Journal of Inequalities in Pure and
Applied Mathematics

ON KY FAN’S MINIMAX INEQUALITIES, MIXED EQUILIBRIUM
PROBLEMS AND HEMIVARIATIONAL INEQUALITIES

volume 2, issue 1, article 12,
2001.

EL MOSTAFA KALMOUN Received 12 July, 2000;

accepted 14 January 2001.
Mathématiques, Faculté des Sciences | Semlalia, P y

Université Cadi Ayyad, B.P. 2390 Communicated by: A.M. Rubinov
Marrakech 40000, Morocco.

EMail: ekalmoun@ucam.ac.ma

URL: http://www.geocities.com/lihssane

Abstract

Contents

44
4

Home Page
Go Back

Close

(©2000Victoria University .
ISSN (electronic): 1443-5756 Quit

023-00@


Please quote this number (023-00) in correspondence regarding this paper with the Editorial Office.

mailto:amr@ballarat.edu.au
http://jipam.vu.edu.au/
mailto:ekalmoun@ucam.ac.ma
http://www.geocities.com/lihssane
http://www.vu.edu.au/

Abstract

In this note, we present a generalization of the Ky Fan's minimax inequality
theorem by means of a new version of the KKM lemma. Application is then
given to establish existence of solutions for mixed equilibrium problems. Finally,
we investigate the relationship between the latter problems and hemivariational
inequalities.
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Blum-Oettli [2] understood by the so-called equilibrium problem, the following
abstract variational inequality problem:

(EP) findz € C' suchthatf(z,y) > 0forally € C,

where(C' is a given set and is a given scalar valued bifunction an. It is

well-known that EP) is closely related to Ky Fan’s minimax inequaliti€q.[
When f is written as a sum of two real bifunction&FR) will be called a mixed
equilibrium problem and we shall denote it by (MEP).

Many interesting and sophisticated problems in nonlinear analysis can be cast

into the form of EP); say, for instance, optimization, saddle points, Nash equi-
librium, fixed points, variational inequalities and complementarity problems.
The purpose of this paper is two-fold. First, we continuously study the exis-
tence problem of solutions foEP) under some more general conditions, using
a new version of the Fan KKM lemma. Then, to show the significance of the
treatment of such problems, we investigate the relationship between hemivari-
ational inequalities and mixed equilibrium problems. More precisely, the plan
of our contribution is as follows. In Sectio?) we state most of the material
used in this paper. In Sectiéhwe present first a generalized Fan KKM lemma
for transfer closed-valued maps. This result is then used as a tool for proving
a new existence theorem foEl). Some special cases are derived from this
result; in particular, we give an application to saddle point problems. In Section
4, we confine ourselves to the study of mixed equilibrium problems. Indeed, we
prove the existence of a mixed equilibrium by relaxing the upper semicontinu-
ity condition on the nonmonotone part; then we apply this result to solve some
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mixed variational inequality problems. Finally, Sectidimdicates how the re-

sult of the previous section can be used to ensure the existence of solutions to
hemivariational inequalities involving some topological pseudomonotone func-
tionals.
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Before the formal discussion, we begin with some notations and definitions,
which will be needed in the sequel. LEtbe a topological vector space, and let
X' be its topological dual. Let’ be a nonempty convex subsetin Denote

by F(C) the set of all nonempty finite subsets©f Let

F:C — 2% be aset-valued map,
f:CxC—-R and &:C — R two functions, and

S:C —2X  aset-valued operator.

Fis called a KKM map if for any subset € F(C), coA C |J,c4 F(x). ¢
is said to be quasi convex if the strict lower level $etc C : ¢(z) < 0} is
convex. It is quasi concave #¢ is quasi convex. FOA € R, ¢ is A-quasi
convex (concave) i — A is quasi convex (concave).

F'is said to be transfer closed-valued]if, forany x,y € C'withy ¢ F(z),
there existst’ € C such thaty ¢ cloF(x). Itis clear that this definition is
equivalent to say that), . F(z) = (e clcF (z). We will say thatF is
transfer closed-valued on a sub&eof C if the set-valued maps : B — 27,
defined byFp(z) := F(x) N Bforall z € B, is transfer closed-valued. Related
to this concept, let us recall the definition of transfer semicontintitis said
to be transfer lower semicontinuousyjrif, for eachz, y € C with f(x,y) > 0,
there exist:’ € C and a neighborhood, of y in C' such thatf(z’, z) > 0 for
all z € U,. fis said to be transfer upper semicontinuous ffis transfer lower
semicontinuous. It's easily seen that a lower (upper) semicontinuous bifunction
in y is transfer lower (upper) semicontinuousyinWe will say thatf is transfer
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lower semicontinuous o if the restriction of f on B x B is transfer lower
semicontinuous. Faok € R, fis A-transfer lower (upper) semicontinuousyn
if the bifunctionf — X is transfer lower (upper) semicontinuousyin

