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Abstract

M. and S. Izumi [2] and the present author [7] have extended certain theorems
of R.P. Boas [1] concerning to the Fourier coefficients of functions belonging to
the Lipschitz classes. Very recently L. Leindler [6] has given further general-
ization using the so called quasi power-monotone sequences. The goal of the
present work is to prove further theorems similar to those of L. Leindler.
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In 1967 R.P. Boas!|] proved a series of theorems on the connection between the
magnitude of the Fourier-coefficients of a functiband its structural properties
described by the modulus of continuity. Namely, he investigated the function
classed.ipa and the Zygmund class from this point of view. In 1969 M. and S.
Izumi [2] generalized these results for the cse o« < 1 and for the Zygmund
class. They used in the definition of these classes a fungtion which is
more a general function thafi. In 1990 Boas’s results were also generalized

. ) . . Power-Monotone Sequences
by the present authorJusing the so called generalized Lipschitz and Zygmund  and Fourier Series with Positive
classes replacing the functiof (0 < o < 1) by the more general function of Seeiicene
moduli of continuity:w,(t) (0 < o < 1). J. Németh

Very recently, L. Leindler §] has given generalization of two of our theo-

rems of the type mentioned above, using the so called quasi power-monotone

sequences. His results contain our theorems for the(tase: < 1 and in the IS e
casen = 1 for the sine series. It should be noted that it can easily be proved that Contents
Leindler’s theorems contain the main results of M. and S. Izumi, too. In other < b
words it turns out that the common root of the two directions of generalizations p 9

given by M. and S. Izumi and the present author is tightly connected with the
main properties of the quasi power-monotone sequences. Go Back
The object of this paper is to prove two further theorems using Leindler’'s

method for the case,(t) if « = 0 and for the generalized Zygmund class, Close

showing again the utility of the concept of quasi power-monotone sequences in Quit

unifying the earlier completely different directions of generalization concerning Page 3 of 23
Boas’s results. These results are the generalizations of further theorems of M.

and S. Izumi and ours. 3. Teq, Pure and Appl. Math. 22) ATt 14, 2001
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The idea of writing this paper originated from L. Leindler’s intention drawn
up in his recent papef].
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Before formulating the known and new results we recall some definitions and
notations.
Let w(4) be a modulus of continuity, i.e. a nondecreasing function on the
interval[0, 2] having the propertiesy(0) = 0, w(d; + d2) < w(d7) + w(ds).
Denotew(f; §) andw®(f; ) the modulus of continuity and the modulus of
continuity of second order of a functigh respectively.

L. Leindler [3] introduced the following function classes. L@t (0 < a < Power-Monotone Sequences

1) denote the set of the moduli of continuityd) = w,(d) having the following and Fourie(r:Se][fip_s thh Positive
properties: oefficients
J. Németh

(1) for anyo’ > « there exists a natural number= ;.(’) such that

(2.1) 20, (27771 > 2w, (27) holds for alln(> 1), Title Page
Contents
(2) for every natural number there exists a natural numbar:= N (v) such <« by
that
| >
(2.2) 2" %W (2 ) < 2w, (27"), if n > N. ——
For anyw, € €, the classe$/“=, and(H*1)*, i.e. Close
Quit
H*> .= cw(f:0) = O(wa(0
{f s w(f:8) = O(wa(9))) age 5 of 25
and
(le)* - {f . w@)(f; 5) = O(wl (5))} J. Ineq. Pure and Appl. Math. 2(2) Art. 14, 2001
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will be called generalized Lipschitz and Zygmund classes, respectively.

M. and S. Izumi ], introduced the following function classes. Lgt) be a
positive and non-decreasing function defined on the intéfval). TheLipj(¢)
andA(j(t)) classes are defined as follows:

Lipj(t) : = {f - sup <|f(aj +jt()t)_ f(x)’) < 00};

AG()) :{f:ng<|f($+t)—2;((t:§)+f(w—t)l)<OO}'

(Further conditions required gift) will be detailed later in the next paragraph.)

We shall say that a sequenge= {, } of positive terms is quagi-power-
monotone increasing (decreasing) if there exists a natural numberN (53, )
and constank’ := K([3,~) > 1 such that

(2.3) Kny, > my, (07, < KmPy,)

holds for anyn > m > N.

