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Abstract

Recently, S.S. Dragomir used the concavity property of the log mapping and
the weighted arithmetic mean-geometric mean inequality to develop new in-
equalities that were then applied to Information Theory. Here we extend these
inequalities and their applications.

2000 Mathematics Subject Classification: 26D15.
Key words: Arithmetic-Geometric Mean, Kullback-Leibler Distances, Shannon’s En-

tropy.
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One of the most important inequalities is the arithmetic-geometric means in-

equality:
Leta;, p;, i = 1,...,n be positive numbers;, = >"" | p;. Then
n V 1 n
1.1 a'fr < =N pa;,
(1.1) H Mo Zp
with equality iffa; = - - - = a,.

It is well-known that using.1) we can prove the following generalization
of another well-known inequality, that is Holder’s inequality:

Letpi;, ¢; (i =1,...,m; j = 1,...,n) be positive numbers withy,, =
> it ¢- Then

95

ZH(P@)&” < H (Z]%) . :

j=1 i=1 i=1

(1.2)

In this note, we show that using.(l) we can improve some recent results which
have applications in information theory.
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The main result from1] is:
Letp;;, ¢ (i =1,...,m; j =1,...,n) be positive numbers. Then

(2.1) ZH(pij)Qq _Q Zzpwq@-

j=1 i=1 i=1 j=1

Moreover, setinl.1),n =m, p;, = ¢;, a; = Z?leij. We now have

m n Q;I:n m n
(2.2) H (ZPz;) < QLZ (ZP@%) )

Now (1.2) and @.2) give

(2.3) Z H pij

7=1 =1

94

e efl($0) S

i=1 j=1

which is an interpolation of4.1). Moreover, the generalized Holder inequality
was obtained in1] as a consequence di.(). This is not surprising since(1),
for n = 1, becomes

m

H(pu @ LZ Pi1q;
T Qo

=1
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which is, in fact, the A-G inequalityl(l) (setm = n, p;;1 = a; andg; = p;).
Theorem 3.1 in]] is the well-known Shannon inequality:
Given Y " a;=a, > b;=0. Then

aln <%> < ;ailn <Z—:), a;, b; > 0.

It was obtained from4_.1) through the special case

On Some Applications of the AG

ag

b\ e b Inequality in Information Theory
(2.4) H hid < -,
; a; a Bertram Mond and
i=1 Josip E. Petari¢

Let us note that4.4) is again a direct consequence of the A-G inequality. In-
deed, in (.1), settinga; — b;/a;, p; — a;, i = 1,...,n we have .4). Title Page
Theorem 3.2 from] is Rényi's inequality. Given> "  a; = a, Y_.", b; =,

then fora: > 0, a # 1, Contents
. < >
1 arl—a 1 arl—a .
a—1<ab a)gizla_l(aibi az),az,bzzo. < 2
Go Back
In fact, in the proof given inT], it was proved that Holder’s inequality is a con- Close
sequence of4.1). As we have noted, Holder’s inequality is also a consequence _
of the A-G inequality. Quit
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The following theorems were proved ix|{

Theorem 3.1.Leta; € (0,1)andb; >0(i=1,...,n). lfp;>0(t=1,...,n)

is such thad " , p; = 1, then

n ) n n N\ @
(3.1)  exp [ZPZ— - Zpiai] > exp [Zpi (Z—) - 1]
=1 ' =1 i=1 !

n a; a;ip;
> il
o <b1>
=1
> exp 1= pi (ﬁ) ]
a;
L i=1

[ n n
> exp sz‘ai — sz‘bz‘]
L i=1 i=1

with equality iffa; = b; forall i € {1,...,n}.
Theorem 3.2.Leta; € (0,1) (i = 1,...,n) andb; > 0 (

such thaty >’” , ¢; = 1, then we have the inequality

j=1,...
p; >0(=1,....n)issuchthay’ p;, =1landg; >0 (j =1,...

(3.2) exp (Zpia? Z Z—] — pru) > exp [Z sz’qj' (%) : B 1]
i=1 j=1 7 =1 ’

i=1 j=1
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> =1
- = L S piag
i o)
n m b a;
> exp [1 - ZZZM]J‘ (a—]> ]
i=1 j=1 ¢

Inequality in Information Theory

n m
> exp < E pia; — E quj> . On Some Applications of the AG
i=1 j=1

The equality holds ind.2) iffa; = --- =a, =by = --- = by,. Bertram Mond and

Josip E. Pecaric
First we give an improvement of the second and third inequalit$.if).(

Theorem 3.3.Leta;, b; andp; (¢ = 1,...,n) be positive real numbers with

Title Page
>or pi=1.Then -
N . " N Contents
(3.3) exp [pi (b—l) — 1} > Zpi <b—z> <4< >
g i=1 !
n a;\ P < 4
> i
= L (bz> Go Back
n b\ -1 Close
> [sz (a_> ] Quit
i=1 v
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with equality iffa; = b;, i1 =1,...,n.