® is called upper hemicontinuous if, for eachy € C, the functiont —
d(tx + (1 — t)y), defined fort € [0, 1], is upper semicontinuous. The operator
S is said to be upper hemicontinuoustifi— S(tx + (1 — t)y), defined for
t € [0, 1], is upper semicontinuous as a set-valued map.

f is said to be monotone if(z,y) + f(y,x) < 0 forallz,y € C. f

is pseudomonotone if, for everyy € C, f(z,y) > 0 implies f(y,z) < 0. On Ky Fan's Minimax
One can easily see that a monotone bifunction is pseudomonofbigesaid e ey s S e

to be monotone if for alkz,y € C and for alls € Sz, r € Sy, one has Inequalities
(s—r,x—y)>0.

f is pseudomonotone in the topological sense (T-pseudomonotone for short),
whenevelz, ) is a net orC converging tar € C' such thatim inf f(z,,z) > 0,
thenlimsup f(z,,y) < f(x,y) forally € C. Suppose now thaX is a reflex-
ive Banach space. Let : ' — IR be a locally Lipschitz function. Denote Contents
by J° its directional differential in the sense of Clarke. We knoiythat .J°

El Mostafa Kalmoun

Title Page

is upper semicontinuous ant(x, .) is convex for everyr € C. We say that 4 dd
J € PM(C) if the bifunction f, defined byf(z,y) := J°(z,y — x) for all < >
x,y € C,is T-pseudomonotone. When this bifunction is only T-quasi pseu- Go Back
domonotone (that is, if for any sequenge,) € C such thatz, — =z in

C andliminf J(z,,2 — 2,,) > 0, thenlim J°(z,,z — x,) = 0)), we shall Clless
say that/ € QPM(C). A function belonging to the clas®M (C) (resp. Quit
QPM(C)) has the property that its Clarke’s subdifferential is pseudomono- Page 6 of 31

tone in the sense of Browder and Hess (resp. quasi-pseudomonoton€)(see |
Proposition 2.13]). The operatéris said to be T-pseudomonotord [f so is
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the bifunctionf, given by f(z,y) := sup(s,y — z). Suppose now that is

seSx

single-valued. We recall also th&tsatisfies thé5) . condition, if
z, — xin C and lim sup(Sz,,z, —z) <0 imply z,, — zin C.

¢ is said to be inf compact![ p 318] if the set lower level setf-{z € C :

¢(z) < 0} is compact. ¢ is sup compact if-¢ is inf compact. For\ € R,

¢ is A-inf (sup) compact ifp — X is inf (sup) compact. We say thatis (-

coercive for somer, € C' if there exists a real-valued functieanon /R, with
lim ¢(r) = 4oosuchthatforalk € C (Sz,z — x0) > c(||z])||z]]-

r—-+00
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It is interesting to note that the Fan KKM lemmé] [plays a crucial role to
prove existence results foEP). In [3], this result was improved by assuming
the closedness condition only upper finite dimensional subspaces, with some
topological pseudomonotone condition. Ii,[Chowdhury and Tan, replac-

ing finite dimensional subspaces by convex hulls of finite subsets, restated the —
Brézis-Nirenberg-Stampacchia result under weaker assumptions. On the other . on& fe8e KERE:.
hand, Tian [ 7] introduced a new class of closedness conditions, namely the  Problems and Hemivariational

transfer closedness, and give the KKM conclusion for multifunctions satisfy- Inequalities
ing this weak assumption. Here, using this class, we give another more refined El Mostafa Kalmoun
version of the Fan KKM lemma containing Chowdhury-Tan result as a special
case. Title Page
Lemma 3.1. Suppose that’ is convex. If Contents
(i) clcF(xg) is compact for some, € C; <44« >»
(i) Fisa KKM map; | >
(iii)y foreachA € F(C) with zy € A, F is transfer closed-valued amA; Go Back
(iv) for everyA € F(C) with zy € A, we have Close
Quit
lcle( () Fla)]neoA=[ () F(x)]NcoA, Page 8 of 31
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then () F(z) # 0.

