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ABSTRACT. The functiony(z) = 2/(1 + z) + 1/(Log (1 — z)/2), holomorphic in the cut
planeC \ [1, oo[, is shown to be a Pick function. This leads to an integral representation of the
coefficients in the power series expansiofx) = > 2 3,2", |z| < 1. The representation
shows that3,,) decreases to zero as conjectured by F. Topsge. Furtherfigies completely
monotone.
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1. INTRODUCTION AND STATEMENT OF RESULTS

In the paperi[2] about bounds for entropy Topsge considered the function

2 1
1.1 = -1 1
(1.1 Vo) = it lees
with the power series expansion
(1.2) Y(@) =) far”
n=0

and conjectured from numerical evidence that) decreases to zero.
The purpose of this note is to prove the conjecture by establishing the integral representation

o0 dt
1.3 = , > 0.
(1.3) Z /1 tn—i—l(ﬂ-Q + In? ﬂ) n
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This formula clearly shows, > 3, > --- > 3, — 0. Furthermore, by a change of variable we

find
1
ds
n — " 5 Z Oa
b /0 ° s(m2 + In® 129) "

2s
which shows thatg,,) is a completely monotone sequence, [cf. [3].
The representation (1.3) follows from the observation that the restriction of a Pick func-
tion with the following integral representation

% dt
(1.4) w(z):/1 (— @ e z€ C\[1,00].

From {1.4) we immediately gdt (1.3) singg = /(" (0)/n!.

2. PROOFS

A holomorphic functionf : H — C in the upper half-plane is called a Pick function, ¢i. [1],
if Im f(z) > 0for all z € H. Pick functions are also called Nevanlinna functions or Herglotz
functions. They have the integral representation

2.1) f(z)—az—i—b—l—/oo( ! ! >d,u(t),

o \t—z 148

wherea > 0, b € R andy is a non-negative Borel measure Rrsatisfying
dp(t)
<
/ 1+¢2 >

(2.2) a= lim fliy) /iy, b=Ref(i), p= lim 1 Im f(t + iy)dt,

y—0t+ 7T

It is known that

where the limit refers to the vague topology. Fingflipas a holomorphic extension®\ [1, oo|
if and only if supp(x) C [1, o0].

Let Logz = In |z| + i Arg z denote the principal logarithm in the cut plane
C\] — 00,0], with Arg z € ]—m, 7[. Hence Log5= is holomorphic inC \ [1, oo with z = —1
as a simple zero. Itis easily seen that

2 1

is a holomorphic extension df (1.1) with a removable singularity:fer —1 wherey(—1) =
1/2. To see that’(z) = Imy(z) > 0 for z € H it suffices by the boundary minimum principle
for harmonic functions to verifyiminf. ., V(2) > 0 for € R andliminf|,|_.. V(2) > 0,
where in both casese H.

z€C\[1,00]

We find
(@), < 1 (with ¢(1) = 1)
ll—%w('z) - 2 1
Ttz + ln%—l—m , r>1
hence
0, r <1
lim V(z) =
z—T ™ T > 17
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whereadimj. ., ¥(z) = 0. This shows that/ is a Pick function, and fronj (2.2) we see that
a = 0 andy has the following continuous density with respect to Lebesgue measure

0, r<l1
d(x) =
1/(7r2+1n2$7_1), x> 1.

° 1 t dt
—b - .
v =b+ | (t_z th)ﬁmg%

In this case we can integrate term by term, and sinag . ., ¥ (x) = 0, we find
o dt
e =
v i) /1 (t —2)(x* + In* )

8ln 2 o tdt
b=Rey(i)=1— ———— =

140 72+ 41n? 2 /1 (14 2)(n2 4+ In* )’
which establishes (1.4).

Therefore

and
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