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Abstract

In this paper a Cauchy problem for holomorphic differential operators of Fuch-
sian type is investigated. Using Ovcyannikov techniques and the method of
majorants, a necessary and sufficient condition for existence and uniqueness
of the solution of the problem under consideration is shown.
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We introduce the method of majorani3,[[5], and [3], which plays an impor-
tant role for the Cauchy problem in proving the existence of a solution. This
method has been applied by many mathematicians, in particJée], and []

to study Cauchy problems related to differential operators that are a “natural”
generalization of ordinary differential operators of Fuchsian type, and to gen-
eralize the Goursat probleni][ We also give a refinement of the method of
successive approximations as in the Ovcyannikov Theorem givef).i€pm-
bining these two methods, we shall prove the theor&m [
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Let us denote

r = (To,%1,...,2T,) = (v0,2") € R x R", wherez’ = (z4,...,z,) € R",
& = (£0,&,.-,&) = (&,&) €e R x R", where¢’ = (&,...,&,) € R",
= (ap,ai,...,a,) = (ap,a') € N x N", wherea = (ay,...,a,) € N".

We use Schwartz’s notations
Necessary and Sulfficient

2 = agapt e = 2 (@) |l = el | e el
ol = oplag! !, ’oé‘ =g+ +- -+, Cauchy Problem for
Holomorphic Fuchsian
0 < « meansﬁj < q; forall 7 =0,1,...,n, Operators
a|04\ 0 Mekki Terbeche
DY = —————— =DYDM...D% whereD, = —,0< 4 <n.
R 1T oy, =T
Fork e N,0 <k <m, Title Page
Contents
max[0,ap+1—(m—k)] =[apg+1— (m — k)|,
ml 44 44
m ! . " )
( e ) —m, Coi) =3 —1)..(j —q+1), < >
by conventiorCy(j) = 1, and the gradient @ with respect tac will be denoted Go Back
by Close
gradp(z) — Op(x)  Op(x) _
drg = Ox, )7 Quit

We denote a linear differential operator of orderP(x; D) by -, @a(z)D* Page 4 of 31
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Definition 2.1. Let £’ be ann + 1 dimensional holomorphic differentiable man-
ifold. Leth be a holomorphic differentiable operator overof ordermy in a,
and of order< mg neara. Let.S be a holomorphic hypersurface éfcontain-
ing a, let m be an integer> my, and lety be a local equation of in some
neighborhood of;, that is, there exists an open neighborhdodf a such that:

Vo e, gradp(z) #0, z € QNS < p(z) = 0.
If o € Z andY is a holomorphic function of, for z € 2\ S, we denote by
hn(Y)(@) = " " (2)h(Y™)(z)
and byH_? (z, £) the principal symbol of this differential operator.
(i)
Th,s(a) = inf {o € Z : VY holomorphic function in a neighborhood

Qofa, Vee QNS l})mgs RITHY ) (x) = O}

denotes the Fuchsian weight/ofn a with respect toS.
(i)

7 5(a) = inf {a €Z: I}ngzs @ ™ (2)HO (25 gradp(z)) = 0}

is the Fuchsian principal weight @f in a with respect taS.
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(441
Tns(a) =inf {o € Z: VQ,VY,Vb e QN S,

i 4 00)) - Y@ (1)) = o}

denotes the reduced Fuchsian weighbah « with respect taS.

A differential operatorh is said to be a Fuchsian operator of weighin a
with respect toS if the following assertions are valid:

(H-0) 7 4 is finite and constant and equalneara € S,
(H-1) 7, 5(a) =7,
(H'Z) %h’s(a) S T— 1.

A Fuchsian characteristic polynomial is defined to be a polynothial \ of
holomorphic coefficients in € S by

CAy) = lim @™ (@)h(p)(x).

z—y, ¢S

Set
Ci(\y) =C(A+mns(a),y), VAeC, Vy € S.

Remark 2.1. If we choose a local card for which(z) = z¢ anda = (0, ...,0),
we get Baouendi-Goulaouic’s definitiond .

Remark 2.2. The number, ¢(a) is independent om which is greater or equal
to mo.
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The majorants play an important role in the Cauchy method to prove the exis-
tence of the solution, where the problem consists of finding a majorant function
which converges.