zeC

Proof. Let A € F(C) with z, € A. Consider a set-valued mdp, : coA —
2¢04 defined byFy(z) := clo(F(x) N coA) for all z € coA. F, so defined
satisfies the KKM conditions. Indeed, fits}, is nonempty and compact-valued
sinceF isa KKM map @ € F(z) for all z € coA) andcoA is compact; then,

for eachB € F(coA), we havecoB C | J, .5 F'(z), butcoB C coA, hence

coB C U F(x)NcoA C U cle(F(x) NcoA),
zeB zeB
thusF4 is a KKM map. It follows that
M Falz) #0.
TECOA
Hence by (iii), we obtain
ﬂ F(x)NcoA # (.
rE€COA

Then we follow the same argument i) proof of Lemma 2] to get our assertion.
0

Now we are in position to give the following generalization of Ky Fan’s mini-

max inequality theorem.
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Theorem 3.2. Suppose thap and > are two scalar valued bifunctions afi
such that

(Al) ¢(x,y) < 0impliesg(x,y) < 0forall z,y € C,
(A2) for eachA € F(C), sup miny(x,y) < 0;

yEcoA TE

(A3) for eachA € F((C), ¢ is transfer lower semicontinuous inon coA;

(A4) for eachA € F(C), whenever,y € coA and(y,) is a net onC' converg-
ing toy, then

ot + (1 = 1)y,ya) <0VE€[0,1] = ¢(z,y) <0;

(A5) there iszy € C such thatp(xy, .) is inf compact.
Then there existg € C such thaty(z,7) < 0forall z € C.

Proof. It's a simple matter to see that all conditions of Lem&aare fulfilled
if we take
Fz)={yeC:¢(x,y) <0} Ve eC.

Indeed, (i) follows from (A5), and (ii) from (Al) and (A2). It remains to show
that (A3) implies (iii), and (A4) implies (iv). To do the former, fix € F(C)
and let(z,y) € coA x coA withy ¢ F(z); thatis¢(z,y) > 0; hence, there
existz’ € coA and a neighborhood,, of y in coA such thaty(2’, z) > 0 for all

z € Uy, thusz ¢ cle(F(x)NcoA). For the latter, fix alsol € F/(C) and lety €
cle[Nyeeon F ()] N coA; thatisy € coA and there is a néty, ) converging tay
such thatp(z, y,) < 0 for all x € coA; it follows thato(tz + (1 — t)y,ya) <0
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for all z € coA and allt € [0,1]; hence, from (A4), we gep(z,y) < 0
for all 2 € coA; we conclude thay € [, .4 F(z)] N coA. The proof is
complete. O

Remark 3.1. It has to be observed that assumption (A2) holds provided that
() ¥(xz,z) <0Oforall z € C, and

(i) foreachy € C,v(.,y) is quasi concave.

Remark 3.2. Assumption (A3) holds clearly whefiz,.) is supposed to be On Ky Fan’s Minimax

lower semicontinuous oA, for everyA € F(C) and everyr € coA. More- '2?;‘;12',22‘5;“4‘&.‘2%51“,{2323,2
over, both of assumptions (A3) and (A4) are satisfied when the classical assump- [respeliozs
tion of lower semicontinuity af(z, .) is supposed to be true for everye C. El Mostafa Kalmoun
Remark 3.3. The compactness condition (A5) is satisfied if we suppose that
there exists a compact subgeof C andz, € B such thaty(xg,y) > 0 for all Title Page
yeC\B. Contents
TheorenB3.2is now a generalization o[ Theorem 4]. It also improves P, <« Y
Theorem 1]. Let us single out some particular cases of this theorem. First, let p >
¢ = 1 and make use of Remagk1l.
Theorem 3.3. Suppose thap : C' — R satisfy Go Back
Close
(B1) ¢(z,x) < Oforall x € C;
Quit

(B2) for eachy € C, ¢(.,y) is quasi concave; Page 11 of 31

(B3) for eachA € F(C), ¢ is transfer lower semicontinuous inon coA;
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(B4) for eachA € F(C), whenever,y € coA and(y,) is a net onC' converg-
ing toy, then

o(tr + (1 =)y, ya) <0VEE[0,1] = ¢(z,y) <0;
(B5) there isxy € C such thaty(z, .) is inf compact.

Then there existg € C such thatp(x,y) < 0forall z € C.

