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ABSTRACT. Improved inclusion-exclusion inequalities for unions of sets are available wherein
terms usually included in the alternating sum formula can be left out. This is the case when a
key abstract tubecondition, can be shown to hold. Since the abstract tube concept was intro-
duced and refined by the authors, several examples have been identified, and key properties of
abstract tubes have been described. In particular, associated with an abstract tube is an inclusion-
exclusion identity which can be truncated to give an inequality that is guaranteed to be at least
as sharp as the inequality obtained by truncating the classical inclusion-exclusion identity.

We present an abstract tube corresponding to an orthant arrangement where the inclusion-
exclusion formula terms are obtained from the incidence structure of the boundary of the union
of orthants. Thus, the construction of the abstract tube is similar to a construction for Euclidean
balls using a Voronoi diagram. However, the proof of the abstract tube property is a bit more
subtle and involves consideration of abstract tubes for arrangements of simplicies, and intricate
geometric arguments based on their Voronoi diagrams.
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1. INTRODUCTION

This paper continues work by the authors on a special class of indicator function and prob-
ability bounds of the inclusion-exclusion type [8, 9]. These are are based absh@ct tube
concept and give improvements over bounds produced by truncating the classical inclusion-
exclusion identity.
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2 DANIEL Q. NAIMAN AND HENRY P. WYNN

Definition 1.1. An abstract tubes a finite collection of set§A;, . .., A, } and a finite simplicial
complexS with the following properties:

(i) every vertex ofS corresponds to an indexe {1,...,n}, so thatS can be viewed as a
collection of subsets oft,...,n}, and

(i) wheneverz € | J;; A; the subsimplicial comple$(z) = {J € S : v €(),c, A} is
contractible.

Definition[1.1 is slightly more general than the onelin [9] in that we do not require a one-to-
one correspondence between vertices in the simplicial condplnd the index sefl, ..., n}.

That is, the index set can be a superset of the set of vertices. All of the properties of abstract
tubes given in[[B] remain valid for this more general notion of abstract tube. In particular,
associated with an abstract tube is an inclusion-exclusion identity for 4, based on the
terms inS, which can be truncated to give an upper or lower bound. Furthermore, abstract
tubes with smaller simplicial complexes leade to sharper truncation inequalities.

Since abstract tubes were introduced, there has been much interest by the authors and others
in uncovering new examples of them, while at the same time, there has been reason to suspect
that the interesting abstract tubes frongeometricpoint of view always arise from convex
polyhedra. Certainly, for the key examples appearing in [9] (see @lso [7]) where thd;sets
involved are Euclidean balls or unions of half-spaces, a convex polyhedron is present, or lurking,
and plays a fundamental role in that it's face incidence structure defines the simplicial complex.
Furthermore, the construction of these abstract tubes always involves the nerve of a Voronoi
diagram associated with the arrangement of sets.

Dohmen|2] 3, 4, 5] has discovered some new classes of abstract tubes and has demonstrated
the utility of the abstract tube concept to network reliability. While these classes of tubes pro-
vide many elegant examples with far-reaching applications, the constructions tend to be graph-
theoretic and the tubes are definedambinatorialrather than geometric terms. Thus, they do
not appear to shed light on the question as to the generality of the Voronoi construction since
they apparently correspond to a different class of abstract tubes than the ones considéered in [9].
In fact, the authors have not been able to show that the abstract tube formed using balls and
the associated Delauney simplicial complex can be realized as one Dohmen'’s class of abstract
tubes.

In this paper, we address the above-mentioned question by describing a pair of new and
related examples of abstract tubes, associated with simplex arrangements and orthant arrange-
ments, based on the Voronoi-type construction. The abstract tube property for simplex arrange-
ments is used to derive the abstract tube property for orthant arrangments. While these examples
are geometric, the connection with polyhedra is considerably more complex, and the proof of
the abstract tube property uses a somewhat more intricate geometric argumentthan in [9]. There
remains the open question as to whether this more general proof technique can be used to verify
the abstract tube property for other examples. In Sefiion 2, we develop the tools needed to give
the abstract tube associated with arrangements of simplices. The results of this section are key
ingredients in Section 3 where we treat abstract tubes based on orthant arrangements.

