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Abstract

In this paper a Cauchy problem for holomorphic differential operators of Fuch-
sian type is investigated. Using Ovcyannikov techniques and the method of
majorants, a necessary and sufficient condition for existence and uniqueness
of the solution of the problem under consideration is shown.
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1. Introduction
We introduce the method of majorants [2], [5], and [8], which plays an impor-
tant role for the Cauchy problem in proving the existence of a solution. This
method has been applied by many mathematicians, in particular [1], [3], and [4]
to study Cauchy problems related to differential operators that are a “natural”
generalization of ordinary differential operators of Fuchsian type, and to gen-
eralize the Goursat problem [8]. We also give a refinement of the method of
successive approximations as in the Ovcyannikov Theorem given in [7]. Com-
bining these two methods, we shall prove the theorem [6].
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2. Notations and Definitions
Let us denote

x = (x0, x1, . . . , xn) ≡ (x0, x
′) ∈ R× Rn, wherex′ = (x1, . . . , xn) ∈ Rn,

ξ = (ξ0, ξ1, . . . , ξn) ≡ (ξ0, ξ
′) ∈ R× Rn, whereξ′ = (ξ1, . . . , ξn) ∈ Rn,

α = (α0, α1, . . . , αn) ≡ (α0, α
′) ∈ N× Nn, whereα′ = (α1, . . . , αn) ∈ Nn.

We use Schwartz’s notations

xα = xα0
0 xα1

1 · · ·xαn
n ≡ xα0

0 (x′)α′ , |x|α = |x0|α0 |x1|α1 · · · |xn|αn

α! = α0!α1! · · ·αn!, |α| = α0 + α1 + · · ·+ αn,

β ≤ α meansβj ≤ αj for all j = 0, 1, . . . , n,

Dα =
∂|α|

∂α0
x0 ∂α1

x1 ...∂αn
xn

≡ Dα0
0 Dα1

1 · · ·Dαn
n , whereDj =

∂

∂xj

, 0 ≤ j ≤ n.

Fork ∈ N, 0 ≤ k ≤ m,

max[0, α0 + 1− (m− k)] ≡ [α0 + 1− (m− k)]+,(
m
k

)
=

m!

(m− k)!k!
, Cq(j) = j(j − 1)...(j − q + 1),

by conventionC0(j) = 1, and the gradient ofϕ with respect tox will be denoted
by

gradϕ(x) =

(
∂ϕ(x)

∂x0

, . . . ,
∂ϕ(x)

∂xn

)
.

We denote a linear differential operator of orderm, P (x; D) by
∑

|α|≤m aα(x)Dα.
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Definition 2.1. LetE be ann+1 dimensional holomorphic differentiable man-
ifold. Leth be a holomorphic differentiable operator overE of orderm0 in a,
and of order≤m0 neara. LetS be a holomorphic hypersurface ofE contain-
ing a, let m be an integer≥ m0, and letϕ be a local equation ofS in some
neighborhood ofa, that is, there exists an open neighborhoodΩ of a such that:

∀x ∈ Ω, gradϕ(x) 6= 0, x ∈ Ω ∩ S ⇐⇒ ϕ(x) = 0.

If σ ∈ Z andY is a holomorphic function onΩ, for x ∈ Ω\S, we denote by

hσ
m(Y )(x) = ϕσ−m(x)h(Y ϕm)(x)

and byHσ
m(x, ξ) the principal symbol of this differential operator.

(i)

τh,S(a) = inf
{
σ ∈ Z : ∀Y holomorphic function in a neighborhood

Ω of a, ∀x ∈ Ω ∩ S, lim
x→b,x/∈S

hσ+1
m (Y )(x) = 0

}
denotes the Fuchsian weight ofh in a with respect toS.

(ii)

τ ∗h,S(a) = inf

{
σ ∈ Z : lim

x→b,x/∈S
ϕ−m0(x)Hσ+1(x; gradϕ(x)) = 0

}
is the Fuchsian principal weight ofh in a with respect toS.
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(iii)

τ̃h,S(a) = inf
{
σ ∈ Z : ∀Ω,∀Y, ∀b ∈ Ω ∩ S,

lim
x→b,x/∈S

[hσ+1
m (Y )(x)− Y (x)hσ+1

m (1)(x)] = 0

}
denotes the reduced Fuchsian weight ofh in a with respect toS.