Here and in what follows< and K; denote positive constants that are not
necessarily the same at each occurrence.

If (2.3) holds withg = 0 then we omit the attributes-power” in the in-
equality.

Furthermore, we shall say that a sequence= {~,} of positive terms is
guasi geometrically increasing (decreasing) if there exist natural numbers
u(v), N := N(v)and a constank” := K () > 1 such that

1
(24) 7n+u Z 27n andfyn S K’Vn-l—la <7n+u S §7n and%+1 S K%)
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hold for alln > .
Finally a sequencéy,, } will be called bounded by blocks if the inequalities

041F£S) <Y < ozzFﬁ\’?, O0<ar <ay <o
hold for any2* <n < 2*' Lk =1,2,... where

I’gf) := min(or, Yor+1) andFE\’}) := max(Yak, Yor+1).
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To begin with, we recall one theorem of M. and S. Izur]i ftwo of ours [/]
and finally one of Leindler’s theorems]|

Throughout the rest of this papefx), f(z), p(x) will denote continuous
27 periodic functions; furthermore(z) and f(z) always denote odd and even
functions, respectivelyp(x) will denote either an odd or an even function while
A Will denote the Fourier coefficients ¢fz), f(z) or p(z).

Theorem 3.1.([2]). Let A, > 0 and let;(¢) be a positive and nondecreasing Power-Monotone Sequences
function in the interval0, 1), satisfying the conditions and Fourier Sefles with Positive
t 2
(3.1) / juyutdu < Kj(t) as t— 0, > temen
0
and Title Page
1 ; ) Contents
3.2 (w)u > du < Kj(t)t™> as t— 0.
(3.2 [t < Ko ——
Theny € A(j(t)) if and only if < 4
n 1 Go Back
. <Kj|-— .
(3.3) Z M < K (n) as n— oo Close
k=n/2
uit
It should be noted that bys(1) the condition 8.3) is equivalent to S
Page 8 of 23
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Furthermore, in its original form this theorem seems to be slightly more general,
since the continuity ofy is not mentioned, although in the definition &ft)
given by Zygmund §] this additional condition is assumed.

Theorem 3.2.([7]). Let A\, > 0. Then

(3.5) p € (H)"
if and only if
> 1 Power-Monotone Sequences
= Z d Fourier Series with Positi
= Yo-o(a (i) A e
Theorem 3.3.([7]). Let A, > 0. Then ). Nemeth
(3.7) feH” Title Page
if and only if Contents
= 1 <4« >
3.8 AM=0(wy|— :
& >r-0(a(3)) 10
Furthermore, Go Back
(3.9) g€ H Close
uit
implies Q
Page 9 of 23
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and from

(3.11) ; A =0 (wo (%)) ,
(3.12) g€ H™

follows.

Theorem 3.4.([6]). Assume that a given positive sequereg} has the fol-
lowing properties. There exists a positiveuch that:

(P,) the sequencén®~, } is quasi monotone decreasing and

(P_) the sequencén'~=~,} is quasi monotone increasing.

If A, > 0, then
313) o (1) =0t
if and only if
(3.14) fj e = O(3)
k=n
or, equivalently,
(3.15) i kX = O(ny,).
k=1
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As we mentioned earlier, Theore®¥ contains one of theorems of M. and
S. lzumi (see i, Theorem 1]) and two of ours (se€ [Theorems 1 and 2]). We
now proceed to formulate our new theorems.

Theorem 3.5.Let )\, > 0 and lety,, have the properties:

(P, ) the sequencén,} is quasi monotone decreasing and

(]5) the sequencén®~<+, } is quasi monotone increasing for some positive

Then
Power-Monotone Sequences
1 and Fourier Series with Positive
(3.16) w(2) <g0; —) = O(”yn) Coefficients
n
J. Németh
if and only if
00 Title P
(3.17) S M = O(). ==
k—n Contents
Theorem 3.6. Assume that,, has the following property: b dd
(P_) the sequencén'—=~, } is quasi monotone increasing for some positive < >
e. If A\, >0, then
Go Back
1
(3.18) w (f7 ﬁ) = O(7n) Close
. ) Quit
if and only if
Page 11 of 23
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Furthermore,

(3.20) w (g; %) =O0(m)

implies

(3.21) zn: kX = O(ny,),

k=1
and from
(3.22) > A =0(1),
k=n

1

(3.23) w (g; —) = O(m)
n

follows.