Aside from being of intrinsic geometric interest the abstract tube for orthants can be used
to derive improved reliability bounds for coherent systems. This idea is developed in [10] and
used there, in particular, to give a new inclusion-exclusion identity fooat of n system.

2. VORONOI DECOMPOSITION AND ABSTRACT TUBE BASED ON SIMPLEX
ARRANGEMENTS

The results of this section concern arrangements consisting of copies of a regular simplex
in R%, that is, translates of dilations of a simplex, and a certain related Voronoi-type diagram.
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Simplex arrangements are closely related to arrangements consisting of translates of a single
orthant inR4*!. In fact, the former is obtained by slicing the latter, and this point of view is
very important for what follows. It is also the case that, analogous to a certain construction for
balls (seel[6]) properties of the Voronoi diagram are obtained by projecting the boundary of the
orthant arrangement onto the slicing subspace.

For convenience, because of the connection with orthant arrangements, we iBémiith

the hyperplane
H:{xERd+1 : Z%’:O},
=1

and we letry; : R¥' — H denote the linear projection onto this hyperplane, sothdy) =

y — yl, wherey = ﬁ Z‘jﬂl y;, and1 denotes the vector whose coordinates are all equal to

1. Lete®, .. eld+D) denote the usual orthonormal basis ®f!. In order to simplify the

notation below we let = 2 S0 e® 1, and letv; =) & -t ||= Let

d+1 d+1

o —ma(e®)

REZCR

N7 —1/d ifi#jy
<u()7u(y)>:{ ) / i
Having established a coordinate systemR&dr! we can introduce the notatian < z* for
pointsz, z* € R4*! to mean that;; < x} foralli = 1,...,d + 1, and we user < z* to mean
that all of the inequalities are strict. We also use the notation «* andx = x* with the
obvious reverse interpretation.
Each pointy € R?*! defines a closed orthant

Oy:{xERd+1 : xty}

which is a translationy + O, of the usual nonnegative orthant. Foe 4 andr > 0 define the
regular d-simplex in H,

u —wlEe—e") fori=1,...,d+1,

so that

d+1
Abﬂn:ﬂ{xEH F(r,u®) < (b, uy )
=1
It is easy to see that,, is the convex hull of the points — rdu®, i = 1,...,d + 1. This
simplex has barycentér the Euclidean distance froito any of the bounding hyperplanes of
A, isr, and the Euclidean distance frdnto any vertex is-d.

More generally, we allow < 0 and still refer to thesimplexA, ,. corresponding to the ordered
pair (b,r). This level of generality, where we allow fasirtual simplices,is very important
for the main result of the next section. Thus, the notatign has a dual meaning as it can
represent a set (possibly empty) or an ordered pair. It will be clear from the context below which
interpretation is appropriate. Generally speaking, when wedyséo define a distance, we use
the pair(b, ). On the other hand, when we consider Boolean operations involving simplices,
then we use the notion of,, as a set.

We will use the termarrangement of orthant® R**' to mean a finite collectiofO,), i =
1,...,n}, wherey are distinct elements &%+! (Figure 2.1) and the terrarrangement of
simplicesn R? to mean a finite collectiofA, ,«,i = 1,...,n}, whereb®) € H andr() € R
and the pairgb™, r) are distinct. Note that simplices in an arrangement are allowed to be
empty when V|ewed as sets. Figure 2.1 shows an orthant arrangement.
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Figure 2.1: An orthant arrangement. The vertices of the orthants are the points where dotted line segments meet,
and the solid line segments show where the orthants share common boundaries.

We introduce thelistanceto a simplex inR¢ (/) by defining

= _ (&)y _
da,,(x) izg}%ﬂw b,u?y —r, forz € H.

Observe that the simplex distandg,  (x) is negative, zero, or positive depending on whether
x lies in the interior, the boundary or the complement of the simplgx If » < 0 then the
distance is always negative, which is consistent with the fact that as/g set empty.

