution and F has the growth condition e e
Contents

(3.13) |F(z,u,8)] < as(x) + bs([ul” + [€]7) « dd
fora.e.r € , all u such thatuy(z) < u,all ¢ € RY, whered <o <p—1, a € < 4
LY (Q), and Go Back

ug = min{y; : 1 <i < k}.

_ Close
Hence, (.1) has a solution: such that > w. p—

ul

The idea of the proof of this result is a combination of Theofefinstated
above and an extension of Theorem 11i][ We omit the proof and refer the
reader to [ &] for more details.
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By looking closely at the set of solutions df.(), one can improve Theorem
3.3and get the following stronger result.

Theorem 3.4. Under the assumptions of TheoréhB, (1.1) has a maximal
solutionu* and a minimal solution:, such that

(3.14) u<u, <u* <7,
that is,u, andu* are solutions of {.1) that satisfy 8.14) and if u is a solution
of (1.1) such thatu < u < wthenu, < u < u* onfl. Sub- Supersolutions and the
Exi;tence of Ex_tremaI‘S(‘)Iutions
Proof. The proof follows the same line as that in Theorem 1Z].[] A main in Nonc?fég'l‘g"‘tfizgat"’”a'
ingredient of the proof is the boundedness of the set
Vy Khoi Le
S ={ueW,”(Q):u>u, uis asolution of {.1)}
in W, ”(Q2). Proving thatS is bounded requires some different arguments from Title Page
those in [.8]. From (1.1) with v = ¢ being a fixed element iV (), we have Contents
(L(u), ¢ —u) = (G(u),d —u) + j(¢) — j(u) = 0. « dd
Therefore, ¢ d
Go Back
(L(u), ) = / Z Ai(x,u, Vu)dyu + Aoz, u, Vu)u Close
Ll Quit
> P Py — dx (by (2.
> o [(9up +uP)~ [ sde Gy @.9) e 22 0157
p
2 a|’uHW017P(Q) —C.
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=
S
&
IN

c ZHA sty V)| o () 10i0| Lo (o)

+||Ao<~,u,Vu>|\Lp/(mH¢||Lm>}

IN

e| D llao + bolul’™ + bo | VulP | L 0 19,6 ()

-1

+||a; + b1|u|p_1 + |vu|p_1||LP'(Q)||¢”L”(Q):|

IN

(1 + [ull oy + 11Vl 0)
< o1+ ||u||W1p )
(c denotes a generic constant). Frodl@, we have
(G(w), d)| < (1 + [lul[frrq))
and
(G (u),w)] < e(U+ [[ullfrm@)lullwis@) < e+ [lullFhhq)-
Sincej is convex and lower semi-continuous, there exist, € R such that
G(u) > as+ balull i), Yu € WyP(Q).
Hence,

ollullfyrnigy = ¢ < e+ lulliingy + i + lullwise).
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Sinceo < p, this shows thafju|ly1.-) < c for all solutionsu of (1.1) such
thatu > u. Hence,S is bounded iV (Q).
The remainder of the proof is similar to that of Theorem 3lid] | O

Remark 3.1. Note that if A, = A;(z,£) (: = 1,...,N) do not depend on,
then we can choosé, = 0 and all the results stated above still hold.
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We now apply these general results to establish the existence of solutions and
extremal solutions in some particular variational inequalities.

In this example, we study a quasi-linear elliptic variational inequality that con-
tains a "unilateral” term given by an integral. Assume thatfer0,1,..., N,

Sub- Supersolutions and the

Ai satisfies Existence of Extremal Solutions
in Noncoercive Variational
(4.1) Ai(.CE, u, O) -0 Inequalities
. L ) . Vy Khoi Le
fora.e.x € 2, all w € R and consider the variational inequality
(4.2)
. . 1 Title Page
(Lo =) =X [ Flagu, Va)(w - ) +50) = ja) 2 0, o € W7(8)
Q Contents
ue WyP(Q). % N
Here, L and A are defined as in2(1), (2.2), and @.3) of Section2. )\ is a real < >
parameter and F—
(4.3) ) = [ e u(w)de, Close
Q@ Quit
wherey : 2 x R — R U {oo} is a Carathéodory function such that Page 25 of 37
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wherea € L'(Q2),b > 0. It follows from this inequality that for. € W'r(Q),

Y (z,u(x)) is measurable and sineex(x) — blu(z)|P € L'(Q), j is well defined
andj(u) € RU {oco}. Assume also that for almost alle 2, ¢(z, -) is convex.
Hence,j is convex oniv1*(Q). It follows from Fatou’s lemma that is lower
semicontinuous on that space. The following lemma shows the existence of
constant sub- and supersolutions ©£.