Let o be a multi-index ofN"*! and £ be aC-Banach algebra, we define a
formal series inc by

a€eNn+l1
whereu,, € F.
We denote by[[z]] the set of the formal series inwith coefficients inF.

Definition 3.1. Letu(x), v(x) € El[[z]], and\ € C. We define the following
operations inE[[z]] by

@) u(z) + v(z) = u(x) = 3 eynss (Ua + va) %5,
(b) Au(z) = 3 qepmi (Mta) G

(©) u(@)0(2) = Cerns Socpea (§) tata st
Definition 3.2. Let

u(z) = E:z%a,eEwm,
and N
Ulw)= ) Usy €R[z]
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be two formal series. We say thdtmajorizesu, written U (z) > u(z), pro-

videdU, > ||u,|| for all multi-indicesa.

> UQZ—T e E[[z]].

aeNn+l

We define the integro-differentiation ofx) by

Definition 3.3. Let

DHu(x

for p € 2", and[—p] .

= ([~ pol+

(a) Let A be a finite subset df"*!,
differential operator ovef[[z]] if for u(x) € E|[x]],

= ZGM(I)DMU<CL’),

P(z; D)

whereq,(z) € EJ[z]].

(b) Let

and

be formal integro-differential operators ovRf[x|| and E[[z]] respectively.

P(z;D) =

E UCH_“

a>[-ul+

) [_:ul]-‘rv R [_H’n]-i-)'

HEA

> Au(x)D*

:U‘EZ"+1

Z a,(x)D*

MEZn+1

P(z; D) is said to be a formal integro-
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We sayP(x; D) majorizesP(z; D), written P(x; D) > P(x; D), provided
A, (x) > a,(x) for all multi-indicesp, € Z"*!.

Definition 3.4. Consider a family{u’},c;, v/ € E[[z]]. The family{u/};c; is
said to be summabile if for any e N, 3, = {j € J : uJ, # 0} is finite.

Theorem 3.1.Letv € E[[y]], (y = (1, -. ,ym)) V€ R[[y]] such thatV/ (y) >
v(y). Letuj(x) € El[z]]forj =1,...,m, u} = 0, andUJ( ) € R[[z]] for
j=1,...,m, Ul =0such thatU(:c > u( )for allj=1,...,m. Then

) >
V(U (), ™a)) > v (ul(2),. .., u"(x)).
Proof. See []. ]

Definition 3.5. If u(z) € E[[z]], we denote the domain of convergence bf

o(u) = {x cx € C" () = Z ||ua]|% < oo} .

Theorem 3.2. (majorants): If U(z) > u(x), then
o(U) C o(u).

The above theorem is practical because, if the majorant séfies con-
verges forjz| < r thenu(z) converges fofx| < r. Let us construct a majorant
series through an example.

Letr = (ro,71,...,7,) and letu(x) be a bounded holomorphic function on
the polydisc

P,={x:2eC" |z;|<r, foralj=0,1,....,n}.
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Let M = sup |lu(x)||, then it follows from Cauchy integral formula thiat, || <
Py

M.

If we let U, = al, thenU (z) majorizesu(z).
Theorem 3.3.Leta;,0 < i < m,be holomorphic functions near the origin in
C™ that satisfy the following condition

m

> Ci()ai(0) #0, Vj €N, (am =1),

=0
then there exists a holomorphic functignnear the origin inC" such that

1 Aa)

" - ~ < = —, VjeN
Zi:o C; (])az‘ (l’ ) Zi:(} C; (])
Proof. If we write
ZZZO Ci(5) ZZO Ci(5) . 1

2 iz Ci(4)(ai(0)—ai(z"))

TGy S, Ci(7)ai(0) 1 —
Zz:() (])(l (ZE) 2170 (j)a( ) 1 > Ci(4)ai(0)

then we have

S >/ <C) B ()
j=o0 33t Cilf)ai(0) =00 O (j)am(0)
1
" a,(0)
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Therefore, there exists a constaht> 1 such that
Z;lo C; (j>ai(0)
Let B(z’) be a common majorant 19(0) — a;(z’) forall i = 0,1, ..., m with
B(0) =0, that is

<(C, VjeN.