We use this simplex distance to associat®enoi-typediagram inH with any arrangement
of simplices inH. Given an arrangemeRrt4; = Ay pi, = 1,... ,n} of simplices inH, (we
allow for »(® < 0) we define

S(ilj) = {w € H : da () < da, (@)},

and

j=1,....d

V- ésam {een i auw = min dy o)}

An important tool for constructing a simplicial complex from a collection of sets isiénee
construction.

Definition 2.1. The nerve corresponding to a collection of sgt5 i = 1,...,n} is the simpli-

cial complex consisting of all index sefsC {1,...,n} for which(,_, Vi # 0.
The following theorem, due to Borsuki[1], gives a topological connection betlvgenV;
and the nerve of the collectidfi;,i = 1,...,n}.
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Figure 2.2: Simplex arrangement obtained by slicing the orthant arrangement in Figure 2.1 with the hyperplane
H.

Theorem 2.1. Given a collection of polyhedr@l;,i = 1,...,n} in R? with the property that
the intersectiorf),_, V; is either empty or contractible for all C {1,...,n}, the setJ; , V;
and a geometric realization of the nerve{df;,i = 1, ..., n} have the same homotopy type.

Now we can state the main result of this section.

Theorem 2.2. Given a simplex arrangemeff, ,.,7 = 1,...,n} letS be the nerve of the
corresponding Voronoi sets. Then the pé{mb@)m(i),z’ =1,...,n}, S) forms an abstract tube.

The proof of this theorem requires several preliminary geometric propositions and lemmas,
which we present first. The proofs of these may be found in Section 4. For the remainder of
this section we fix a simplex arrangeme{vﬁb<i>7r(i> ,i=1,...,n} with Voronoi sets/;, ..., V,
as described above.

Proposition 2.3. Given a pointy € R4 withy < 0, we haveD, N H = A, whereb = y — 71
andr = —g/w,.

We refer to the simplex in Propositipn 2.3 as implex corresponding tthe orthantO,.
More generally, we allow fog > 0 and we can still refer to the simplek; ,., as the simplex cor-
responding to the orthaft,, if b = y — y1 andr = —y/w,. Also, we can invert this operation
and find a unique orthaii?, corresponding t@ny given simplex4, . by takingy = b — rw,1.
This orthant has the property thdt, = O, N H, if » > 0. This construction also allows us
to associate an orthant arrangemeriRiri! with any arrangement of simplices Rf, and vice
versa. Figure¢]2 gives the simplex arrangement obtained by slicing the orthant arrangement in
Figure 2.1 with the hyperplang.

J. Inequal. Pure and Appl. Math2(2) Art. 18, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 DANIEL Q. NAIMAN AND HENRY P. WYNN

Figure 2.3: The Voronoi diagram associated with the simplex arrangement in Higure 2. Observe that the bound-
aries of the Voronoi sets correspond to the dashed line segments in Flgure 2 and the solid lines in Figure 2.1.

In addition, a ball (with respect to this distance) about a simplex is a simplex. In fact, it is
easy to see that
{:L' € H :dy,, (7)< 5} = Apris
as subsets aff.
Proposition 2.4. If N\, Ayw o # 0 thenN, Ao, = Ay, whereb = —wy(c — 1),
r = —¢, and where: € R%*! has coordinates

¢, = min O Py 4O forp=1,...,d+1.

i=1,....k
In addition, max;—; dAbu) o = da,, -
Observe that for a given pointe H, the polyhedral cones

o = {b— > Aul x> 0} CH,

a#k

(with vertexb) cover H and meet only on their (relative) boundaries, which we deno@ﬂﬁj),

so that a point: € H\ |JF} ac,f’” lies in the interior ofCé"“) for a unique choice of indek.
We express the simplex distance for a point in one of these cones in the following.

Proposition 2.5. Givenb € H andr > 0 and a pointz = b — 3, A,u? € ¥ we have
da,, () = g D gtk Ag — T

Proposition 2.6. The set{s ER:x+sl¢ Obfmdl} forms an intervalwqd, , (), +00),
forallr € Randb, x € H.
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Let y = b — (w1 so that the orthan®; = O, corresponds tol;. As an immediate
consequence of Propositipn .6, we see that

-----

{8 ER:z+s1€ 001} = U[wddAi(x),—l—oo) = [wdi:minndAi(x),+oo).

