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Abstract

For subharmonic functions u in RY, of Riesz measure y, the growth of the
function s — u(s) = f\ <, ap(C) (s > 0) is described and compared with the

growth of w. It is also shown that, if [,y u™(z) [—¢/(

7)) dz < +oo for some

decreasing C" function ¢ > 0, then [ 5 (|¢[* +1) du(() < +oo. Given two
subharmonic functions u; and us, of Riesz measures p1 and 12, with a growth
like u;(z) < A+ Blz[" ¥z € RN (i = 1,2), it is proved that j; + pg is not
necessarily the Riesz measure of a subharmonic function « with such a growth

asu(z) <A+ B

YWz e RN (here A >0, A’ >0and 0 < B' < 2B).

Hh
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Let 1 be the Riesz measure of some subharmonic funetionRY (V € N,
N > 2 andu non identically—co, see [, p. 104]) andu(s) = fmgs du(¢)

L

for anys > 0 (where| - | denotes the Euclidean norm &"). The function
s — u(s) is non—decreasing singeis a positive measure. The order of the
functions — s~V () is known to coincide with the convergence exponent of

+00 oo
. . 2—N—c — . 1-N—c Subh ic Functi d
inf {c : /1 s du(s)} inf {c : /1 s w(s) ds} ubharmonic Punctions an
(see P, p. 66]) and does not exceedf u has a growth of the kind: Raphaele Supper
(1.1) u(z) < A+ Blz| vr € RY
_ ) _ ) Title Page
(with constantsd € R, B > 0 andy > 0). This estimation of the growth of
1(s) will be examined below, in Sectiorsand4. Contents
Definition 1.1. Giveny > 0 and B > 0, let SH(v, B) stand for the set of all « dd
subharmonic functions in RY which are harmonic in some neighbourhood < >
of the origin withu(0) = 0 and which satisfy estimaté.({) for some constant
AcR. Go Back
In Proposition5.2 (see Sectiorb), a counterexample is produced to show Close
that, givenu; andu, two functions in this seb H (v, B) and B’ € ]0,2B], the Quit
sum of their respective Riesz measupgsand i, is not necessarily the Riesz Page 4 of 33
measure of a function &FH (v, B').
Of courseu; + 1, is the Riesz measure associated with-u, € SH (v, 2B), e e e

but i1 + o is also the Riesz measurewf+ u, — h for any harmonic function http://jipam.vu.edu.au
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in RY. This proposition means that there does not necessarily exist a harmonic
functionh such thaty, +uy — h € SH(vy, B').

Let 1« denote the Riesz measure of some functio 8f(y, B) with growth
(1.1). Sections3 and4 are devoted to the growth of the repartition function:
Ay
u(s). Forinstance, wheV = 2, we obtain the inequalityu(s) < Bey sY ex6)
(see Theorem.1and Corollary3.2).

YEN-—2

Notation . WhenN > 3, throughout the paper we s€fy, N) = (LM) A S

Y
their Riesz Measure

N-2 ] . .
andD(B,~, N) = =2 (LL) 5582 'sometimes written merely for brevity.
v Raphaele Supper

Note that
Y+N—-2 .
v v Y+ N =2\ 72 Title Page
~ 5 N) =
N =2 N -2 Y Contents
0
_ N2 N2 X S
N —2 y P >
v+ N -2
= ¢ N -2 Go Back
For N > 3, we also obtain inequalities describing the growths ef 1(s) Close
and the constants involved in these estimations are given explicitely in terms of Quit
A, B and~. For example:
Page 5 of 33
Y+N-=2
/L(S) < B’Y C(’y N) S’Y+N_2 ]_—|— o J. Ineq. Pure and Appl. Math. 2(2) Art. 16, 2001
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(see Theorem.4and Corollary3.5).
It points out thatim sup,_,, ., - fs) is not greater tha®e~y (whenN = 2)

Jf_“’2 C(v,N) (whenN > 3). Moreoverliminf, ., ﬁ(]i > does not exceed

By (if N =2)or NB—jz (if N > 3). This will follow from Theoremst.1and4.3
which assert that the sets:

Ay
{5 cp(s) < 37576“(5)}

A+N—2

and s :op(s) < By §YHN=2 (1—1— A )
N2 D u(s)) 7

are unbounded in the cases whgn= 2 and N > 3 respectively.