We can also derive the following generalization of a Ky Fan’s minimax in-

equality theorem due to Yeri{, Theorem 1]. On Ky Fan's Minimax
Inequalities, Mixed Equilibrium
: _ Probl d Hemivariational
Theorem 3.4.Let f, g : C' — R. Suppose that = iggg(x, x) < oo, and roblems I"’r‘]’;qu;i’gg’sa”a lona
(Cl) f(L y) < g(l‘, y> for all x,y € C; El Mostafa Kalmoun
(C2) for eachy € C, ¢(.,y) is A\-quasi concave;
Title Page
(C3) for eachA € F(C), f is A-transfer lower semicontinuous gnon coA; Contents
(C4) for eachA € F(C), whenever, y € coA and(y, ) is a net onC' converg-
ing toy, then 14 o
| >
fltz+ (1 =t)y,ya) < AVEE[0,1] = f(a,y) <\
Go Back
(C5) there exist a compact subsBtof C' andz, € B such thatf(xg,y) > A -
forally € C'\ B.
Quit

Then we have the following minimax inequality
Page 12 of 31

inf sup f(z,) < sup g(z, 2).
YEB zeC zeC
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Proof. Seto(x,y) = f(x,y) — A andy(z,y) = g(z,y) — A forall z,y € C.
By virtue of TheorenB.2 and taking into account assumption (C5), there exists

y € B such thatup,. f(z,7) < sup,cq 9(z, z), which is our assertion. [

The following another particular case will be needed in the next section.

Theorem 3.5.Let C' be closed convex iX. Suppose that

(D1) ¢(x,y) < 0implieso(x,y) < 0forall z,y € C;

On Ky Fan’s Minimax

(DZ) 7,D($, ‘T) S 0 forall z € C’ Inequalities, Mixed I_Equ!lib_rium
(D3) for every fixed; € C, (., y) is quasi concave. Problems ﬁgﬂ';ﬂ?;vsa"at'ona'
(DA4) for every fixedr € C, ¢(x,.) is lower semicontinuous on the intersection El Mostafa Kalmoun
of finite dimensional subspaces.®fwith C;
(D5) whenever:, y € C and(y,) is a net onC' converging tay, then Title Page
Contents
o(tr + (1 =)y, ya) <0VEE[0,1] = ¢(z,y) <0;
<44 >»
(D6) there exist a compact subseof X andz, € C'N B such thay(zg,y) > 0 < >
forally € C'\ B.
Go Back
Then there existg € C'N B such thaty(z,7) < Oforall z € C. Close
Quit
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Proof. According to Theoren3.2, there existg € C' such that(z,7) < 0 for
all z € C. The elemeny is in the compact3 due to condition (D6). ]

If we set¢ = v, we recover §, Theorem 1].

We balance now the continuity requirements by assuming the algebraic pseu-
domonotonicity on the criterion bifuncion, and we get from Theofefthe
following existence theorem foEP).

Theorem 3.6.Let f : C' x C' — R be a bifunction such as to satisfy
(E1) f is pseudomonotone,

(E2) f(x,z) > 0forall z € C,

(E3) for eachz € C, f(x,.) is convex,

(E4) for eachA € F(C), f is transfer lower semicontinuous inon coA,

(E5) for eachA € F(C), whenever:,y € coA and(y,) is a net onC' converg-
ing toy, then

fltx+ (1 =y, ys) <OVt [0,1] = f(x,y) <O0;

(E6) for eachy € C, f(.,y) is upper hemicontinuous,

(E7) there exist a compact subsBtof C' andz, € B such thatp(zg,y) > 0
forally € C'\ B.

Then EP) has at least one solution, which is R
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Proof. Sety(z,y) = f(z,y), ¥(x,y) = —f(y,z) for all z,y € C. All as-
sumptions of Theorerfi.2 are clearly satisfied; hence there exists B such
that f(y, =) < 0 for all y € C'. The conclusion holds if we show the following
assertion: for every € C, one has

fly,z) <0 Vye C = f(z,y) >0 YyeC

To do this, letz € C such that

(3.1) fly, >

)
Fixy € C,and sey;, =ty + (1 —t)
f(yt7yt) Z 0 thentf(ytv ) ( _t
thattf(y:,y) > 0; hencef(y:,y)
allow us to conclude thaf(x,y) >

<0 Vyedl

x for t €]0, 1[. Sincef(y,, .) is convex and
)f(ys, ) > 0. It follows clearly from (3.1)
> 0. The upper hemicontinuity of (., y)
0. This completes our proof. O

Let /' : C' x C' — R. A (strategy) pai(z, y) is a saddle point of’ if one has
F(z,y) < F(7,5) < F(2,5) Va,ye€C.
This equivalent to writing

inf sup F'(z,y) = sup inf F(x y) = F(Z,7).
zeC yeC yeC zeC

By making use of Theorer®.3 we can formulate the following existence theo-
rem for saddle points.
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Theorem 3.7. Assume that
(i) F(z,z)=0forallz € C,

(i) Fis quasi convex (resp. concave) with respect {cesp.y),

(iii) for eachA € F(C), F is transfer upper (resp. lower) semicontinuous in

y (resp.x) oncoA,

(iv) for eachA € F(C), whenever:,y € coA and (y,) (resp. (z,)) is a net
on C converging tay (resp.z), then

F(tr + (1 —t)y,ya) >0Vt €[0,1] = F(x,y) >0
(resp.
F(za, tx+(1—t)y) <0Vt e [0,1] = ¢(z,y) <0);
(v) there existr, (resp.yo) € C such thatF'(x, .) (resp. F'(., yo)) iS sup (resp.
inf) compact.
ThenF has at least one saddle poifi,7) in C, which satisfied’(z,7) = 0.