1
i=1 i=1

77777

gives a homeomorphism betweéhandd {|J;_, O;} whose inverse is the restriction of the
projection mapry to 9 {|J;_, O;} . Using Propositiof 216, it follows that

‘I’(Vz) = Oi\ <O Oj)

The following two Lemmas form a crucial step in establishing the abstract tube property
below. It ensures that Borsuk’s Theorgm|2.1 can be applied to equate the homotopy type of the
union of a collection of Voronoi sets with the nerve of the collection of Voronoi sets. These
same results were essential in proving the abstact tube property for balls appearing in [8].

Lemma 2.7. For everyJ C {1,...,n} the intersectiorf),_, V; is either empty or contractible.
Lemma2.8.1f J C {1,...,n} then
Jvi=UJN sl
ieJ icJ j¢J
The following result, which is specific to simplex arrangements and their Voronoi diagrams,
gives a crucial geometric observation leading to the proof of Theprem 2.2.

Lemma 2.9.1f z* € J, A, andJ = {i : z* € A;} then(),_, S(i|j) is nonempty and
star-shaped with respect to the baryceritef (,_, A;, forall I C Jandj ¢ J.

Figure| 2 illustrates the star-shaped property in Lefimja 2.9.

Proof of Theorerh 2|2Fix z* € |J;_, A;. We must show the subsimplicial compléXz*) =
{I €S : x* €, A}iscontractible. Let/ = {i : 2* € A;} so thatS(z*) is the nerve
of the collection{V;,7 € J}. By Lemma[2.¥ and Borsuk’s Theordm Rd4(z*) has the same

homotopy type agJ,., V;. By Lemmg 2.8, we can write
Jvi=U7.
i€J e
where

T, = ﬂ S(ily), fori e J.
2
If I € J and we write),.; A; = A, as in Propositiof 2]4, then Lemina2.9 guarantees that
Nic; S(il7) is star-shaped with respect to the barycenter all j ¢ J. It follows that

ALEIRIRECHEIRIRLR
iel icl j¢J jgJiel

is also star-shaped with respectitoSince every such intersection is star-shaped, and hence
contractible, Borsuk’s Theorejm 2.1 allows us to concludelthat, 7; has the same homotopy
type as the nerve of the collectidfd}, j € J}. But every intersectioft),., T; is nonempty, so

the nerve forms a simplex, which is contractible. OJ
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Figure 2.4: lllustration of the star-shaped property in Lemma] 2.9. There are 4 triangles with centers la-
beledz,,...,z4. The triangles centered at;, xo and xz3 intersect to form another triangld’, and the set
Ni—1.2.5 5(i]4), is star-shaped with respect to the barycentef'oThe boundaries of the regiosg:[4), i = 1,2,3

are drawn using dotted lines.

Remark 2.10. It is of interest to compare the proof of the abstract tube property with the proof
appearing in([8] for the case of balls of equal radius, when the nerve of the usual Voronoi
diagram is used to form the simplicial complex. There, contractibility of the subsimplicial
complexS(z*) follows from the fact that the union of Voronoi sétf_ , V; is star-shaped with
respect tor*. In the present case, we do not in general have star-shapedness of this set, but we
are able to prove contractibility by representing this union as a union of pieces which always
intersect in nonempty star-shaped pieces.

Remark 2.11. Since the distance to a simplél . satisfiesi,, . (z) = da,, (z) +¢, it follows
that the Voronoi decomposition df (and hence the associated simplicial compfcorre-
sponding to a simplex arrangemem, ,.),i = 1,...,n} is unaffected if we add the same

constant to each®.

3. ORTHANT ARRANGEMENTS

3.1. A Voronoi decomposition and abstract tube based on orthant arrangementsNow we

apply the results of the previous section to give an analogous result for arrangements consisting
of translates of the orthants. To keep the notation consistent with that of the last section, we
consider translates of the negative ortharRiri'. We first introduce aorthant distancewhich
measures the distance to an orthapt Let

do,(v) = max {y; —a;}.
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Observe thaﬂoy(x) is less than, equal to, or greater than 0 respectively, depending on whether
x lies in the interior, boundary or exterior of,.