Proof. The first inequality in 8.3) is a simple consequence of the following
well-known elementary inequality

(3.4) et > forallz € R

with equality iff x = 1. The second inequality is a simple consequence of the
A-G inequality that is, in {.1), seta; — (a;/b;)*, i = 1,...,n. The third
inequality is again a consequence oflj. Namely, fora; — (b;/a;)*, 1 =

On Some Applications of the AG

1,...,n, (1.1) becomes Inequality in Information Theory
n b: a;p; n b a; Bertram Mond and
i < B Josip E. Pecari¢
() =20 (3)
i=1 i=1
which is equivalent to the third inequality. The last inequality is again a conse- Title Page
quence of §.4). O S
Theorem 3.4.Leta; € (0,1) andb; > O(’lz 1,...,n). |fpl >0,t1=1,...,n << Y
is such that)"" | p; = 1, then
< 4
n a2 n ~ a; i
B R (L 2 _ Go Back
(3.5) exp [Z pi (bi ) szaz] > exp [Z pi (b> 1]
i=1 i=1 i=1 Close
a; \ " .
> [ — Quit
> Yon(f)
=1 Page 8 of 19

n a; Dia;
> 115,
bl' J. Ineq. Pure and Appl. Math. 1(1) Art. 6, 2000

=1 http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:b.mond@latrobe.edu.au
mailto:pecaric@hazu.hr
http://jipam.vu.edu.au/

AV
1
H'M:
o
S
VR
s&s
N——
Q
8

vV
0]
o]
o)
—_
|
(]
3
VR
2|5
~
Q

L i=1 i
> exp [ piai— Y pib
L i=1 =1 i
with equality iffa; = b; foralli =1,..., n.
Proof. The theorem follows from Theoren3sl1and3.3. O

numbers with
Z?:1 Di = Z;nzl q; = 1. Then

6o o[ S (2) 1] = S5 (3)

i=1 j=1

=1
= = qu 21 Pias
1 (bj )=
7=1
n o m b a; -1
> Diqj (G—J>
i=1 j=1 v
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-1
nom b. a;
> exp [1 > g <—]> ]

i=1 j=1 di
Equality in 3.6) holds iffa; = --- =a,, =b; = -+ - = by,.

Proof. The first and the last inequalities are simple consequences®f The
second is also a simple consequence of the A-G inequality. Namely, we have

n
a;p;
H a;"" nom g N iR nm a\ % On Some Applications of the AG
i=1 _ H “ < E E Dig; “ Inequality in Information Theory
- — K
Ul q; 2271 pia; . . b] - X I b ’
H (bj ) i=1 j=1 i=1 j=1 Bertram Mond and
j=1 Josip E. Pecaric

which is the second inequality i3 ). By the A-G inequality, we have

Title Page
ﬁ ﬁ (b_ﬂ) e < z”: f:piq]‘ (b_J) " Contents
im1 jo1 \%i = j=1 a;
<4< 44
which gives the third inequality ir3(6). O < >
Theorem 3.6. Let the assumptions of Theorén? be satisfied. Then Go Back

Close

3.7 o _J> N .
(3.7) exp [;pazj;(bj ;pa] —
L a:\ % Page 10 of 19
> exp [Z > pig (b_) - 1]
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m a; a;
SHRTIE)
i=1 j=1
H a?ipz
> i=1
H (bj‘j)zlzlpz(lz
j=1
n m a -1
b\
> Zpin o
i=1 j=1 v
n m bj a;
2o 1233 o (i
L i=1 j=1 v
2> exp Zpiai - Z q;b;
Li=1 j=1
Equality holdsin8.7)iffa; =--- =a, = by = -+ = by,.

Proof. The theorem is a simple consequence of Theorgdand3.5.

]
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In 1951, Kullback and Leibler introduced the followirdistance functiorin
Information Theory (se€’] or [5])

- Di
i=1 v
provided thatp,qg R, = {91,: = .(xl, . 29L~n)e R., r; >0,i=1,...,n}. e AR T A
Another useful distance function is thé-distancegiven by (seef]) Inequality in Information Theory
n p2 . C]2 Bertram Mon}j a_pd
(4_2) DX2 (p7 Q) — Z i - i : Josip E. Pecaric
i=1 v
n P . . Title Page
wherep, ¢ € R"} .. S.S. Dragomir}] introduced the following two new distance
functions Contents
n N\ P 44 44
Di
(4.3) 2 (. q) ;{(q) } ) ,
and Go Back
Close

(4.4) Pi(p,q) == i [— (q—>p + 1] , Quit

— Di
Page 12 of 19
providedp, ¢ € R’}_. The following inequality connecting all the above four
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Theorem 4.1.Letp, q € Ry | withp; € (0,1). Then we have the inequality:
(45) Dy +Qu—P. = Pp.q)

> nln { %) Py(p,q) + 1}

> KL(p,q)

> —nln {— (%) Pi(p,q) + 1]

> Pi(p,q)

> P, —Qn,

whereP, = > p; =1, Q, = >, ¢;. Equality holds in 4.5 iff p, =
¢ (i=1,....n).