> im0 Cil4)(ai(0) — ai(z)) Nl 2k Giy) ’
L o : < Bz e
ST Cy()a0) ) S C()a0)
< COB(2).
It follows from TheorenB.1that
1 1
| SO0 aw) S T OBy

Yimo Ci(§)a:(0)
Choosing themd(z') = #B(z,), the desired conclusion easily yields. [
Corollary 3.4. Under the conditions of Theoref3, there exist two positive

real numbers\/ > 0 andr > 0 such that
1 1 M

- < — : )
CGi(g2) G+ 1—ri(a)
wheret(z) = Y"1 ;.

Proof. The proofis similar to the proof of the Theoreéh, it suffices to observe

Vj € N,

that m o
hm mzi:[) z(]) — 1’
J—e0 Zizo Ci(4)ai(0)
then apply the following theorem. O

Theorem 3.5.
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If A(z’) is holomorphic near the origin i€, there exist\/ > 0 and R > 0

such that:
M

Al) < 5y

forall 2’ € {«/ : >, | z; |< R}.
Proof. See . ]
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Theorem 4.1 (Main Theorem). Let h be a Fuchsian holomorphic differential
operator of weightr, s(a) in @ with respect to a holomorphic hypersurfase
passing througla, of a holomorphic differential manifol@ of dimensiom +1,
and ¢ a local equation ofS in some neighborhood ef. Then the following
assertions are equivalent:

i) forall A > 7, s(a), C(\,2") #0

i) for all holomorphic functiong andwv in a neighborhood of, there exists
a unique holomorphic function solving the Cauchy problem

(4.1) hu) = f
u—v = O(pms@)

If we choose a local card such thatz) = =5 anda = (0, ...,0), then we
obtain the Baouendi-Goulaouic’s Theorem, [if £ = 0, we obtain Cauchy-
Kovalevskaya Theorem, andkf= 1, we obtain Hasegawa’s Theorefj.|

The following theorem gives a relationship between a Fuchsian operator of
arbitrary weight and a Fuchsian operator of weight zero.

Theorem 4.2.Leth be a Fuchsian holomorphic differential operator of weight
Th.s(a) in a with respect to a holomorphic hypersurfaSepassing throughu,

of a holomorphic differentiable manifold of dimensiom + 1, and a local
equation ofS in some neighborhood af If we define the operatar; by

Y — hy(Y) = h(Yps@),
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then h; is a Fuchsian holomorphic differential operator of weight zeroain
relative to a holomorphic hypersurface

If C (respectivelyC;) denotes the Fuchsian polynomial characteristichof
(respectivelyr;), then

Ci(\y) =CA+ms(a),y), VAeC, Yy e S.

Proof. 1. We look for the Fuchsian weight &f; in a with respect toS.
Letm > mg, wherem, is the order of:, then

T @) (V™) (@) = o (@) A(Y ) ()
= pletms(@+)=(mtmhs@) (1) (Y pmts(@)(g)

consequentlyy, s(a) = 0.

2. We look for the principal Fuchsian weight bf in « relative tosS.

In the local cardp(z) = zo anda = (0,...,0), itis the exponent of in
the coefficient ofD{* of h,. In this local card

Py(u) = Plag"u)
= kDI (xR +
= 2EDu+ .

(the points indicate the terms that have the order of differentiation with
respect tac, less thamm,). Hence
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3. If m > my, then
i o™ O @) (V™) () = Y () (™) )

= o " (@) [h(Y g™ @) (2) — Y () h(p™ ) (2)]

- ] Th,s(a)—(m+Th, s(a))
,m ¢ (z)

X [W(Y " 5@) (2) = Y (2)h(p™ ) ()]
= 0, by hypothesis.

Finally, we have

SO @)hy (M) (2) = T (@)(pM ) (2)
s (@~ Ot mhs (@) () b (AR5 (@) (1)

which tends t@ (A + 73, s(a), y) asx tends toy andz ¢ S.
This concludes the proof of the Theorem.
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If we choose a local card for which(z) = z, anda = (0,...,0) the Cauchy
problem @.1) becomes®.1) below. We devote this section to formal calcula-
tions by looking for solutions as power series of the problém)(below con-
nected with a Fuchsian operat®fx; D) of orderm and weightm — & with
respect tary atxry = 0.