Remark 3.1. We shall prove that Theorem5includes Theorem3.1and 3.2
Additionally, Theoren3.6implies Theoren3.3.
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To prove our theorems we require the following lemmas.

Lemma 4.1. ([5]). A positive sequencéd, } bounded by blocks is quast

power monotone increasing (decreasing) with a certain negative (positive) ex-

ponente if and only if the sequencé,.} is quasi geometrically increasing
(decreasing).

Lemma 4.2. ([4]). For any positive sequence:= {v, } the inequalities

Z%gfﬁm (m=1,2,...; K > 1),

or -
Z%SKW (m=1,2,...; K > 1),

n=1
hold if and only if the sequenceis quasi geometrically decreasing or increas-
ing, respectively.

Lemma 4.3. ([€]). Let u,, > 0, 5, > 0andd > 0. Assume that there exists a
positives such that the sequence

(2) {n°3,} is quasi monotone increasing
and the sequence

) {n*=°4,} is quasi monotone decreasing
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Then
(4.1) > K= 0(8,)
k=1
is equivalent to
(4.2) > = 0(Bn"0).
k=n

Lemma 4.4. ([6]). Let p, > 0, >, 1 be convergent and < o < 1. More-

over, assume that a given positive sequeficg has the following properties.

There exists a positivesuch that:

(4i7) the sequencén®“9,,} is quasi monotone decreasing, and
() the sequencén® <4, } is quasi monotone increasing.
Finally let
0y if xz%, n > 1;
i(z) =
linear on the interval [, 1]
Then
(4.3) Z,uk(l —coskz) = O(z*§(z)) (x — 0)
k=1
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if and only if

(4.4) > k= 0(n™°5,).

k=n
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Proof of Theoren.5. Firstly we prove the theorem for the cosine series. Sup-
pose that$.16) holds. This implies that

(5.1) |fx+h)+ flz—h) = 2f(z)] < Ky(h),
where
Yo if 2= %7 n =1 Power-Monotone Sequences
A d Fourier Seri ith Positi
=2 = linear on the interval [ -, 1] T coetiens'
L J. Németh
From (.1) it follows that
(53) () = FO)] < Ky (). e e
Contents
Sincef is continuous and,, > 0, from a theorem of Paley (se&]] it follows
<44 >»
that .
3 A < o, 4 g
k=1 Go Back
whence Close
> it
(5.4) 3 (1 = coskh) = O((h) S
1 Page 16 of 23
fOHOWS J. Ineq. Pure and Appl. Math. 2(2) Art. 14, 2001
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Using Lemmad.4for o = 0, pur, = A\, 9, = 7, We have B.17), that was
to be proved. Now we assume.{7) and estimate the following difference by
using again Lemma.4in the last step (forv = 0, pr = A\ andd,, = ~,,)

Z A\ sin? kh cos kx

k=1

|f(z+2h) + f(x —2h) — 2f(x)] 4

< 4> Nesinkh =2 Ag(1 — cos 2kh)
k=1 k=1

= O(y(h)).

Thus the proof of Theorer®.5is completed for the cosine series.
The proof for the sine series in the direction frof1(7) to (3.16 can be
done in the same way as for the cosine series, since

(5.5) lg(x + 2h) + g(z — 2h) — 2g(z)| =4

Z i sin kz sin® kh

k=1

So we detail only the other direction. Suppo3€eL), that is

(5.6) lg(z + )+ g(z — h) = 2g(z)| = O(v(h)).

Writing (5.6) in the following form (using again Paley’s theorem cited before):

(5.7)

2 i Apsinkz(1 — coskh)| = O(~(h)).
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By integrating term by term of0, z) in (5.7) we get

(5.8) Z )\k — coska (1 —coskh) = O(xzvy(h)).