A differential operatorh is said to be a Fuchsian operator of weightτ in a
with respect toS if the following assertions are valid:

(H-0) τ ∗h,S is finite and constant and equalτ neara ∈ S,

(H-1) τh,S(a) = τ ,

(H-2) τ̃h,S(a) ≤ τ − 1.

A Fuchsian characteristic polynomial is defined to be a polynomialC in λ of
holomorphic coefficients iny ∈ S by

C(λ, y) = lim
x→y,x/∈S

ϕτh,S(a)−λ(x)h(ϕλ)(x).

Set
C1(λ, y) = C(λ + τh,S(a), y), ∀λ ∈ C, ∀y ∈ S.

Remark 2.1. If we choose a local card for whichϕ(x) = x0 anda = (0, . . . , 0),
we get Baouendi-Goulaouic’s definitions [1].

Remark 2.2. The numberτh,S(a) is independent onm which is greater or equal
to m0.
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3. Majorants
The majorants play an important role in the Cauchy method to prove the exis-
tence of the solution, where the problem consists of finding a majorant function
which converges.

Let α be a multi-index ofNn+1 andE be aC-Banach algebra, we define a
formal series inx by

u(x) =
∑

α∈Nn+1

uα
xα

α!
,

whereuα ∈ E.
We denote byE[[x]] the set of the formal series inx with coefficients inE.

Definition 3.1. Let u(x), v(x) ∈ E[[x]], andλ ∈ C. We define the following
operations inE[[x]] by

(a) u(x) + v(x) = u(x) =
∑

α∈Nn+1(uα + vα)xα

α!
,

(b) λu(x) =
∑

α∈Nn+1(λuα)xα

α!
,

(c) u(x)v(x) =
∑

α∈Nn+1

∑
0≤β≤α

(
α
β

)
uβvα−β

xα

α!
.

Definition 3.2. Let

u(x) =
∑

α∈Nn+1

uα
xα

α!
∈ E[[x]],

and

U(x) =
∑

α∈Nn+1

Uα
xα

α!
∈ R[[x]]
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be two formal series. We say thatU majorizesu, written U(x) � u(x), pro-
videdUα ≥ ‖uα‖ for all multi-indicesα.

Definition 3.3. Let

u(x) =
∑

α∈Nn+1

uα
xα

α!
∈ E[[x]].

We define the integro-differentiation ofu(x) by

Dµu(x) =
∑

α≥[−µ]+

uα+µ
xα

α!
,

for µ ∈ Zn+1, and[−µ]+ ≡ ([−µ0]+, [−µ1]+, . . . , [−µn]+).

(a) Let A be a finite subset ofZn+1, P (x; D) is said to be a formal integro-
differential operator overE[[x]] if for u(x) ∈ E[[x]],

P (x; D) =
∑
µ∈A

aµ(x)Dµu(x),

whereaµ(x) ∈ E[[x]].

(b) Let
P(x; D) =

∑
µ∈Zn+1

Aµ(x)Dµ

and
P (x; D) =

∑
µ∈Zn+1

aµ(x)Dµ

be formal integro-differential operators overR[[x]] andE[[x]] respectively.
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We sayP(x; D) majorizesP (x; D), writtenP(x; D) � P (x; D), provided
Aµ(x) � aµ(x) for all multi-indicesµ ∈ Zn+1.

Definition 3.4. Consider a family{uj}j∈J , uj ∈ E[[x]]. The family{uj}j∈J is
said to be summable if for anyα ∈ Nn+1, Jα = {j ∈ J : uj

α 6= 0} is finite.

Theorem 3.1.Letv ∈ E[[y]], (y = (y1, ..., ym)), V ∈ R[[y]] such thatV (y) �
v(y). Let uj(x) ∈ E[[x]] for j = 1, . . . ,m, uj

0 = 0, and U j(x) ∈ R[[x]] for
j = 1, . . . ,m, U j

0 = 0 such thatU(x) � u(x) for all j = 1, . . . ,m. Then

V
(
U1(x), . . . , Um(x)

)
� v

(
u1(x), . . . , um(x)

)
.

