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Abstract

The function ¢(z) = 2/(1+ z) + 1/(Log (1 — z)/2), holomorphic in the cut plane

C\[1, 00}, is shown to be a Pick function. This leads to an integral representation
of the coefficients in the power series expansion ¢(z) = Y f,2", |2| < 1.

The representation shows that ((3,) decreases to zero as conjectured by F
Topsge. Furthermore, (/3,) is completely monotone.
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In the paper¥] about bounds for entropy Tops@e considered the function

2 1
1.1 = -l<z<l1
with the power series expansion
1.2 = "
( ) ¢(I) nZ:O ﬁ v A Pick Function Related to an

Inequality for the Entropy
Function

and conjectured from numerical evidence that) decreases to zero.

The purpose of this note is to prove the conjecture by establishing the integral Christian Berg
representation
° dt Title Page
(1.3) @L:/ — n>0.
1t (w2 4 In® %) Contents
This formula clearly showgl, > 6, > --- > (5, — 0. Furthermore, by a
) : <44 >
change of variable we find
. < >
" ds
ﬁ”:/o s s(r?+ 2=’ n =0, Go Back
which shows thats3, ) is a completely monotone sequence, &}. [ Close
The representatiori (3) follows from the observation thatis the restriction Quit
of a Pick function with the following integral representation Page 3 of 8
o dt
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From (1.4) we immediately get(.3) since3, = ¥ (0)/n!.
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A holomorphic functionf : H — C in the upper half-plane is called a Pick
function, cf. [1], if Im f(z) > 0 for all = € H. Pick functions are also called
Nevanlinna functions or Herglotz functions. They have the integral representa-

tion
f(z):az+b+/_:< L ! )du(t),

t—z 1412
wherea > 0, b € R andy is a non-negative Borel measure Rrsatisfying

/ dp(t)

1+1¢2
o= lim f(iy)/iy. b= Ref(),

(2.1)

< o0

It is known that

1
p= lim — Imf(t+zy)d

y—07t

(2.2)

where the limit refers to the vague topology. Finafljhas a holomorphic ex-
tension taC \ [1, co] if and only if supp(x) C [1, ool.
Let Logz = In|z| + ¢ Arg z denote the principal logarithm in the cut plane

C\] — 00, 0], with Arg z € ]—m, 7[. Hence Log5* is holomorphic inC \ [1, co|
with z = —1 as a simple zero. It is easily seen that
23) U= b € C\ L]

' Tt Log =’ : 0
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is a holomorphic extension ofl. (1) with a removable singularity for = —1
wherey(—1) = 1/2. To see that’(z) = Im(z) > 0 for z € H it suffices by
the boundary minimum principle for harmonic functions to verify

liminf,_., V(2) > 0 forz € R andlim inf|,|_,. V(2) > 0, where in both cases
z € H.

We find
(), z <1 (with (1) = 1)
e =g,
Ttz + m%—l—m s z>1
hence
0, r<l1
lim V(z) =
2= s T > 17

72 +n? £1
whereadim,,|_.. 9(z) = 0. This shows that) is a Pick function, and from

(2.2) we see that = 0 andp has the following continuous density with respect
to Lebesgue measure

0, r <1

d(x) =
1/(7?2+1n2x7_1), x> 1.

Therefore
1 t dt

:b _— .
¥(z) +/1 (t—z 1+t2)7r2+1n2%
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In this case we can integrate term by term, and slhag . .. ¢ (z) = 0, we

find

o dt
w(z):[ (t—Z)(ﬂ'Q—I—lDQ%)

and

b= Rey(i) = 1

which establishesl(4).

82 _/°° tdt
m+4ln*2 ), (1+t2)(7r2—|—1n2%)’
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