The last section studies subharmonic functiaris RY (harmonic in some
neighbourhood of the origin with(0) = 0) such that the subharmonic function
ut (defined byu™ (2) = max(u(z),0) Vo € RY) satisfies aL' condition, for
example in Theorerf.L:

Jan vt (@) [=¢(|z]?)] dz < +00 (see Sectiorb.1 for more details on the de-
creasing functionp). The Riesz measurg of u is then proved to verify:

Jan “”(‘%;“1) du(¢) < +oco. Propositions5.2 and6.3 provide similar results un-

der differentZ! conditions.
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Lemma2.1. If N = 2, then

AJ%M ue) < A@mm #<)

for eachr > 0 and eachs > 0.

Proof. If r < s, thenh,({) := log i < 0forr < I¢] <'s, so that

/<|<s he (C) dpa(C) =/q<rh,.(g) du(C)+/r<<|<s 7o () dpa(€) g/ o (O) (<),

[¢I<r

-~

<0

If s <r,thenh,(¢) > 0for|¢| <r, hence

Agwowwzégm@m«wlmgmosz/ Ba() dp(C).

ICI<s

-~

>0

]

Lemma 2.2. WhenN > 3, the following majoration is valid for alt > 0 and
s> 0:

[ (s sh) 0= [ (=)
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Proof. As in the previous proof, with,.(¢) = IC@ 5 — TN%Q instead oflog |%

\
O
Lemma 2.3.If N = 2, then:

" u(t) r
—2dt = loc —d
/0 i /|< o8 1 (),

Proof. It follows from Fubini's theorem that:

/Or@dt _ /{:%(/Kt du(g)>dt
- .. (/q G

- /g|<r 10g 177 AH(C)

foranyr > 0.

Lemma 2.4. WhenN > 3, then

o [ - / - (s ) )

foranyr > 0
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Proof. As in the previous proof:

- [ RGeS (] wo)
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For any functionu, subharmonic ilRY, harmonic in some neighbourhood of

the origin, the Jensen—Privalov formula (seéged. 44]) holds for every > 0:

1 21 ] T t )
— u(re?) do = / uit) dt + u(0) if N =2
2 Jo o ¢t
1 " ou(t) :
p— u(rz)do, = (N — 2)/ tf\gl dt + u(0) if N >3
SN 0
with Sy the unit sphere iiRY, do the area element ofiy andoy = fSN do =

lg(”TN/;) (see [, p. 29]). In all statements of both SectioBsand4, it will be

assumed that € SH (v, B) and that its growth is indicated by.(1).

Theorem 3.1. WhenN = 2, the following inequality holds for each> 0:

M tog (1)) < A+ [ sl anc)

gl ey

Proof. For each- > 0 and eacly > 0, it follows from Lemmas2.1 and?2.3that

r 1 2 )
log — du(¢ §—/ u(re®)dd < A+ Br7,
/|g<s Iq ©) 21 Jo ( )
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so that

4 Ms) ([ By
/<|<slog|<| ()<A—|—Bv”—,u(s)logr—A+T(wﬂ—logr”)

= p(r).

Considers constant, the minimum ap is attained wherB~y 7 = u(s), since

¢'(r) = L(Byr? — u(s)). Finally, for eachs > 0:

/<<s o g () < A+ 10 [1 o (%3)] = A=y (/z;(_fi)

[
In Corollaries3.2, 3.3and3.5, we set > 0 such thafu(s) > 0 Vs > «.
Corollary 3.2. If N =2, thenu(s) < Bey s e for anys > e.

