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Abstract

In this paper, we obtain a class of refined Carleman’s Inequalities with the
arithmetic-geometric mean inequality by decreasing their weight coefficient.
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Let {a,}'S be a non-negative sequence such that > a,, < +oo, then,
we have

—+00 “+o00

(1) Z(alag...an)l/” < eZan.

n=1 n=1

The equality in {) holds if and only ifa,, = 0,n = 1,2, .. .. the coefficient
e is optimal.

Inequality (1) is called Carleman’s inequality. For details please refer to
[1, 2]. The Carleman’s inequality has found many applications in mathemat-
ics, and the study of the Carleman’s inequality has a rich literature, for details,
please refer tog, 4]. Though the coefficient is optimal, we can refine its
weight coefficient. In this article we give a class of improved Carleman’s in-
equalities by decreasing the weight coefficient with the arithmetic-geometric
mean inequality.
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In this section, we give two special cases of refined Carleman’s inequality. First
we prove two lemmas.

Lemma2.1.Form = 1,2,..., the inequality

) (1+l)m§e<1—1_z/e>
m m

Refinements of Carleman’s

holds, where the constait— 2 ~ 0.2642411 is best possible. el
Proof. Inequality Bao-Quan Yuan
1\" o4
3) (1 + _) <e (1 - _) Title Page
m m
Contents

is equivalentto3 <m — 2 (1+ 1)™.

Letf(z) =1 — L (1+a)7, z € (0,1] 4 dd

It is obvious that the functiorf is decreasing on the intervdd, 1]. Conse- < >
quently,5 = f(1) =1 — % is the optimal value satisfying inequalit$)( so ) Go Back
holds. The proof of Lemma.1follows. O]

Close
Lemma2.2. Form = 1,2,..., the inequality Quit
4) (1 + l)m < . c Page 4 of 10
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Proof. Inequality

1 m
5) (1 v —) <——°
m (1+3)
is equivalent to
1
< _
“In(l1+43)
Let ] ]
= = 1].
f(@) In(1+z) =« z € (0.1]
Since the functiory is decreasing on the intervéd, 1], o = f(1) = 5 — 1
is the optimal value satisfying inequalit$)( and thus 4) holds. The proof of
Lemma2.2 follows. [
Theorem 2.3.Let{a, } ' be a non-negative sequence such that >~ "> a,, <
+00. Then the foIIowmg inequalities hold:
“+oo —+00
1—2/e
©) S (a1 an) < e ( / ) i
n=1 m=
and
+00 +oo a
(7 Z(alag...an)l/” < eZ—ml_l.
i (14 L)
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Proof. Lete; > 0 (¢ = 1,2,...). According to the arithmetic-geometric mean
inequality, we have

1 n
1/n
(craicaag - -+ cpay) /n < - E Cony oy, -
m=1

Consequently,
400 400 CLa1Coa ca 1/n
1/n  __ 1010202 * * * Cplin
(a1a2 ) a ) =
Z " Z: ( C1Co -+ Cp ) Refinements of Carleman’s
n=1 1*1 Inequality
o
= Z(ClcQ e Cn)_l/n(cla102a2 e Cnan)l/n Bao-Quan Yuan
n=1
R 1 — Title Page
-1
< Y (aaer-cp) /ng > Cntm
n=1 m=1 Contents
— — 1 i/ «“ >
= Zcmam Z —(c1e9-+ - ¢p) .
n
m=1 n=m 4 | 4
Letc,, = (’anl_);n (m=1,2,...). Thencicy--- ¢, = (n+ 1)", and Go Back
> ~ +oo 1 1 Close
Z_(Cch...cn) 1/”: Z—:—_
“—n —nn+l) m Quit
Therefore Page 6 of 10
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According to Lemmag.1and2.2, and substituting fof1 + )™ of inequality
(8), so @) and (7) follow from Lemmas2.1and2.2.
The proof is complete. O]
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In this section we give a class of refined Carleman’s inequalities. First we have

the following inequality

Lemma 3.1. Form =1, 2,..., the inequality

1\" _e(1-2
©) <1 + —) cellzm)
m (1+3)
holds, wherd) < a < 5 — 1,0 < <1 — 2, andef + 27 =e.
Proof. Inequality Q) is equivalent to
1 m+o
(10) 5gm—ﬂ(1+—) .
(& m
If
f( )—l—i(1+ )= 2 e (0,1], 0 < <L—1
Ve e o v V== ae T
then f is decreasing on interval, 1]. Consequentlyp = f(1) = 1 — 12!*e
is the optimal value satisfying inequality@. Moreover,0 < 7 < 1 — % and
e + 217 = e. So @) holds, The proof is complete. O

Remark 3.1. If & = 0, theng =1 — % and we obtain Lemma.1; if 5 = 0,
thena = 5 — 1, and we obtain Lemma 2.

Similar to Theoren®.3, according to Lemma.1, we have
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Theorem 3.2.Leta, >0 (n=1,2,...), 0 <37 q, < 400, then

n=1 '
+oo +oo 1_&)
nl/"< (—mam,
;(alag an) _emz—l (1_‘_#) a

wherea, g satisfy0 < o < &5 —1,0< 3 < 1—2,andef + 2" =e.

Remark 3.2. Theorem?2.3 gives two special cases of Theor8m. If « = 0,

o 2 _ 1 _ - .
g=1 — anda = 5 — 1, 8 = 0, we can obtain§) and (7) in Theoren?.3 Refinements of Cafeman’s
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