A collection of orthant§O,),7 = 1,...,n, } where they® are distinct, will be referred to
as anorthant arrangemenin R¢*!. Given such an arrangement, the orthant distance is used to
define a Voronoi decomposition &f*! by letting

V=[5l
J=1
where
S(ij) = {:1: eR™ 1 do () <do (x)} .

The main result of this section is the following.

Theorem 3.1.1f {O,»,i = 1,...,n} is an orthant arrangement iR then the pai({O,w,i =
1,...,n},S) forms an abstract tube, whet denotes the nerve of the corresponding Voronoi
decompositiodV;,i = 1,...,n} of R¢.

Some preliminary Propositions will play a key role in the proof of Thedrem 3.1. Proofs of
the results presented in this section, except for the proof of the main result, THeorem 3.1, appear
in Sectior 5.

Proposition 3.2. Given an orthant arrangemerO,,7 = 1,...,n}, the nerve of the corre-
sponding Voronoi decompositidiV;,i = 1,...,n} coincides with the nerve dfV; N H,i =
1,...,n}.

The Voronoi decomposition for orthants is closely related to the one in the last section, and
exploiting this connection is the key to proving the main result of this section. The basic idea
is to introduce asimplex arrangement associated with a given orthant arrangeifasnin the
remark following Propositon 2.3)

{Oy(i),i =1,...,n},
by taking
{Ab(i)ﬂ.(i)’i = 1, .. ,n},
whereb® — 4@ — 501 andr® — —5 /.
Proposition 3.3. Given any orthant arrangemef, ),i = 1,...,n}, in RIL et {V;,i =
1,...,n} be the Voronoi decomposition for the associated simplex arrangement. Then the
Voronoi decomposition for the orthant and simplex arrangements are related in that

VinH =V,
and consequently the nerves of the decompositions coincide.

Finally, we will need the following.

Proposition 3.4. Givenz, y € R**" we haver € O, ifandonly ifz =71 € A 9 & 5.

Proof of TheorelFix r el , O, and let] = {i © » € Oy} We need to show that
the subsimplicial complex defined by

S)={IeS:2e(\Ow}={IeS: IC.J}
i€l
is contractible.
Consider the simplex arrangement obtained by applying the same construction in Propo-
sition to each of the orthant, ., that is, take{A4,: ., = 1,...,n}, whereb?) =
y@ — 7591, andr® = (7 — ") /wy. Let{V;, i = 1,...,n} be the Voronoi decomposition for
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this simplex arrangment, and I8tdenote the corresponding nerve. This Voronoi decomposition
is unchanged if we subtract the same constanty) from all of ther ), but this modification
leads to the simplex arrangement associated with the original orthant arrangement. We con-
clude that{V;,i = 1,...,n} is also the Voronoi diagram for this simplex arrangement. By
Propositio we conclude th&t= S.

By Theore{Abm,Tm ,i=1,...,n},8)forms an abstract tube so if we lét= {i : z—
71 € Ay o } then the subsimplicial complex defined by

Sx—71)={I€S§ : x—TleﬂAb(i)m(i)}:{[ES I CJ}

el

is contractible. But Propositi.4 guarantees that .J so using the fact thaf = S we can
conclude that

S(z) =S(z —71)

soS(x) is contractible. O

3.2. Properties of the Orthant Voronoi decomposition. The Voronoi decompositiofiV;, i =
1,...,n} corresponding to a given orthant arrangemfdt),7 = 1,...,n} has a simple
description in terms of the decomposition of the boundary of the union of the orthants. This
description helps us in calculating the simplicial compfex

Let

n nt
B; = 00,0\ (U oy(n)
i=1

so that theB; define a decomposition of the boundary

B=0 (U Oy@) =B
i=1 i=1

Proposition 3.5. For a nonempty index set we haveJ € S if and only if;cs Bi # 0.1In
other words, the nerve of the Voronoi decomposiﬁéfm = 1,...,n} coincides with the nerve
of the decompositiofiB;,i = 1,...,n} of B.
Definition 3.1. An orthantO
Oy £ Ui Oy
Observe thaD,« C UJ;_, O}, if and only if y*) € }_, O}, and this is in turn is equiva-
lent toy® = ) for somej # 4. Thus, the exposed orthants correspond to those indifmes
whichy® £ ) for all 5.
We use the notatiomax;c; y¥) to mean the coordinatewise maximum of gé for j € J.