Proof. See [7].

Definition 3.5. If u(x) ∈ E[[x]], we denote the domain of convergence ofu by

d(u) =

{
x : x ∈ Cn+1, u(x) =

∑
α≥0

‖uα‖
|x|α

α!
< ∞

}
.

Theorem 3.2. (majorants): If U(x) � u(x), then

d(U) ⊂ d(u).

The above theorem is practical because, if the majorant seriesU(x) con-
verges for|x| < r thenu(x) converges for|x| < r. Let us construct a majorant
series through an example.

Let r = (r0, r1, ..., rn) and letu(x) be a bounded holomorphic function on
the polydisc

Pr = {x : x ∈ Cn+1, | xj |< rj, for all j = 0, 1, . . . , n}.
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LetM = sup
x∈Pr

‖u(x)‖, then it follows from Cauchy integral formula that‖uα‖ <

M
rα α!.

If we let Uα = M
rα α!, thenU(x) majorizesu(x).

Theorem 3.3. Let ai, 0 ≤ i ≤ m,be holomorphic functions near the origin in
Cn that satisfy the following condition

m∑
i=0

Ci(j)ai(0) 6= 0, ∀j ∈ N, (am = 1),

then there exists a holomorphic functionA near the origin inCn such that

1∑m
i=0 Ci(j)ai(x′)

� A(x′)∑m
i=0 Ci(j)

, ∀j ∈ N

Proof. If we write∑m
i=0 Ci(j)∑m

i=0 Ci(j)ai(x′)
=

∑m
i=0 Ci(j)∑m

i=0 Ci(j)ai(0)
· 1

1−
∑m

i=0 Ci(j)(ai(0)−ai(x′))∑m
i=0 Ci(j)ai(0)

then we have

lim
j→∞

∑m
i=0 Ci(j)∑m

i=0 Ci(j)ai(0)
= lim

j→∞

Cm(j)

Cm(j)am(0)

=
1

am(0)
= 1.
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Therefore, there exists a constantC ≥ 1 such that∣∣∣∣ ∑m
i=0 Ci(j)∑m

i=0 Ci(j)ai(0)

∣∣∣∣ ≤ C, ∀j ∈ N.

Let B(x′) be a common majorant toai(0) − ai(x
′) for all i = 0, 1, . . . ,m with

B(0) = 0, that is∑m
i=0 Ci(j)(ai(0)− ai(x

′))∑m
i=0 Ci(j)ai(0)

� B(x′)

∣∣∣∣ ∑m
i=0 Ci(j)∑m

i=0 Ci(j)ai(0)

∣∣∣∣
� CB(x′).

It follows from Theorem3.1that
1

1−
∑m

i=0 Ci(j)(ai(0)−ai(x′))∑m
i=0 Ci(j)ai(0)

� 1

1− CB(x′)
.

Choosing thenA(x′) = 1
1−CB(x′)

, the desired conclusion easily yields.

Corollary 3.4. Under the conditions of Theorem3.3, there exist two positive
real numbersM > 0 andr > 0 such that

1

C1(j, x′)
� 1

(j + 1)m
· M

1− rt(x′)
, ∀j ∈ N,

wheret(x′) =
∑m

i=0 xi.

Proof. The proof is similar to the proof of the Theorem3.3, it suffices to observe
that

lim
j→∞

∑m
i=0 Ci(j)∑m

i=0 Ci(j)ai(0)
= 1,

then apply the following theorem.
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If A(x′) is holomorphic near the origin inCn, there existM > 0 andR > 0
such that:

A(x′) � M

R− t(x′)
.

for all x′ ∈ {x′ :
∑n

i=0 | xi |< R}.

Proof. See [8].
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4. Statement of the Main Result
Theorem 4.1 (Main Theorem). Let h be a Fuchsian holomorphic differential
operator of weightτh,S(a) in a with respect to a holomorphic hypersurfaceS
passing througha, of a holomorphic differential manifoldE of dimensionn+1,
and ϕ a local equation ofS in some neighborhood ofa. Then the following
assertions are equivalent:

i) for all λ ≥ τh,S(a), C(λ, x′) 6= 0

ii) for all holomorphic functionsf andv in a neighborhood ofa, there exists
a unique holomorphic functionu solving the Cauchy problem

h(u) = f(4.1)

u− v = O(ϕτh,S(a)).