Proof. Theorem3.1 may be rewritten as:

us)\ _ Ay e ()
(3:1) o (Bev) =) 1(s) +/<|§sl (<) u(s)

The previous integral being log s, Corollary3.2results. O

Corollary 3.3. WhenN = 2, we have for every > ¢:

u(s)? < Bey exp (%) /< T
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=1, hence:

Proof. Jensen’s inequality applies t8.() smcechS M(

b = oo ) oo (et )

= o (%) /|<<s kI CZL(—(SC))'

IA
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Theorem 3.4.WhenN > 3, the following estimation is valid for each> 0:

1 ~ Title Page
/C|<s ¢V 2 e dn(©) < AF Dlu()ler. Contents
Proof. For all» > 0 ands > 0, Lemmas2.2and2.4lead to: A >
1 1 1 < 4
/¢|<s <|C|N 2 TN_2> d,u(() = E /SN u(m) doz < A+ Br, Go Back
that is . ( ) Clos-e
/C|<s ISR o) s A+ BTy rN=2 Qul

Page 12 of 33

whose minimum (withs constant) is attained wheﬁy 7 = (N

J. Ineq. Pure and Appl. Math. 2(2) Art. 16, 2001
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Finally:
1 N-2 B N2 .
Jgram@sas (52 01) (725) 7 wor =,

Corollary 3.5. WhenN > 3, the following estimation holds for evegy> ¢:

N2
2

A ) N=
D [u(s)] 7

—2__ According to Theorens.4, for anys > ¢ we have

1 1 1 A D D A p(s)”
N < <>/<|<s a2 O S G T e T ale (”D u<s>)'

Hence

Bry
N —2

p(s) < C(y, N)s7H 2 (1 +

Proof. Leta =

()] < D sV <1 + % m) |

Now, it is obvious that — o = sandDVe = FLCO(v, N). O

+N

Cor(())llary 3.6. With N > 3 anda = 5%,
5> 0:

o) o (455 ) = Gt < v [

the following holds for each

log || du(¢)
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Proof. It follows from Jensen’s inequality that:

o </|< (o ) i) fo (1o ) iy

IN

so that:

(N og e Q) oo (AL D
W 2>/|<|g3g'<' u(s) = lg(ﬂ(8)+u(8)a)
1

IN

=)

03
A~
S

+
Ol
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Let® : RY — [0, +oo[ be the measurable map defined®y) = u(|¢|) (the
functions — u(s) is increasing hence measurablg@nt+oo[). Lety = sy =
i o ®~1 denote the measure image ofinder® (see B, p. 80]):

+o0o
F@ydv(t) = [ F(@(C)) du(C)

0 RN Subharr_nonjc Functions and
holds for any nonnegative measurable functjoon [0, +oo]| (and for anyv- P (R72 [
integrablg‘) Raphaele Supper
Remark 4.1. If s — u(s) is continuous on some intervgl, +oo[ with a > 0,
thenv (1) = ¢ — b for any intervall with bounds andc (¢ > b > p(a)). Title Page

Contents
_ _ _ _ <44 >
Up to the end of Sectiod, i stands for the Riesz measure associated with a
function of SH (v, B) with growth (L.1). d
Theorem 4.1.1f N = 2and A > % then the set of those > 0 which satisfy Go Back
u(s) < Bys? ¢#(1 is unbounded. Close
A proof is required only in the case whéie; ., |, uu(s) = oo (otherwise, Quit
Theoremd.1is obvious). When the function— () is continuous, at least on Page 15 of 33
some intervala, +oo[ with a > 0, there is a direct proof which is quoted below
in Subsectiort.3. In this case, the assumptioh > 2 is no longer required. 3 T AT e e 20 o 8.

The proof in the general case is the subject of Subsedtin http://jipam.vu.edu.au
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4.1

Proof. Let us suppose that the >0 : u(s) < By Y ene }IS bounded and

let so be one of its majorants, chosen in such a way ¢hat 1.(s) is continuous
on some neighbourhood ffy, +ool.

Thusu(s) > By sTertr for all s > 50, thatis:log s < 1 log( s)) A
such that:

jQ<K<Sbgmwmm<> < jQ<K<S<%1og(H%%Q)__;ﬁ%U> 2u(0)
- [ Cee) - 5) o
w(s)
- /u(so) <7 o (Btv> N ?> i

= B [w log (zﬂ M A [log t]"t*)

e/ L u(so)/ By u(so)

v lg(Bev

)—AMW@+K%%

whereK (so) stands ford log zu(sg) — 52 Jog ( ) It follows from Theo-
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rem3.1that;

11(s) p(s)
K)o (B_J <A+t /|< 1oglelduc)

S S
+ # log (g—J) — Alog p(s) + K(so).
Finally: A log u(s) < A+ K(so) + p(so) logsg for all s > so. Whens tends
to +o00, a contradiction arises. ]

Now, in order to prove Theorerh 1in the general case, we will introduce some
notations which will also be useful in proving Theoren® (where N > 3).
That is why these notations are already givefRihfor any N € N, N > 2.