As consequence of Proposition 3.5 we have the following description of the faces of the nerve
of the Voronoi decomposition.

,@ in an orthant arrangemefiO, ), i = 1,...,n} is exposedf

Corollary 3.6. The faces of correspond to the (nonempty) index séter whichmax;c s Y o
yU) for all j. In particular, the vertices of (the single element faces) correspond to the exposed
orthants.

Following Corollary[3.6 we can say equivalently that the index .gebr the pointy =
max;c; y'¥, or the orthant),, is covered

J. Inequal. Pure and Appl. Math2(2) Art. 18, 2001 http://jipam.vu.edu.au/
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3.3. General position and dimension. For a generic orthant arrangemgot, ), i = 1,...,n}

in R4t the simplicial complex defining the tube above, that is, the néreéthe Voronoi de-
composition, has dimensiaht 1. As a consequence, the inclusion-exclusion identity has depth
d+2 instead ofn, which can lead to a dramatic improvement. We make this rigorous as follows.

Definition 3.2. An orthant arrangemediO,),i = 1,...,n}in R+ is in general positiorif
for every coordinate indexthe values)\”,i = 1, ..., n are distinct. In other wordg,” = 4"
for some, j, k impliesi = k.

The orthant arrangements that fail to be in general position define a set of Lebesgue measure
zero in the set of orthant arrangements. Under the general position assumption the dimension
of the simplicial complex defining the tube has tight dimension.

Proposition 3.7. If an orthant arrangement is in general position then the simplicial complex
S defining the abstract tube in Theor3.1 has dimension at dnest

When an orthant arrangement fails to be in general position, it is still possible to perturb
it slightly to attain general position, and use the modified arrangement to obtain improved
inclusion-exclusion identities and inequalities that are valid almost everywhere. This idea is
explored in [9] for abstract tubes related to polyhedra, and an analogous result can be used in
the present context. In [10], abstract tubes based on orthant arrangements are used to derive
new reliability bounds for coherent systems, and in that context, perturbation is used to give
even further improved inclusion-exclusion indicator identities and inequalities.

3.4. Inclusion-Exclusion Inequalities and Identities for Orthant Unions. Using Theorem 4
in [9] the abstract tube property leads immediately to the following.

Theorem 3.8. Given a finite collection of distinct poingg?,i = 1,...,nin R%, define

S={JCA{l,....,n} : mz?]xy(i) £ yW) forall j=1,...,n}.
1€

Then the following indicator function inequalities hold

m

(=)™ Iyn o, < (D)™ (=DM " In o, ¢, form=1,2,...,D,
k=1 JeS : |J|=m

whereO; denoteg), ), and D = max{|J| : J € S}. In addition, equality holds fom = D.
Each inequality is at least as sharp as the corresponding classical inclusion-exclusion inequal-

ity

m

<_1)m+1[U?:1Oz‘S(_l)m+1 Z(_l)kH Z [ﬂjeJOi )

k=1 JCA1,...,n} : |J|=m

corresponding to the abstract tube using a simplicial complex composed of all nonempty index
sets.

The theorem also holds if we use negative orthants instead of positive ones, that is, if we use
as the definition oDy@

{zeR? : 2 <yD},
and if we redefines to be

{JCA{L,...,n} : mi}ly(i) £y forallj=1,...,n}.
S
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4. PROOFS OF PROPOSITIONS AND LEMMAS IN SECTION

Proof of Propositio 2J#Here, we are viewing a simplex aset.For anyz € H we haver > y
if and only if
(z,—eW) < (y,—eD) fori=1,...,d+1.
Since(z,e) = 0 for z € H, this is equivalent to
(re—e) < (y—gl,e—eD) — (g1, fori=1,....d+ 1,
which, upon dividing byv; =|| ¢ — € || leads to the equivalent condition
(z,uy < (y —71,u?) —7(1,eD) Jwy fori=1,...,d+1.