If we choose a local card such thatϕ(x) = x0 anda = (0, ..., 0), then we
obtain the Baouendi-Goulaouic’s Theorem [1], if k = 0, we obtain Cauchy-
Kovalevskaya Theorem, and ifk = 1, we obtain Hasegawa’s Theorem [3].

The following theorem gives a relationship between a Fuchsian operator of
arbitrary weight and a Fuchsian operator of weight zero.

Theorem 4.2.Leth be a Fuchsian holomorphic differential operator of weight
τh,S(a) in a with respect to a holomorphic hypersurfaceS passing througha,
of a holomorphic differentiable manifoldE of dimensionn + 1, andϕ a local
equation ofS in some neighborhood ofa. If we define the operatorh1 by

Y → h1(Y ) = h(Y ϕτh,S(a)),

http://jipam.vu.edu.au/
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then h1 is a Fuchsian holomorphic differential operator of weight zero ina
relative to a holomorphic hypersurfaceS.

If C (respectivelyC1) denotes the Fuchsian polynomial characteristic ofh
(respectivelyh1), then

C1(λ, y) = C (λ + τh,S(a), y) , ∀λ ∈ C, ∀y ∈ S.

Proof. 1. We look for the Fuchsian weight ofh1 in a with respect toS.

Let m ≥ m0, wherem0 is the order ofh, then

ϕσ+1−m(x)h1(Y ϕm)(x) = ϕσ+1−m(x)h(Y ϕm+τh,S(a))(x)

= ϕ(σ+τh,S(a)+1)−(m+τh,S(a))(x)h(Y ϕm+τh,S(a))(x),

consequentlyτh,S(a) = 0.

2. We look for the principal Fuchsian weight ofh1 in a relative toS.

In the local cardϕ(x) = x0 anda = (0, . . . , 0), it is the exponent ofx0 in
the coefficient ofDm

0 of h1. In this local card

P1(u) = P (xm0−k
0 u)

= xk
0D

m
0 (xm0−k

0 u) + ...

= xk
0D

m
0 u + ...

(the points indicate the terms that have the order of differentiation with
respect tox0 less thanm0). Hence

τ ∗h,S(a) = 0.
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3. If m ≥ m0, then

lim
x→b,x/∈S

ϕτh1,S(a)−m(x)[h1(Y ϕm)(x)− Y (x)h1(ϕ
m)(x)]

= lim
x→b,x/∈S

ϕ−m(x)[h(Y ϕm+τh,S(a))(x)− Y (x)h(ϕm+τh,S(a))(x)]

= lim
x→b,x/∈S

ϕτh,S(a)−(m+τh,S(a))(x)

× [h(Y ϕm+τh,S(a))(x)− Y (x)h(ϕm+τh,S(a))(x)]

= 0, by hypothesis.

Finally, we have

ϕτh1,S(a)−λ(x)h1(ϕ
λ)(x) = ϕ−λ(x)h(ϕλ+τh,S(a))(x)

= ϕτh,S(a)−(λ+τh,S(a))(x)h(ϕλ+τh,S(a))(x)

which tends toC(λ + τh,S(a), y) asx tends toy andx /∈ S.
This concludes the proof of the Theorem.
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5. Formal Problem
If we choose a local card for whichϕ(x) = x0 anda = (0, . . . , 0) the Cauchy
problem (4.1) becomes (5.1) below. We devote this section to formal calcula-
tions by looking for solutions as power series of the problem (5.1) below con-
nected with a Fuchsian operatorP (x; D) of orderm and weightm − k with
respect tox0 atx0 = 0.

We decompose this operator in the following form

P (x; D) = Pm(x; D0)−Q(x; D),

where

Pm(x; D0) =
k∑

p=0

am−p(x
′)xk−p

0 Dm−p
0 ,

Q(x; D) = −
∑

α0<m,|α|≤m

x
µ(α0)
0 Dα0

0 (aα0,α′(x0, x
′)Dα′

x′ ),

with am = 1 andµ(α0) = [α0 + 1− (m− k)]+.