Proof. Set in 8.5, p; = 1/n, a; = p;, b = ¢ (1 = 1,...,n) and take
logarithms. After multiplication by:, we get ¢.5). ]

Corollary 4.2. Letp, ¢ be probability distributions. Then we have

(4.6) Dy:(p,q) Ps(p,q)

nin [(%) Po(p.q) + 1}

KL(p,q)

a1 (1) P

Pi(p,q) > 0.

AV AV AV Y

Vv
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Equality holds in £.6) iff p = q.

Remark4.1l Inequalities 4.5 and @.6) are improvements of related results in

[7].
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Theentropyof a random variable is a measure of the uncertainty of the random
variable, itis a measure of the amount of information required on the average to
describe the random variable. Lgtr), « € x be a probability mass function.
Define theShannon’s entropy of a random variabl& having the probability
distributionp by

(5-1) E p On Some Applications of the AG

TEX Inequality in Information Theory

Bertram Mond and

In the above definition we use the convention (based on continuity argu- A DIENE Lol

ments) that log <9> =0 andp log (B) = co. Now assume tha| (card(x) =

|x|) is finite and letu(z) be the uniform probability mass function jn Title Page
It is well known that p, p. 2%
Contents
(5.2) => p(x)log ( ”’)) =log|x| — H(X). <4 33
reEX l’) 4 >
The following result is important in Information Theory, [p. 27]: Go Back
Theorem 5.1. Let X, p and y be as above. Then Close
it
(5.3) H(X) < log [x], =

Page 15 of 19
with equality if and only ifX has a uniform distribution ovey.

J. Ineq. Pure and Appl. Math. 1(1) Art. 6, 2000
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:b.mond@latrobe.edu.au
mailto:pecaric@hazu.hr
http://jipam.vu.edu.au/

In what follows, by the use of Corollar§.2, we are able to point out the
following estimate for the differendeg |x| — H(X), that is, we shall give the
following improvement of Theorem 9 from2[:

Theorem 5.2.Let X, p andy be as above. Then

1> Z x|? w) p(fr 1}

rEX

>!><|1n{| |Z|x!” p@;}

TEX

(5.4) IXIE(X

> In x| — H(X)

—\-’Blln{| ‘Z!X\_” )}

rEX

> 37 (I p(a)] ) —

TEX

1] >0,

where £ (X) is the informational energy oX , i.e., £(X) := >
equality holds in§.4) iff p(z) = ﬁ forall z € y.

%(z). The

a:Exp

Proof. The proof is obvious by Corollarg.2 by choosingu(z) = .. ]

x|
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We considemutual informationwhich is a measure of the amount of informa-
tion that one random variable contains about another random variable. It is the
reduction of uncertainty of one random variable due to the knowledge of the

other [5, p. 18].

To be more precise, consider two random variabteand Y with a joint
probability mass function(z, y) and marginal probability mass functiopgr)
andq(y), € X, y € Y. The mutual information is the relative entropy
between the joint distribution and the product distribution, that is,

106Y) = 3 st ton () = Do)

Wiy p(x)q(y)

The following result is well knownd, p. 27].

Theorem 6.1. (Non-negativity of mutual information). For any two random
variablesX,Y

(6.1) I(X,Y) >0,

with equality iff X andY are independent.

In what follows, by the use of Corollad.2, we are able to point out the fol-
lowing estimate for the mutual information, that is, the following improvement
of Theorem 11 of 7]:
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Theorem 6.2.Let X andY be as above. Then we have the inequality

(@) r(zy) \"
Zzp(m)q(w—lZZZ[( ) ‘1]

rex yeY zeEX YeY p(az)q(y

; M r(a:,y)
> x| [Y|1In [|X||y| ;yezy (p(l‘)CJ(y)> ]
> I(X,Y)

) ; M r(z,y)
> —[x] |y|1n{|x‘|y‘ ZZ( r(z,y) >

TEX YyeY

2 -G

zEX YyeY

> 0.

The equality holds in all inequalities iff andY” are independent.
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