Itis still assumed thdtm, ., , 1(s) = +oo. Let(s,), be the non—decreasing
sequence defined by;, = inf{s > 0 : u(s) > n}. As the functions — p(s)
is right—continuous, we havg(s,) > n for all n € N. If this function is
continuous at some poin},, theny(s,) = n.

If s, < sni1,thenu(s,) < n+ 1. There are infinitely many integerssuch
thats, < s, because the measuig is finite on compact subsets Bf' (see
[1, p- 81)).

For anys > 0, let u=(s) = f\<|<s du(¢). The discontinuity points of —
u(s) are thus characterized hys) > p(s). For everyn € N, letc, = 0

if the functions — u(s) is continuous at poin,, andc, = % if
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this function is discontinuous at,. Note thatl — ¢,, = #}f@n) in case of
discontinuity ats,,.
Forall0 < t < s, letI; andI; ; be defined irRY by:

It(g‘):{l if |¢] =t [tvs(g):{lift< <l < s

0 otherwise 0 otherwise

Let us writeyy = py + po + -+ + pn + - .., Where measures;, are defined

such that
/ dnlc) = [ diy(C) = 1
RN sp—1<[¢|<sk

in the following way:

dpg = (ck—1 Lsy , + Loy 15 + (1 —ck) Ly, ) dp if s,_1 < sp
1
d,uk = Is d,u if Sk—1 = Sk-
p(sk) —p(sk) "
Remark 4.2. If s;,_1 < s, = Skr1 = 0 = Sl < Sk4i+1s thenﬂ_(Sk) <k<
k+1 < pu(sy) and it is easy to check that
k+l1 1
(1—Ck)ls + — Isj +Ckz+l-[s = Is .
* j§1 p(s;) — 1 (s;) o *

In addition, notice thad ;'_, 1 (s) = min[n, u(s)] and that, for any integrable

functionh > 0:
h(¢)du > E h(()d
/ICISSn (€) du k—l/ (¢) dp

Subharmonic Functions and
their Riesz Measure

Raphaele Supper

Title Page
Contents
<44 44
< >
Go Back
Close
Quit
Page 18 of 33

J. Ineq. Pure and Appl. Math. 2(2) Art. 16, 2001

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:supper@math.u-strasbg.fr
http://jipam.vu.edu.au/

n+1
/C RGIEY [ 1) du 50 < Snit

4.1

Proposition 4.2.1f N = 2and A > % thenn < B’y(sn)%% for infinitely
manyn € N*.

Proof. Suppose that there exists some integet N* such that, > By(s,me%
for eachn > m. It may be assumed that, > s,,_; > 1. For anyn > m satis-
fying s, < s,+1, we have:

n+1
[ el < Y [oeldldne(©
sm<|C|<sn k=m

n+1

Zlogsk

k=m

S (Lo (£ - A
~ & B~ k

k=m

n+2 1 t A
| R R
/m (v o8 <Bv> t)dt

2 2
_ T log<n+ )—Alog(n—i—Z)—i—Km
¥ Bery

IN

IN

IN
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with a constants,,, independent fromu. Sinceu(s,) > n, Theorem3.1leads
to:
n

n n+2 n+2
— 1 — | < A+(1 | —Al D+K.
S og (Befy) < A+(log 8 ) pt(Sm)+ 5 og ( Ber ) og(n+2)+K,,

hence

(A _ g) log(n+2) < A+~ log (
7 2

n+2

2
) - log(Bey)+ K +(1og sm) i(sm)

-~

<2

The contradiction stems from the fact that there exists infinitely many m
W|th Sn < Sn+1- D

Proof of Theoremt.1in the general caseObviously, functions — B~y s? is
increasing. Thus, for any such thath e~ < B~v(s,)?, there exists an open
non—empty interval/,, (with upper boundsn) such thathe= % < Bys? <