Theorem 5.1. If the coefficients ofPm(x; D0) and Q(x; D) are holomorphic
functions near the origin inCn+1, then the following conditions are equivalent

i) For all integersλ ≥ m− k 6= 0,

ii) For any holomorphic Cauchy datauj, 0 ≤ j ≤ m− k− 1, near the origin
in Cn and for each holomorphic functionf near the origin inCn+1, there
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exists a unique holomorphic solutionu near the origin inCn+1 solving
Cauchy problem

P (x; D)u(x) = f(x)(5.1)

Dj
0u(0, x′) = uj(x

′), 0 ≤ j ≤ m− k − 1.

Suppose that the solutionu(x0, x
′) has the form

∑∞
j=0 uj(x

′)
xj
0

j!
.

The problem is to determineuj(x
′) for all j ≥ 0. It is easy to check the

following statements:
If

u(x0, x
′) =

∞∑
j=0

uj(x
′)

xj
0

j!

and

v(x0, x
′) =

∞∑
µ=0

vµ(x′)
xµ

0

µ!
,

then

u(x0, x
′)v(x0, x

′) =
∞∑

j=0

[
j∑

p=0

(
j
p

)
uj−p(x

′)vp(x
′)

]
xj

0

j!
(5.2)

Dp
0u(x0, x

′) =
∞∑

j=0

uj+p(x
′)

xj
0

j!
(5.3)

xq
0D

p
0u(x0, x

′) =
∞∑

j=0

[Cq(j)uj+p−q(x
′)]

xj
0

j!
(5.4)
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and by conventionuk = 0 for k < 0.
By using (5.2), (5.3), and (5.4), one can check easily that

Pm(x; D0)u(x0, x
′) =

∞∑
j=0

[D(j, x′)uj+m−k(x
′)]

xj
0

j!
,

whereD(j, x′) =
∑k

j=0 am−q(x
′)Ck−p(j) which can be written in terms of

C(j, x′) as

D(j, x′) =
C(j + m− k, x′)

Cm−k(j + m− k)
,

and we have

(5.5) Pm(x; D0)u(x0, x
′) =

∞∑
j=0

[
C(j + m− k, x′)

Cm−k(j + m− k)
uj+m−k(x

′)

]
xj

0

j!
.

Similarly, if aα(x0, x
′) =

∑∞
ν=0 aν

α(x′)
xν
0

ν!
, then

(5.6) Q(x; D)u(x0, x
′) = −

∞∑
j=0

 ∑
α0<m,|α|≤m

Cµ(α0)(j)

×
j+α0−µ(α0)∑

p=0

(
j + α0 − µ(α0)

p

)
ap

α(x′)Dα′

x′uj+α0−µ(α0)−p(x
′)

 xj
0

j!
.
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Finally, if f(x0, x
′) =

∞∑
j=0

fj(x
′)

xj
0

j!
, then by using (5.5), (5.6), and by identifying

the coefficients ofP (x; D)u(x) = f(x) we get the following expression

C(j + m− k, x′)

Cm−k(j + m− k)
uj+m−k(x

′)

= −
∑

α0<m,|α|≤m

Cµ(α0)(j)

j+α0−µ(α0)∑
p=0

(
j + α0 − µ(α0)

p

)
ap

α(x′)

×Dα′

x′uj+α0−µ(α0)−p(x
′) + fj(x

′)

for all j ∈ N.

Lemma 5.2. Let P (λ; x′) =
∑m

k=0 ak(x
′)λk, (am = 1), be a polynomial inλ

with continuous coefficients on some neighborhood
∼
V of the origin inCn.

If P (j; 0) 6= 0 for all j ∈ N, there exists a neighborhoodV of the origin such
thatP (j; x′) 6= 0 for all x′ ∈ V and all j ∈ N .

Proof. We have

|P (λ; x′)| ≥ |λ|m −

∣∣∣∣∣
m−1∑
k=0

ak(x
′)λk

∣∣∣∣∣ .