0

Proof of Proposition 2 J4For the first claim we can use the comment following Proposjtion 2.3
to write Ay o) = O,m N H, wherey® = b( — r®w,1. Then we have

k
ﬂ Ab(i)m(i) = ﬂ Oy(i) NH=0,NH
=1 =1

wherez = max;—;_;y'”, the maximum being coordinatewise. A straightforward calculation
gives
zp——wdzrrlnn D, u®) + O},

9’ )

so the result follows from the application of Propsitjon| 2.3 For the second claim, we have

— @)y _ (p@ 4, @)y _ (@)
iirll?%deb(i)Mw(x)— max ma)éﬂ(a:,u ) — (O uPy —r

=  max <$’u(p)>_ min {(b(i),u(p)>+r(i)} —  max (x,u(p)>—{(b,u(”))+r}

p=1,...,d+1 i=1,..,k p=1,...,d+1
- dAb,r (x)
U
Proof of Proposition 25We have
da,, () —max{ ZAu }—r——mm{Z)\ } r.
q#k q#k
The result then follows from the fact that
S g (u®, u®) { ~g 2N tp="Fk
pors dzq?épk)\ + A, ifp#k.
O

Proof of Propositiofl 26Sincez + s1 € O,_,, 1 ifand only if z + s1 = b —rwy1, we see that

thesetts €cR : v+ sl ¢ Obfmdl} , forms an interval that is closed on the left and extends
to infinity on the right. The minimum value &fin this interval is given by

(e — b)) — — ey () _ — e (@) _ =\ _
:{?%Z(H (x; — b;) — rwy i:{?%§+1 (x —b,e") —rw,y z-:?,.l.?ji?ﬂ (x —b,e €) — rwy

- ’:{??il{—i-l(x - b7 wdu(i)> — Twg = wddAb,T (ZL’)
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Proof of Lemma 2]7SinceV is a homeomorphism, and

ieJ ieJ JjeJ
it suffices to show that if the set

v (00) (L)

is nonempty, then it is contractible.
Suppose: € W so thatz = yU) forall j € Jandz ¥ 3@, fori = 1,...,n. If we define
v = max;e, yY) then observe that € (.., O;, andz > v. Furthermore, if it were the case

thatv € O for some indexi, so thatv = 3, then we would have >~ y(* and this is a
contradiction. We conclude thate W.

We proceed to showl is star-shaped with respect to Supposev € W and\ € [0, 1]
thenw, = (1 — Mw + Mv € O, for all j € J by convexity. We proceed to show, ¢ O™
fori = 1,...,n. Sincew € ﬂjGJ O, we havew > v, and it follows thatw > w, > v.
Consequently, ifvy € O we obtainw € O, which is a contradiction. O

Proof of Lemma 2]80n the one hand

Uvi=UNsan cUN st

ieJ icd j=1 i€ j¢J

On the other hand, supposes [, (;¢, S(ilJ) so that for somé* € J we haved,,. (z) <
da,, forall j ¢ J. Let:*™ < J minimizedy,. (x). It follows thatdy,.. (z) < da, () for all
j=1,...,n,thatisz € U, N, S(il7)- O

Proof of Lemma 2]9We can use Propositi¢n 2.4 to writé_; A; = A, since(,.; A; # 0, b
being the barycenter of the simplel ... Using the second part of Propositjon|2.4, we see that

ﬂs(ilj) = ﬂ{f D da () < da(2)}
={z : maxdy,(z) < dg;(2)} = {2 ¢ da,,(2) < da(2)}-

To prove the claim of star-shapednes$f, S(i[;) it suffices to show that the intersection of
any ray emanating from the barycentewith the set(),_, S(i[j) forms a line segment con-

tainingb. So fix aray, safb —n>_, Au'@ > 0}, for some index: and nonnegative
constants\, for ¢ # k, and define

f) =da,, (0—1_ Aul®),
q#k

g(n) = da; (b =1 Agu'?),
qF#k
The proof will be complete once we have demonstrated that

V={n>0: f(n) <gmn}

and

is an interval containing O.
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Using PropositioS, we obtaijf(n) = (%l D ath /\q) n — r. Thus, we see that
(i) £ is linear, with (0) = —r and slopej; 3~ ., -
On the other hand, from the definition of simplex distaneg = max,—; __4+1 9,(n), where

gp(m) = (b= Z Aul® — ) Py — 0,

a7k
Since
d+1
Apr =z € H : (2,u®) < (b,u®) +7r}
p=1
and
d+1

A= ﬂ{x €H : (z,u®) < (D, Py 4 D)
p=1

andA,, Z A; it must be the case that
(b, u(:n)) +r> (b(j)7u(”)> +
for some index. This leads to the conclusion that

.....