Lemma4.1. (a) Assume&s € R, B < 0is such that

(i) F(x,B,0) >0 fora.e.z € Q

(4.5)
(ii) F(-,B,0) € L7 ()
and
(4.6) (iii) Y(z,B) < ¢(z,v), Yo < B,

then B is a subsolution of4.2).
(b) Similarly, ifA € R, A > 0and

(i) F(z,A,0)<0 fora.e.x € Q

(4.7)
(i) F(-,A,0) € LY(Q)
and
(4.8) (iii) Y(x, A) > P(x,v), Yo > A,

then A is a supersolution of4.2).
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Proof. (a) Choosing/ = 0, we see that, = B satisfies conditions (i) — (iii) of
Definition 2.1. Moreover, R.8) becomes, in this case,

(4.9) j(vV B) < j(v), ve WyP(Q) N D(j),

i.e.,

/Qw(x,v(x)\/B)dx < /ﬂwx,v(m))dm.

In view of (4.3) and @.4), this is equivalent to

Sub- Supersolutions and the

Existence of Extremal Solutions
(4.10) w(aﬁ, U)d:b‘ + / w(l‘, B)d:c in Noncoercive Variational
{zeQ:v(z)>B} {zeQ:v(z)<B} Inequalities
< / M:z:,v)dx%—/ Y(z,v)de. D7) ke
{zeQ:v(z)>B} {zxeQ:v(z)<B}
Now, from (4.6), we have Title Page
Y(z, B) < Y(z,v(x)) on{xr € Q:v(z) < B} Contents
and thus <4< >»
ve.B) < [ ¥(w.v), < >
{zeQ:v(z)<B} {zeQv(z)<B}
which implies ¢.10) and thus 4.9). Go Back
To check @.9), we assume that = B A w with somew € W, 7(Q) N D(4). Close
From (4.1) and the definition of., L(B) = 0. Sincev — B < 0, we have from Quit
(4.95() that
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This implies @.9), completing the proof of (a). The proof of (b) is similar[]

By using Theorems8.2, 3.4, and Lemma4.1, we have the following exis-
tence result for4.2).

Theorem 4.2.(a) Assumé3 € R satisfies4.5), ¢ satisfies 4.6), and that
|F(z, u, §)| < a(x) 4 b(Jul” + [¢]7)

foraercQ u>B, EcRY, with0 <o <p—1,a € L”(Q). Then, ¢.2)
has a minimal solution, and a maximal solution* such thatB < u, < u*.
(b) Assumed, B € R (A > B) satisfy 6.5 — (4.8) and that /' has the
growth condition
|F(2,u,6)] < a(x) + b([¢["7)
fora.e.r € Q, £ e RV, u € [A, Bl withg < p*, a € L” (Q). Then, ¢.2) has a
minimal solutionu, and a maximal solutiom* such thatB < u, < u* < A.

Remark 4.1. As shown in Theorem.2(see also Theorer 4 below), compar-

ing sub-supersolution with recession method, we note that more flexible condi-

tions are usually required in the first method. In fact, in Theo#ieiif there
are A, B € R satisfying 6.5 — (4.8), then the growth condition foF is lim-

ited to onlyu € [A, B]. On the other hand, when recession arguments are used

(cf. e.g. Theorems 3.4, 3.16 ifi][ Theorems 2.3, 4.3 ir5], Theorems 2.5, 4.4,
Corollary 6.10in P1], or Theorems 1, 2, 3 in]], etc.) conditions on behaviors

of the functionalG' containingF’ at infinity are assumed, which is completely

different from our approach here.

Sub- Supersolutions and the
Existence of Extremal Solutions
in Noncoercive Variational

Inequalities

Vy Khoi Le

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 28 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 20, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vy@umr.edu
http://jipam.vu.edu.au/

Another advantage of the method here is that we obtain, in addition to the
solvability of (1.1), ordering properties of the solution sets, especially the ex-
istence of maximal and minimal solutions. This cannot be obtained by reces-
sion arguments. However, sub-supersolution method works only in function
spaces with some lattice structure (suchHias?(2)). That is the reason why
the method is normally restricted to problems with second-order operators, such
as (L.1). Recession methods, on the other hand, are applicable to higher order
problems.

Sub- Supersolutions and the
Existence of Extremal Solutions
in Noncoercive Variational

Inequalities
We consider in this example a variational inequality that contains-thegplacian, o e
that is, the inequality(.1) with
(L(u),v) = / |VulP~2Vu - Vo du, Title Page
@ Contents
In this caseA; = |Vu[P20,u, (1 <i < N)andA, = 0. The coefficients4, > N
(t=0,1,...,N) clearly satisfy £.2) and ¢.3). For eachk” > 0, suppose that
the function < >
(4.11) z+— sup{|F(z,u,8)]: 0 <u< K, [¢| < K} Go Back
, . . ]
belongs toL? (£2). We also assume the following behavior6fz, u, ) when 058
u is very small or very large: Quit
r A Ja Page 29 of 37
(4.12) lim inf M > 20 lim sup M,
u—0+ Jgl—0  uP~l A uocogerN WP
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where)\ is the principal eigenvalue of theLaplacian,

Ao = inf { (/ﬂ |u]pdx)_1 /Q \VulPdz - u € WyP(Q) \ {0}} :

Let ¢y be the (unique) eigenfunction corresponding\(asuch thaip,(z) > 0
for all z € Q. (It is known, see e.g.”[], that¢, € C*(Q) for somea €
(0,1).) By choosingJ = 0 and using the arguments ifn ] (Lemma 1), we can
show that the functiom = e¢, satisfies 2.9) for all ¢ > 0 sufficiently small.