We decompose this operator in the following form

P(x; D) = Py (x; Do) — Q(x; D),

where )
P, (x; Dy) = Z (2 P DY,

24 D§* (g (w0, 2') DY),
ap<m,|a|<m
with a,, = 1 andu(ag) = [ag + 1 — (m — k)] 4.
Theorem 5.1. If the coefficients of,,(z; Dy) and Q(z; D) are holomorphic
functions near the origin i€"**, then the following conditions are equivalent
1) For all integersA > m — k # 0,

ii) For any holomorphic Cauchy data, 0 < j < m — k — 1, near the origin
in C" and for each holomorphic functiofinear the origin inC**!, there
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exists a unique holomorphic solutiannear the origin inC"** solving
Cauchy problem

(5.1) P(z; D)u(z) = f(z)
Dju(0,2') = w(z'), 0<j<m—Fk—1.

Suppose that the solutiar{z, 2') has the fornd 7= | uj(x’)%.
The problem is to determine;(z’) for all j > 0. It is easy to check the

following statements: Necessary and Sufficient
Condition for Existence and
If o ) Uniqueness of the Solution of
J Cauchy Problem for
N = nto Holomorphi i
— . v phic Fuchsian
u(aco, v ) ZO i (I ) ]' Operators
j=
and . Mekki Terbeche
w
n Lo
V\Zo, T ) = Vu\T ) —
(20, 2) ; a ),u!7 Title Page
then Contents
00 J . j 44 44
J Lo
62 st rtons) = 313 Yuesternte)] % —1=
j=0 Lp=0
) o ) xé Go Back
4 — . —
(5.3) Dfju(zo,2') = Zu(m )5 Close
j=
0o j Quit
q P N Ve n1 %o
(5-4) zoDgulwo, @) = Z[Cq(J)Ug+p—q(a? ) 4! Page 17 of 31
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and by conventiom,;, = 0 for & < 0.
By using 6.2), (5.9, and 6.4), one can check easily that

V=3 100

J=0

P (33' DO [If[),

where D(j, 2')
C(j,2") as

C(] +m — k7x/)
Cm_k(] +m — k?)’

D(j.a') =

and we have

-3

]:

(5.5)  Pn(z; Do)u

{ (j+m—k,2)
:EO)

. /
m ) ]+m k) ]+m—k(w)

oo v
v=0 aa

Similarly, if aq (z, ') = 3 ()%, then

(5:6) Q(z; Dyu(zo,a') ==Y | D Cuanli)
J=0 | ap<m,|a|<m
Jtao—p(ao) .
« Z ( ]+ 050; M(Oé0> ) ag (x,)Dgé'/uj—i-ao—u(ao)—p(x,)
p=0

Z?ZO am—q(2")Cr—p(7) Which can be written in terms of
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Finally, if f(zq,2') = ifj(x’)%, then by using®.5), (5.6), and by identifying
=0

J
the coefficients of°(x; D)u(z) = f(x) we get the following expression
C(j+m—k,2)

jt+ao—p(ao) .
. + g — plo ,
= Y Cuawn) (J 0 = #l 0>)az<x>

p

) uj+mfk<x )

Il
=)

ap<m,|al<m P
X Dg’/uj+a0*u(ao)*p(x/) + fj(x/)

forall j € N.

Lemma 5.2. Let P(\;2) = > an(a)A\F

with continuous coefficients on some neighborhBaaf the origin inC".

If P(j;0) # 0forall j € N, there exists a neighborhodd of the origin such

that P(j;2') # 0forall 2’ € Vandallj € N.

, (@, = 1), be a polynomial im\

Proof. We have

m—1
POsa)] = " = D (@)
k=0
Let
M= max |ag(2)|
0<k<m—1,2'€V
then
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If [\| > 1, then

M
Pna) >1— ——.
[P(A;2)| > =1
If 2/ € V and|)\| > 2M + 1, then
1

In other words, ifj is an integer such thgt> 2M + 1 andz’ € V then
P(j;a") # 0.
Now let; € Nsuchthad < j < 2M+1. SinceP(j;0) # 0, then by continuity,

there is a neighborhood of the origifi such thatP(j; z’) # 0 for all 2’ € V.
In conclusion we choosE = (Ny<j<an+1V;) NV, and we have

P(j;a') #0
forall 2’ € V and allj € N, as required. O

Corollary 5.3. There exists a neighborhodd of the origin such that (j +
m —k,z') #0forall 2’ € V and allj € N, and the induction formula

Z Cu(ao) (J)

ag<m,|al<m

Cm,k(j +m — k)
C(j+m—k,a)

(5.7) Ujrm-i(2') =~

<D

4+ g — pla o
g+ 00 = p(ao) )af;<x’>Dx/uj+a0_u<a0>-p<x'> 5
p=0

JH+ao—p(ao)
(7,
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yields for allz’ € V and all j € N.