By(s,)? Vs € J,. Moreoveru(s) e W < e Vs e J,, (becauseu(s) <
for everys < s,). Hence Theorem. L D

Theorem 4.3. WhenN > 3, the set of those > 0 such that

Y+N-—-2

Bv v A N-2
4.1 §) < — 1 & 1+ -
(4.1) p(s) < ( D >

N -2 s)| =2

is unbounded.
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Inequalities ¢.1) and @.2) are equivalent, with

1 v A D
4.2 < +
(4:2) sV=2 "y 4+ N -2 (u(S) M(S)O‘)
anda = I7%; as in Sectior8.3. Indeed, 4.2 may be rewritten

o N2 D A
pls)" <s 7+N—2(”Dm<s>1la)'

Now 7:5_2 = (2%)" so that formula4.1) arises.

To prove Theorerd.3, we can still assumbBm, ., iu(s) = +o00. The case
where functions — p(s) is continuous (at least on some interf@al+oo| with

Subharmonic Functions and
their Riesz Measure

Raphaele Supper

a > 0) is proved in Subsectiof.7 and the general case is proved in Subsection Title Page
4.8 Contents
43 <4< >
' < 4
) ) Go Back
Proof. Let us assume that there exists sosge> 0 such thats — pu(s) is
continuous on some neighbourhoodgf +oo[ and that Sl
Quit
1 S v A N D
N2 = TN =2 \ u(s) u(5)° Page 21 of 33
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for all s > s. It follows that:

du(¢) du(¢)
/qu o = /mgs -

=2 e e * ) ¢
> — 1(€)
7+N—2 so<|C\<s ‘CD |<D
=z, (7 @)
= — v(t
v T N - 2 Subharmonic Functions and
ol their Riesz Measure
- vy + N — 2 ( ) dt Raphaele Supper
©(s)
o 7 |:A 10 1—o¢:|
= — gt + —— .
Y+ N -2 1—a i(s0) Title Page
Avl Content
— 8l Og M(S> T Dlu(s)lfa o KI(S()), ontents
+ N -2
v <« >
with y < S
K'(so) = SEN_2 log u(s0) + D pa(s0)' ™ Go Back
The majoration 0ff|<|<s mﬁ du(¢) (Theorem3.4) leads, after cancellation of Close
D u(s) = D p(s)7#5=2, to: M}:’% < A+ K'(sp) foranys > so. A Quit
contradiction arises as— +o0o0. O
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4.3

Proposition 4.4. With N > 3 anda = infinitely manyn € N* satisfy:

+N 2

1 v A D
4.3 —+—.
(4.3) SN_2<’}/—|—N—2(TL+HO‘)

n

Proof. Suppose that there exists somes N such that— > = (4 + %)
Vn > m. It then follows for alln > m:

1
/qun ez ) = > | s (e

km+1
1
S s
k=m+1 “k
A D
> I
a 7+N—2 i k
n+1 A D
> T
- 7+N m+1(t )

'YAIOg(n_’_l) 1— '
= IR T D) K
TiN_2 TP+l m

where the constank’, does not depend on. For thosen > m such that
Sp < Spi1 We haveu(s,) < n + 1 and Theoren3.4 provides us with:

1 1
/5<¢|<5 = (<) §/<|<s ez nlc) <A+D(n+1)""
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hence“fyljg—]é’i;” < A+ K] .. A contradiction arises as — +oc. ]

Proof of Theorend.3in the general caseSince the functiors — SN%Q is de-
creasing, for each € N* satisfying ¢.3) there exists an open intervd # ()
(with right bounds,,) where

1 1 v A D
< < —+— | (Vs€ ).
sN=2 = gN=2 7+N—2(n+n0‘) (vs )
Now, u(s) < n for eachs < s,, so thaty + % < &5 + —5. Hence
e < v (ﬁ + ﬁ) Vs € J, and Theoremd.3follows. O
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Lemma 5.1. Giveny > 0, B > 0 ande € |0, 1], letu. be defined iRY by :

us(x) = max{0, p.(|z])} Vr € RY

with p.(r) = Br?Y—B&"Vr > 0. Thenu. € SH(~, B). Letu. denote its Riesz
measure, thenp,.(s) = BVSWN 2 4 k. Vs > 1, wherery = max(1, N — 2)
andk. is a constant dependlng only @ ~, N ande.