Let
M = max

0≤k≤m−1,x′∈
∼
V

|ak(x
′)|

then

|P (λ; x′)| ≥ |λ|m
[
1− M

|λ|

m−1∑
k=0

1

|λ|m−k−1

]
.
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If |λ| > 1, then

|P (λ; x′)| > 1− M

|λ| − 1
.

If x′ ∈ Ṽ and|λ| ≥ 2M + 1, then

|P (λ; x′)| > 1

2
.

In other words, ifj is an integer such thatj ≥ 2M + 1 andx′ ∈
∼
V then

P (j; x′) 6= 0.

Now letj ∈ N such that0 ≤ j < 2M+1. SinceP (j; 0) 6= 0, then by continuity,
there is a neighborhood of the originVj such thatP (j; x′) 6= 0 for all x′ ∈ Vj.
In conclusion we chooseV = (∩0≤j<2M+1Vj) ∩ Ṽ , and we have

P (j; x′) 6= 0

for all x′ ∈ V and allj ∈ N, as required.

Corollary 5.3. There exists a neighborhoodV of the origin such thatC (j +
m− k, x′) 6= 0 for all x′ ∈ V and all j ∈ N, and the induction formula

(5.7) uj+m−k(x
′) = −Cm−k(j + m− k)

C(j + m− k, x′)

 ∑
α0<m,|α|≤m

Cµ(α0)(j)

×
j+α0−µ(α0)∑

p=0

(
j + α0 − µ(α0)

p

)
ap

α(x′)Dα′

x′uj+α0−µ(α0)−p(x
′) + fj(x

′)


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yields for allx′ ∈ V and all j ∈ N.

Under the conditions of the Theorem5.1, there exists a unique formal series

u(x0, x
′) =

∞∑
j=0

uj(x
′)

xj
0

j!

solution of the problem (5.1) since alluj(x
′) are uniquely determined by

(5.7).
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6. Proof of the Main Theorem
Let h be a differential operator of Fuchsian type ina with respect toS of weight
τh,S(a) and of orderm. We want to solve (4.1) in some neighborhood ofa.

Setu− v = w and the problem (4.1) becomes

h(w) = g,(6.1)

w = O(ϕτh,S(a)),

whereg = f − h(v).
It follows from the second condition of (6.1) that there is a unique holo-

morphic functionU in some neighborhood ofa such thatw = O(ϕτh,S(a)) and
findingU is equivalent to findingw.

U verifies
h(Uϕτh,S(a)) = g,

i.e. U satisfies the equation
h1(U) = g,

whereh1 is a Fuchsian operator of weight zero ina relative toS (by Theorem
4.2).

If we choose a local card such thatϕ(x) = x0 anda = (0, ..., 0); in this local
card the equation becomes

P̃ (U) = Q(U) + g,
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where

P̃ =
m∑

p=0

am−p(x
′)xm−p

0 Dm−p
0 , (am = 1),

Q = −
m−1∑
α0=0

xα0+1
0 Dα0

0 Bm−α0 ,

and
Bm−α0 =

∑
|α′|≤m−α0

aα(x)Dα′

x′ .

Let us denote byC(j + m − k, x′), (respectivelyC1(λ, x′)) the Fuchsian
polynomial characteristic ofh, (respectivelyh1). It follows from Lemma5.2
that if C(j, 0) 6= 0 for all j ∈ N, j ≥ m− k, then there is a neighborhoodV of
the origin inCn for whichC(j, x′) 6= 0 for all x′ ∈ V and allj ∈ N, j ≥ m− k
.HenceP̃ is one to one on the set of holomorphic functions at the origin.

If u(x0, x
′) =

∑∞
j=0 uj(x

′)
xj
0

j!
then

P̃−1u(x) =
∞∑

j=0

uj(x
′)

C1(j, x′)

xj
0

j!
,

and the problem (6.1) is equivalent to the following problem

(6.2) U =
(
P̃−1 ◦Q

)
(U) + U0,

where
U0 = P̃−1(g).
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As in [1], [4], [5], [7], and [8], a successive approximation method will be
used in the following sense.

Let Up+1 =
(
P̃−1 ◦Q

)
(Up) + U0 for p ≥ 0, and setVp = Up+1 − Up. Then

Vp+1 =
(
P̃−1 ◦Q

)
(Vp).