Under the conditions of the Theoréiil, there exists a unique formal series

o J

T
u(xg, z') = E uj(x’)—,?
=0 I

solution of the problem&.1) since allu;(z") are uniquely determined by
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Let i be a differential operator of Fuchsian type:iwith respect ta5 of weight
Th,5(a) and of ordern. We want to solve4.1) in some neighborhood af.
Setu — v = w and the problem4.1) becomes

h(w) = g,
w = O(SDTh,S(a))’

(6.1)

whereg = f — h(v).

It follows from the second condition o6(1) that there is a unique holo-
morphic functionU in some neighborhood af such thaty = O(¢™5()) and
finding U is equivalent to findingu.

U verifies

h(U(pTh’S(a)) =g,
i.e. U satisfies the equation
h1<U) =9,

whereh is a Fuchsian operator of weight zerodmelative toS (by Theorem
4.2).

If we choose a local card such thatr) = zo anda = (0, ..., 0); in this local
card the equation becomes

PU) =QWU)+g,
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where

P = Zamfp(x/)mgl_pDZ)n_ﬂ (am =1),
p=0
m—1
Q = — Z $30+1D803m,a0,
ap=0
and
Bin—og = Z ao(x) DS

lo/|<m—ag
Let us denote by’(j + m — k,z’), (respectivelyC; (A, 2’)) the Fuchsian
polynomial characteristic of, (respectivelyh,). It follows from Lemma5.2
that if C(4,0) # 0 forall j € N, 7 > m — k, then there is a neighborhodd of
the origin inC" for whichC(j,2’) #0forallz’ € Vandallj e N, j >m —k
HenceP is one to one on the set of holomorphic functions at the origin.

If u(wo, o) = 372, uj(x’)a;—]? then

ee] / ]
P lu(z) = uj(a:) ﬁ,
@ =250

and the problem@.1) is equivalent to the following problem
(6.2) U= (15—1 0 Q) (U) + Uy,

where .
Uy = P '(g).
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As in [1], [4], [5], [ 7], and [3], a successive approximation method will be
used in the following sense.

LetUp;: = (P*l o Q) (Up) + Uy for p > 0, and set,, = U,1 — U,. Then

Vo1 = (1571 ° Q) (V).

Let D = {(wo, ") : (wo,2") € C*™, || < § and |ay| + -+ + |z, < 1},
thenlj is holomorphic in some open neighborhooddnand there is a constant
denoted| V|| such that

1 1
oo 1 —st(z’)’

Vylw) < Vol =

whergt(x’) =0 0T o > nﬁo, s = =, andn is some given number in the
open interval0, 1).
Lemma 6.1. There exists a constaif such that
w1
(s —s)™ 1—ux¢8y 1—s't(a)

(6.3) Volz) < [|Voll

forall s’ > s.

Proof. Clearly 6.3) holds forp = 0. Supposeq.3) holds forp, and let us prove
it for p + 1.
We have

m—1
PoQ= 3 P o ()
ag=0
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and we want to study the action of the operatBfs_,, z5°™ D5°, andP~'on
V.

1) We have
Bmfao (ZE, Dx’) = Z aao,o/(xoa [L'/)Dg//-
la/|<m—ag
For all such thata| < m there isM,, for whicha,(z) < —1%331%'—17;(33/)-
Set

Necessary and Sulfficient
Condition for Existence and

1 1 / . _
«a Uniqueness of the Solution of
Cin- @o (JJ D, ) 1 — IOR 1— T’t( ) Z MO‘O’O‘/DQU" Cauchy Problem for
lo/|<m—ap Holomorphic Fuchsian

Operators

By Definition 3.3, B,,_a, (2; D) < Cpi—ay (25 D). Leto be in the open
interval(s, '), then

Mekki Terbeche

KP 1 2P 1 Title Page
Bm_a V V . . 0 .
y(WVp)(x) < |V (0 —s)m 1— Rxg 1—E&xg 1—rt(a)) Contents
1
X Mgy o DY
> Mot (7= “l »
o/ |<m—ao | 4
KP 1 xP 1
V. : e
< [Vl (c—s)m™ 1—Rxy 1—E&xg 1—rt(a) Go Back
Z O'IO/‘ ’&,“ Close
>< .
JIS(:L”)]'“"H Quit

lo|<m—apg
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One can check easily that