Proof. Subharmonicity ofu. = max(u;, us) will follow (see [1, p. 41]) from
the subharmonicity of both functions, andu, defined in RY by u,(z) =
¢-(|z]) andus(z) = 0: itis easy to verify that\u, (z) = ¢”(r) + L2l (r) =

Byr77%(y+ N —2) > 0 (see [, p. 26]). Obviouslyx. has a growth of the kind
(1.2), u-(0) = 0 andu, is harmonlc in the neighbourhodd: € RY : |z| < ¢}
of the origin. ]

Letdy = (N — 2)oy when N > 3 andf, = 27 (see P, p. 43]), since

C

due = ~Au. dr = = Au.rN~'drdo, it is possible for alls > 1 to compute
On On

pie(s) = pe(1) + / TN Bry(y+ N = 2N = (1) + LBy [ 2]

1 On ™~
Proposition 5.2. Giveny > 0, B > 0 and0 < B’ < 2B, let u; and ps
be the Riesz measures of two functions, respectivebnd u,, belonging to
SH(v,B). Thenu; + us is not necessarily the Riesz measure associated with
a function ofSH (v, B’).
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Proof. Givene; ande, €)0, 1], letu., andu., € SH(v, B) be defined as in the
previous lemma ang = ., + p., be the sum of their Riesz measures. Thus
wu(s) = 2:%37“\7_2 + k., + k., Vs > 1. Note thatlim,_, | -, sﬁ(ﬁ)_z = %.
Suppose that is the Riesz measure of some functiore SH (v, B") with
an estimate such asi{z) < A + B'|z|” (Vo € RY) for some constantl € R.
In Theorems4.1 and 4.3, one asserts thaim inf, . . Sjﬁ% < f;];”, which

leads to2B < B’, hence a contradiction. O
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Theorem 6.1.Given N € N (N > 2) and a positive non-increasing"
function on [0, +oo[ such thatlim, ., . (log s)p(s) = 0 (whenN = 2) or
lim,_ 400 52 Lo(s) = 0 (WhenN > 3), letu be a subharmonic function i&",
harmonic in some neighbourhood of the origin witft)) = 0, such that: Subharmonic Functions and

their Riesz Measure

/ u* () [~/ (|2)] d < +oo Raphacie Supper
RN
where the subharmonic functiart is defined by () = max(u(z),0) Vo € Title Page
R¥. Then the Riesz measyref v verifies:
Contents
2
1
/ @(IC‘L‘; ) du(¢) < +00. XX >
e < >
Example 1. With N > 2, 3 > 0 and ¢ defined byyp(s) = e % Vs > 0,
. Go Back
obviously
liI+n (log s)e(s) = 1i1+n s%_lgo(s) = 0. Close
. . . — . Quit
If a subharmonic functiom in RY (harmonic in some neighbourhood of the
origin, with u(0) = 0) satisfies, v u* (z) e ?** dz < +oc then its Riesz mea- Pl 20 et o

i e—BI¢I2 "
sure . verifies [, T ?2 dg(( ) < +oo. One thus encounters a result ¢f, [p. e ————r—
88] for holomorphic functions if€. http://jipam.vu.edu.au
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6.1
Proof. Abiding by Jensen’s formula (Subsecti8rl) and by Lemma&.3:

1 2m )
/ log du(¢) < — / ut(re®)ydsd  Vr>0.
[¢I<r ’Cl 27 0
Since—'(r?) > 0, it follows that:

[ ([ owgie) st <o

Fubini's theorem transforms the above integral into:

J. (/qoo o8 g7 -7 QWT)/ ).

-~

=I1(¢)>0

1 [t s
I1(¢) =~ / log —
for any¢ € R? and an integration by parts leads #of ({) = fg@o 25 45 since
lims_ ;oo (log s) p(s) = 0 andlim,_ ;. ¢(s) = 0 as well. The posmve func-

tion f: s — @ decreases fas > 0 so thathroo f(s)ds > f(b + 1) for all

b > 0, hence:4 1(¢) > 240 forall ¢ € B2, If [¢] > 1, then b > ;1o

and8 7(¢) > £+ > (. Because of the harmonicity afin a neighbour-

kP
hood of the origin f<|<1 'lcc“jl du(¢) < +oo. The conclusion follows from

S 1(Q) du(Q) < +o. .