Finally, each functiony, is linearg is piecewise linear and convex.

In addition, the slope of, is given by— (3" ., A,u(®, (")), so the same calculation as in
the proof of Propositiopn 2|5 shows that the maximum slope occurg fand this function has
the same slope g% We have therefore shown that
(iii) g is piecewise linear and convex (and continuous), and the maximum slgpe/béreg is
differentiable, is the same as the slopefof

Using properties (i), (i) and (iii), it is easy to see tlat V, and either the graphs gfand
g do not cross, or they cross at a single point, or they meet in an interval of the:farao).

In each case, the sktforms an interval containing. O

5. PROOFS OF PROPOSITIONS IN SECTION [3

Proof of Proposition 3]X'he orthant distance satisfies
Joy (x4cl) = czoy () + ¢,
and consequently
Joy(i) (x4cl) < czoym (x4 1)
if and only if
Czoyu) (z) < doym (2)-

Thus, eaclV; is the union of the set of lines of the forfw + c1 : ¢ € R} wherex € ViN H.
Itjollows immediately that the nerve of thg/;,i = 1,...,n} coincides with the nerve of the
{V,NH}. O

Proof of Propositior 3J&orz € H a straightforward calculation shows that
dAb(i)J(z') (33) = Hl]E)lX {<l‘, u(p)) - <b(i)> u(p)> - T(i)} = mI?X {yp - xp} /wd = dOy(i) (x)/wd'

Thus
dAbu),r(z‘) (z) < dAb(j>,r(a'> (),
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if and only if
CZOy(i) (Z‘) < Czoy(j) (ZE),
for 2 € H. The second claim follows from Propositipn [3.2. O

Proof of Propositio@ZWe haverp € O, ifand only if x — 71 € O, .1, which is equivalent
to

d
Oyff]_

Sincex — 71 € H we can use the calculation in the proof of Proposifion 3.3 to conclude that
an equivalent condition is

(x—71) <0.

d (x —71) <0,

A
y=—yL,(F-7)/wq
and this gives the desired result. O

Proof of Propositiof Nie, Vi # 0, fix 2 € N, Vi Letd* = minj_,_, do (@),
SO thatdoym (x) = d* fori € J and dOym (x) > d*fori ¢ J. If 2* = = + d*1 then we
havedoyw (z*) =0fori € J anddoym (z*) > 0fori ¢ J, thusz* € 00, fori € J, and
e ¢ (U, 0,0} = UL, O, We conclude that* € ., B;. Conversely, ifr € (", B;
then fori € J we haver € 90, sodo (z) = 0. Furthermore, for all we haver ¢ O so
do ., (z) > 0. We conclude therefore, thate (), V. O

Proof of Corollary[3.6We use the characterization of faces in Proposjtioh 3.5. Fix a nonempty
index set/ and letm = max;c; y®.
Suppos€,.; B; # 0, and letz € (., B;. Thenz € O, fori € Jandz ¢ O} for all
i. It follows thatz = y® and hence: > m. Furthermore, we cannot have > y) for somej
since this would give: > y/). This proves thatn satisfies the stated condition.
Conversely, ifm 3 y\9 for all j, then fori € J we havem € O )\ U~ V= B;, so

ﬂieJ B; 7é 0. [

Proof of Propositior) 3JBuppose an index sdtdefines a face i, and letm = max;c; y.
By the general position assumption, for each coordinate iridbgre is a unique index € J

such thatn; = yj(»ij). If |J| > d+ 2thensincefi;,j =1,...,d+ 1} consists of at most + 1

elements, there must be some index J\{i;,j = 1,...,d + 1}. It follows thatm > y®,
which contradicts the characterization in Corollary] 3.6. O
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