Let D =
{
(x0, x

′) : (x0, x
′) ∈ Cn+1, |x0| ≤ 1

R
and |x1|+ · · ·+ |xn| ≤ 1

r

}
,

thenV0 is holomorphic in some open neighborhood inD, and there is a constant
denoted‖V0‖ such that

Vp(x) � ‖V0‖
1

1− x0ξ0

· 1

1− st(x′)
,

wheret(x′) =
∑n

i=0 xi, ξ0 ≥ R
η0

, s ≥ r
η0

, andη0 is some given number in the
open interval(0, 1).

Lemma 6.1. There exists a constantK such that

(6.3) Vp(x) � ‖V0‖
Kp

(s′ − s)mp
· xp

0

1− x0ξ0

· 1

1− s′t(x′)

for all s′ > s.

Proof. Clearly (6.3) holds forp = 0. Suppose (6.3) holds forp, and let us prove
it for p + 1.

We have

P̃−1 ◦Q =
m−1∑
α0=0

P̃−1 ◦ (xα0+1
0 Dα0

0 Bm−α0),

http://jipam.vu.edu.au/
mailto:nemethj@math.u-szeged.hu
http://jipam.vu.edu.au/


Necessary and Sufficient
Condition for Existence and

Uniqueness of the Solution of
Cauchy Problem for

Holomorphic Fuchsian
Operators

Mekki Terbeche

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 25 of 31

J. Ineq. Pure and Appl. Math. 2(2) Art. 24, 2001

http://jipam.vu.edu.au

and we want to study the action of the operatorsBm−α0, xα0+1
0 Dα0

0 , andP̃−1on
Vp.

1) We have
Bm−α0(x; Dx′) =

∑
|α′|≤m−α0

aα0,α′(x0, x
′)Dα′

x′ .

For allα such that|α| ≤ m there isMα for whichaα(x) � Mα

1−x0R
· 1
1−rt(x′)

.

Set

Cm−α0(x; Dx′) =
1

1− x0R
· 1

1− rt(x′)

∑
|α′|≤m−α0

Mα0,α′D
α′

x′ .

By Definition 3.3, Bm−α0(x; Dx′) � Cm−α0(x; Dx′). Let σ be in the open
interval(s, s′), then

Bm−α0(Vp)(x) � ‖V0‖
Kp

(σ − s)mp
· 1

1−Rx0

· xp
0

1− ξ0x0

· 1

1− rt(x′)

×
∑

|α′|≤m−α0

Mα0,α′D
α′

x′

(
1

1− σt(x′)

)
� ‖V0‖

Kp

(σ − s)mp
· 1

1−Rx0

· xp
0

1− ξ0x0

· 1

1− rt(x′)

×
∑

|α′|≤m−α0

Mα0,α′
σ|α

′| |α′|!
[1− σt(x′)]|α′|+1

.
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One can check easily that

1

1−Rx0

· 1

1− ξ0x0

� 1

1− R
ξ0

· 1

1− ξ0x0

� 1

1− η0

· 1

1− ξ0x0

.

By using [8], we obtain the following majoration

|α′|!
[1− σt(x′)]|α′|+1

� (m− α0)!

[1− σt(x′)]m−α0+1

hence

Bm−α0(Vp)(x) � ‖V0‖
Kp

(σ − s)mp
· 1

1− η0

· xp
0

1− ξ0x0

× 1

1− rt(x′)
· (m− α0)!

[1− σt(x′)]m−α0+1

∑
|α′|≤m−α0

Mα0,α′σ
|α′|.

Again by [8], there exists
∼
Cm−α0(a, b) such that

Bm−α0(Vp)(x) � ‖V0‖
Kp

(σ − s)mp
· 1

1− η0

Rα0

∼
Cm−α0(a, b)

xp
0

1− ξ0x0

× 1

1− s′t(x′)
· 1

1− rt(x′)
· (m− α0)!

(s′ − σ)m−α0

whereRα0 =
∑

|α′|≤m−α0
Mα0,α′b

|α′|.
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If we let a > r
η0

, then

1

1− s′t(x′)
· 1

1− rt(x′)
� 1

1− η0

· 1

1− s′t(x′)
.