Now,
—¢'(s)] ds
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6.1

Proof. Jensen—Privalov formula together with Lemghélead to:

1 1 1
/<|<r <|C|N 2 rN?) o) = — /SN u(rz)do,  Vr>0.

Hence:

/0+oo </< (rcyflv 2" Nl) CMO) [~ ()] PV dr < 400

Taking Fubini’s theorem into account, this integral becomes:

/ o \( /;OO (’(’11\72 - TN12) [~/ (r*)] 7 dr) du(C).

=J(C)

Now, for any¢ € R¥:
0 < J(

+o0 TN72
- /K (—|C|N_2 —1> [/ (r*)] r dr
1 [t S%—l
(e

N1

Sincelim,_. (s 2

1) [—#(s)] ds.

— |C|N*2> ©(s) = 0, an integration by parts leads to:
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Obviously,s= 2 > [¢|¥~* for all s > |¢[?, so that:

4 1o PP + 1)
N _2J(C) = TE /<|2 o(s)ds > P > 0.

Propositionss.2 and6.3will be proved by using the same method.

Proposition 6.2. Let ¢ be a positiveC'' non—increasing function oft), +oo|
such that

lim, ;7 @(r) logr = 0. If a subharmonic functiom in R? (harmonic in
some neighbourhood of the origin witti0) = 0) verifies:

[ 0@ o al) do < oo
R2
then its Riesz measuresatisfies: [, ¢(|¢| 4+ 1) du(¢) < +oo and

/£:>lw<mwarl)log|c|dn<<><:foo

holds for eachn > 1.

Proof. As in Section6.2 [, 1(¢) du(¢) < 4o, here with

f@zﬁlu%mkwmm
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which turns intol (¢) = f\ZTO o(r) log g dr after an integration by parts which
uses
lim, 4o 7 (r) logr = 0 (this garantees thatm, .. 7 ¢(r) = 0 as well).
Sincey is non—increasing anhbg% > 1 for eachr > ||, it follows that
I(Q) = (¢ +1) V¢ € R2.

Givena > 1, obviously|(|* > |(| as soon ag]| > 1, so that

1) > /|+°Oso<r> log < dr

o 9
q o
> (01 [ plr) sl dr 2 (o= Dg((cr" + 1) og
> 0.
The conclusion proceeds froﬁhzl I(¢) du(C) < +o0. O

Proposition 6.3. Given N € N, N > 3, let ¢ be a positive non-increasing
C* function in[0, +oo[ such thatlim, ;.. ¥t ¢(r) = 0. If a subharmonic
functionu in RY (harmonic in some neighbourhood of the origin witl®) = 0)
verifies:

[ v @ ¢ e do < o
RN
then its Riesz measuresatisfies

[ G + D102 d(0) <+

foranya > 1.
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Remark 6.1. Whena = 1, we encountey, v ¢(|¢| 4+ 1) du(¢) < +oo again.
Proof. As in Sectior6.3: [ J(¢) du(¢) < +oo, here with

10 = |+°° (s —r) N
_ /|:o <(N _ 1)|7;|VT_22 - 1) o(r) dr

Subharmonic Functions and

after an integration by parts. Obvious’ﬁ% > 1 for everyr > ||, so that: their Riesz Measure
T’N_Q TN_2 Raphaele Supper
N—-1)———-1>(N—-2)——
W= Dy — 12 V=2
q Title Page
an oo pN-2 N Contents
J(C)E(N—Q)/ v p(r)dr V¢ eR™.
a1l «“« b
If |(] > 1, then|¢|* > |¢| sincea > 1, hence < >
oo [ N—-2
Q) = -2 [ e Go Back
¢l q Close
+o0
> (N —-2) ]C](O‘l)(NQ)/ o(r)dr Quit
¢l

_ _ o Page 32 of 33
> (N =2)[¢[@ VN 2p(|¢]* + 1).
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