1 1 < 1 1
1—R$0 1—501’0 1_5% 1—€Q.CEO
1 1
<

L —mno ' 1 — &y
By using [F], we obtain the following majoration

|O/|! < (m — Ozo)! Necessary and Sufficient
7 Condition for Existence and
[1 - Ut(l‘/)]‘a +1 [1 - O-t(x/)]m—ao-&-l Uniqueness of the Solution of
Cauchy Problem for
hence Holomorphic Fuchsian
Operators
KP 1 xh :
Bm—a V) (z) < ||V; X X 0 Mekki Terbeche
1 (m — ap)! Ti
. , tle Page
8 1—rt(z") [1— ot(a!)]m—otl Z Mag o ol*l. -
lo/|<m—ao Contents
Again by [7], there EXiStém—ao(a, b) such that « dd
. | >
K? 1 ~ x
Bm—a Vi Vi : Ra Cm—a 7b —0
0( p)(x) < H OH (U—S)mp 11— 0 o(a )1 — £ Go Back
" 1 1 (m — ap)! Close
1—st(a) 1—rt(a!) (& —og)mao Quit
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If we leta > nio then

1 1 < 1 1
1—st(x) 1—rt(a) 1—mny 1—st(a!)
Finally,
KP R,
BueaaV)@) < Il (2 (o
L Cnaglab) 1 g

(s —o)m—0 1 —gt(x') 1—&gxg

2) A straightforward computation leads to the following majoration

~

K? R Cin—a(a,b)
Oéo-l—lDOéoB . g . m—ag \Wy
D B (V)(0) € il s e L)
—p—1 .
X [;f@ P C00(J — g 1= si(0)

Set

wp(x) = :COOJrlDaOBm ao

j—p—1
E ,5 wp,J an
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hence

wp,j (') <[ Vall

then

KP

R,

(o

_ S)mp

~

(1 —mno)?
" Crn—ap(a,b)

(S/ _ O-)m—ao " S0

j—p—1

Fgla') = 2250

It follows from Corollary3.4that

F,

P

@) <

<

IVoll

K Ra,

‘ Cin—ag(a,b)

an(j - 1) )

(o

0

_ S)mp
j—p—1 1

(1-

770)2

(SI _ U)mfao

1

(j+1)m 11— rt(x’) 1 s't(z")

IVoll

K Ra,

Jj—p—1
0

1

1—s't(x')

(o

— sy (s

— o)

m—aq

1= st

Operators
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~

oo € ao(a,b), hence

forall j > p+ 1, whereR,, =

(1=m0)3
K? Re,
B <IN G =5 T e -

Jj—p—1,J
x [Z & xO] 1 — s't(z’)
:p+1

1
R, ngr 1

< Vol —2. - -
Wo—s)m [(p+1)(s' — o)™ 1—&mxe 1—st(z')

If we chooser such thats < o < & ands’ — o = £== then the following

- - p+l
majoration holds
1 1 m_ (b—a)™
e a0 S €T gy
(@ =5)™ [(p+1)(s' - 0) (s =5
and consequently
KP . bt 1
F Voll sy - Rooe™ (b= @) - —4— -
p(I) < || 0|| (8, — S)m(p+1) o€ ( a) 1— 501:0 1— S/t(ZL’/)
Finally
KP
Vori (@) < IWVoll - ———=¢™

(5’ — S)m(p—H)
1
zh" 1

1-— 505130 . 1-— S/t(.f/) '
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Choosing then
Z o (b—a)”

and yields easily the lemma.

If we impose|&ozo| < po < 1 andb(|zi| + -+ + |x,]) < po < 1then

(8" =)™ (1—,00)2

v; <>|<||vo||[

forallp e N and alls’ > s.

If |zo] < 22" whereK’ > K, then the series of general tefr con-
verges normally and the sequence of general {éyroonverges uniformly

to a holomorphic functio® on some suitable choice of polydiscs centered
at the origin inC™**.

Since )
P(Up-i-l) = Q(Up) + 9,
then the limitU satisfies the equation

thereforeh, (U) = ¢ as desired.
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