Sub- Supersolutions and the

On the other hand, l&? be a bounded open region that contaihand let\ Existence of Extremal Solutions
be the principal eigenvalue of thelLaplacian on2 and ¢ the corresponding in Nonc?ercivel_\t/_ariationa'
eigenfunction o such thai > 0 on ). Then, we can prove that= R¢|g neanatties
satisfies .12 (with J = 0) for R > 0, sufficiently large. The proofs of these Vy Khoi Le
statements are somewhat lengthy; we refer the reader/jddr more details.
The following lemma is about the construction of sub- and supersolutions of Title Page
(1.1 based on the eigenfunctiopg and¢ of the p-Laplacian. c
ontents

Lemma 4.3.(a) If there exist€”; > 0 such that) is nonincreasing ofi—oo, C1),
i.e_, 44 42
(4.13) Y(z,u) < ¢Y(x,v), fora.e.x € Q, for all u, v such thatv < u < (4, 4 d
then, fore > 0 sufficiently smally = e, is a subsolution of4.2). Go Back

(b) Similarly, if there existé’; > 0 such that) is nondecreasing ofC5, o), Close
I.e., QUIt
(4.14) Y(z,u) > Y(x,v), fora.e.x € Q, for all u, v such thatu > v > Cy, Page 30 of 37

then forR > 0 sufficiently largen = RQ~5|Q is a supersolution of4.2).
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Proof. (a) We need only to check(9), i.e.,
J(vVego) < j(v), Yo € Wy (Q) N D(j).

This is equivalent to

/ e, con)do + [ b(a, v)da
{xeQv<epo} {zeQv>epo}

< (/ —|—/ )@/)(x,v)dx,
{reQv<edo} {zxeQv>edo}

/ Y(, edo)dr < / Y(z,v)dz.
{zeQv<epo} {zeQv<edo}

Now, sincepy € L>(R2), epo(z) < C4, for a.e.x € Q for e > 0 small. Hence,
forv < ey < C4, (4.13 impliesy(z,v(x)) > ¥(x,epo(x)) for a.e.x € Q.
This implies ¢.15. Hence,c¢, is a subsolution of4.2). The proof of (b) is
similar. O

that is,

(4.15)

As a consequence of Lemma3 and TheorenB.2, we have the following
result.

Theorem 4.4.Under the conditions4.12) and @.11), there exist a subsolution
u, and a supersolutiom* of (4.2) such that

(0 <)eo < us < u* < Rla,
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wheree > 0 sufficiently small and? > 0 sufficiently large. In particular, ifF’
has the growth conditior4(11) and \ satisfies4.12), then, ¢.2) has a positive
solution.

Remark 4.2. (a) (4.2) can be seen as an eigenvalue problem for a variational
inequality. We have proved that farin certain appropriate interval (given by
(4.12) , then @.2) has positive eigenfunction.

(b) One can replace(4) by a somewhat different condition, concentrating
only on the higher-order coefficients (1 < i < N). Namely, we assume that
Ap = 0 and instead of4.4),

N

Z[Ai(xvuv 6) - Ai(x7u,7€)](§i - f;) > 07

=1
fora.ex € Q,allu c R, all¢, & ¢ RN, € £ ¢, andin @.5),

N
ZAZ(‘TJU7§)£Z Z a|£‘p - ﬁ? a.e.r € Q7 Vu € R? vé- € RNa

i=1

(a > 0). Also, we need a Holder-continuity type of assumption with respect to
u:

A u,€) = Aula, o, ©)] < [k(@) + fu? ™ + [P~ + [~ w(lu — o)),

fora.e.x € Q,allu, v’ € R, all¢ € RY, wherew : [0, 00) — [0, oc) satisfies

/ dr C e
or W’ (r)
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(cf. [7]). Assume also that is given by an integral:

i) = [ vtwuto)s
Q
where satisfies the following growth condition (instead &f16)):
|(z,u)| < ag(z) + bslul®, a.e.x € QVueR,

with a3 € L'(Q), 0 < s < p*. It can be checked thatis continuous. By using
the arguments in/] (see also []), we can prove the following result:

Theorem 4.5.1f u; andu, satisfy .9) with J = j, thenu = max{u;, us} also
satisfies 2.9) with J = j.

It follows that if u;, us are solutions of 1.1), thenmax{u;,us} satisfies
(2.9.
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