From (5.8) we have

(5.9) Z ka)\k —coskx (1 —coskh) = O(zvy(h)).

k22

SinceK > ¢t7%(1 — cost) | on(0,1), from (5.9) it follows that

[1/2]

(5.10) > akA(1 = coskh) = O(v(h).
k=1

Puttingh = z in (5.10
[1/h)

(5.11) > hkAL(1 = coskh) = O(~(h))
k=1

can be obtained which gives

lL/k] —coskh
(5.12) Z B3 N COS AT = 0(1(h).
From (.12 takingh = +
(5.13) Z KN, = 0(n’y,)
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follows.

By using Lemmat.3for 3, = n3v,, § = 3 (5.13 implies 3.17) which was
to be proved. It can easily be verified that the conditiopsufd (:) of Lemma
4.3follow from propertiesP and P+ of ~,,, respectively.

Thus Theoren3.5is completely proved. [

Proof of Theoren3.6. Let f(x) = >, Ax cos kz and suppose thaB(19 is
valid. Then we havéf(h) — f(0)] < K~(h) (for the definitiorny(z) see §.2)).
That s,

Power-Monotone Sequences

b and Fourier Series with Positive
E )\k(l — COS /{Zh) < Kv(h). Coefficients
k=1 J. Németh

Integrating both sides oft), ) we have

) Ay Title Page
(5.14) kz: ? (kx —sinkz) < Kxy(z). FE—
=1
, 4« 44
Sincekx — sin kz > 0, we have from$.14)
< >
A
(5.15) Z f(/{;x —sinkz) < Kay(z). Go Back
k=2n Close
Putting1/n for 2 and taking into account that Quit
Page 19 of 23
E—sin(ﬁ) > lﬁ for k>2n
n n 2n
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we get

(5.16) D A< K,
k=2n
which gives 8.19.
Now we suppose thaB(19 holds and we prove3(19).
Let us consider the following difference:
(5.17) |f(z+2h) — f(x)| = Z Ag[cos k(x + 2h) — cos kx]

k=1

2) " Apsink(z + h)sinkh

k=1
[1/R]
< QZAksmkh+ Z Mo =1+ 11
k=1 k=[1/h]
Using (3.19 we have that I = O(~(h)). Now we estimatd.
[1/h] (1/R] sin kh [1/h]
(5.18) I[=2. Z)\ksmkh—Qth)\k <K-hY kh=1"
k=1 k=1

But by using the property?. and Lemma 1, Lemma 2 we show th&t19
implies

(5.19) Z kA = O(ny).
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Indeed, leR” < n < 2vt! then we have

v gm+1 gm+1
ka <> ke <K22m > M <K22 Yom < Kny,,
m=0 k=2m+1 =2m41

which gives 6.19. Finally (5.17), (5.18) and 6.19 give (3.19, which was to
be proved.
Now we prove 8.21) from (3.20). Using the estimation

(5.20) 9(2)] < Kry(x),

term by term integration ofD, =) gives from 6.20) that

(5.21) %(1 —coskx) < Kzvy(x),

k=1

that is

5.22 S fa S0k (@)

(-22) Z ST T

holds for any positive:. As before from $.22) it follows that
- (@)

5.23 kA, < K——=

(5.23) D kA < K

which takingz = & gives @.21).
The proof of 3.23 from (3.22 can be done in the very same way aslf)
from (3.19, so we omit it. Theorem3.6is completed. O
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Proof of Remarlk3.1. Forthe implication Theorerd.6=Theoren3.1let~, :=
j (1/n). Then using Lemma 1 and Lemma 2 frofh1), property P, follows,
while (3.2) implies property? of +,,.

To show that Theoreri.5includes Theoren3.2 it is enough to takey, :=
wi (1/n) and to take into account that using Lemma 1 propety) (of w;(d)
implies property?” while from condition 2.2) the propertyP, of ~, follows.

Similarly, to prove the conclusion Theore®rt =Theorem3.3it is enough
to use Lemma 1 to show that the conditiénlj of w,(d) implies thatu, (1/n)
satisfies the propertf_, so choosingy, := wy (1/n) the proof is completed.

O
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