Finally,

Bm−α0(Vp)(x) � ‖V0‖
Kp

(σ − s)mp
· Rα0

(1− η0)2

×
∼
Cm−α0(a, b)

(s′ − σ)m−α0
· 1

1− s′t(x′)
· xp

0

1− ξ0x0

.

2) A straightforward computation leads to the following majoration

xα0+1
0 Dα0

0 Bm−α0(Vp)(x) � ‖V0‖
Kp

(σ − s)mp
· Rα0

(1− η0)2
·
∼
Cm−α0(a, b)

(s′ − σ)m−α0

×

[
∞∑

j=p+1

ξj−p−1
0 Cα0(j − 1)xj

0

]
1

1− s′t(x′)
.

Set

wp(x) = xα0+1
0 Dα0

0 Bm−α0(Vp)(x) =
∞∑

j=0

ξj−p−1
0 wp,j(x

′)xj
0,
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hence

wp,j(x
′) � ‖V0‖

Kp

(σ − s)mp
· Rα0

(1− η0)2

×
∼
Cm−α0(a, b)

(s′ − σ)m−α0
· ξj−p−1

0 Cα0(j − 1) · 1

1− s′t(x′)
.

If

Fp(x) = P̃−1(wp)(x) =
∞∑

j=0

Fp,j(x
′)xj

0,

then

Fp,j(x
′) =

wp,j(x
′)

C1(j, x′)
.

It follows from Corollary3.4that

Fp,j(x
′) � ‖V0‖

Kp

(σ − s)mp
· Rα0

(1− η0)2
·
∼
Cm−α0(a, b)

(s′ − σ)m−α0

× ξj−p−1
0

(j + 1)
m−α0

· 1

1− rt(x′)
· 1

1− s′t(x′)

� ‖V0‖
Kp

(σ − s)mp
· R̃α0

(s′ − σ)
m−α0

· ξj−p−1
0

(p + 1)
m−α0

· 1

1− s′t(x′)
,
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for all j ≥ p + 1, whereR̃α0 =
Rα0

(1−η0)3

∼
Cm−α0(a, b), hence

Fp(x) � ‖V0‖
Kp

(σ − s)mp
· R̃α0

[(p + 1)(s′ − σ)]
m−α0

×

[
∞∑

j=p+1

ξj−p−1
0 xj

0

]
1

1− s′t(x′)

� ‖V0‖
Kp

(σ − s)mp
· R̃α0

[(p + 1)(s′ − σ)]
m−α0

· xp+1
0

1− ξ0x0

· 1

1− s′t(x′)
.

If we chooseσ such thats < σ < s′ ands′ − σ = s′−s
p+1

then the following
majoration holds

1

(σ − s)mp
· 1

[(p + 1)(s′ − σ)]
m−α0

≤ em (b− a)α0

(s′ − s)m(p+1)

and consequently

Fp(x) � ‖V0‖
Kp

(s′ − s)m(p+1)
· R̃α0e

m(b− a)α0 · xp+1
0

1− ξ0x0

· 1

1− s′t(x′)
.

Finally

Vp+1(x) � ‖V0‖ ·
Kp

(s′ − s)m(p+1)
em

×

[
m−1∑
α0=0

R̃α0(b− a)α0

]
xp+1

0

1− ξ0x0

· 1

1− s′t(x′)
.
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Choosing then

K = em

m−1∑
α0=0

R̃α0(b− a)α0

and yields easily the lemma.

If we impose|ξ0x0| ≤ ρ0 < 1 andb(|x1|+ · · ·+ |xn|) ≤ ρ0 < 1 then

|Vp(x)| ≤ ‖V0‖
[

K |x0|
(s′ − s)m

]p
1

(1− ρ0)2

for all p ∈ N and alls′ > s.

If |x0| ≤ (s′−s)m

K′ , whereK ′ > K, then the series of general termVp con-
verges normally and the sequence of general termUp converges uniformly
to a holomorphic functionU on some suitable choice of polydiscs centered
at the origin inCn+1.

Since
P̃ (Up+1) = Q(Up) + g,

then the limitU satisfies the equation

P̃ (U) = Q(U) + g

thereforeh1(U) = g as desired.
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