Proof. We apply Theoren3.3, first for ¢ = —F’, we get the existence gfe C
which satisfiest'(x, ) > 0 for all z € C'; then for¢(z,y) = F(y,z) for all
x,y € C, there existg € C such thatF'(z,y) < 0 forall y € C. We conclude
that(z,7) is a saddle point fof’, with F'(z,7) = 0. O

We can deduce easily the von Neumann’s minimax theorem 819, The-
orem 8] when the sets of strategies are the same.
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Here we focus our attention on the existence of solutions for equilibrium prob-
lems. The criterion mapping is composed of two parts, a monotone bifunction
and a nonmonotone perturbation. Our aim is to establish the existence of equi-
libria by relaxing the upper semicontinuity condition on the nonmonotone part.
From this point on(' is supposed to be closed and conveXin

Theorem 4.1. Considerf, g : C' x C — R such that

On Ky Fan’s Minimax

(1) g is monotone; Inequalities, Mixed Equilibrium
Problems and Hemivariational
(2 f(z,x) =g(z,x) =0forall x € C, INEIVEILES

El Mostafa Kalmoun

(3) for every fixedr € C, f(z,.) andg(z, .) are convex;

(4) for every fixedr € C, g(z, .) is lower semicontinuous; Title Page
(5) for every fixedy € C, f(.,y) is upper semicontinuous aiiN F', while F’ Contents
is a finite dimensional subspace iy
44 4 4
(6) fis T-pseudomonotone; p >
(7) for every fixedy € C, g(., y) is upper hemicontinuous; Go Back
(8) there is a compact subsgtof X andz, € C' N B such that Close
9(xo,y) — f(y,w0) > 0, forally € C\B. Quit

Page 17 of 31
Then there exists at least one solution to (MEP) associatedatiad g.
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Proof. In order to apply Theorem.5 set¢(x,y) =

Qﬁ(l'ﬁy) = —g(y,fﬂ) - f(y’x) for all T,y € C.
Let us show that the assumptions of Theolzmare satisfied.

(D1), (D2) and (D6) are easily checked from (1), (2) and (8) respectively. For
(D3), if z, y, z € C then for anyt €]0, 1] one has

9y, te+(1—=t)2)+ f (y, te+(1-1)2) < tlg(y, )+ f(y, 2)][+(1-1)[g(y, 2)+f(y, 2)].

In this way, the set

g(ZE,y) - f(y,x) and

{reC: f(z,y) +g(z,y) <0}

is convex for ally € C.

Moreover, sincey(z, .) is lower semicontinuous anfi., x) is upper semicon-
tinuous on every finite dimensional subspace foradl C, g(x,.) — f(.,z) is
lower semicontinuous on every finite dimensional subspaceéfor all z € C.
This means that (D4) holds.

To check (D5). Letr,y € C and(y,) a net onC' which converges tg such
that, for everyt € [0, 1],

(4.1) gtz + (1 = t)y,ya) —
Fort = 0, one has

(4.2)

fWar tz + (1 —t)y) < 0.

9, Ya) = f(Wary) < 0.

Sinceg(y, .) is lower semicontinuous, it follows thaty, y) < liminf f(ya,y).
Combining with (2), one can writeé < lim inf f(y,,y). Therefore

(4.3) limsup f(ya, z) < f(y, )

On Ky Fan’s Minimax
Inequalities, Mixed Equilibrium
Problems and Hemivariational
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sincef is T-pseudomonotone.
Recall @.1) and takef = 1, it follows thatg(z, y.) — f(ya,x) < 0. By virtue
of assumption (4) and relatiod.(3), we get

g(z,y) — f(y,z) <0.

Thus (D5) is satisfied.
We deduce that there exists= C such that

(4.4) 9(y,7) — f(Z,y) <0 forally € C,
On Ky Fan’s Minimax
Lety € C be afixed point and set = ty + (1 —t)z for ¢ €]0, 1[. Sinceg(y:, .) Inequalities, Mixed Equilibrium
. Problems and Hemivariational
IS convex and7<yta yt) = 0, then Inequalities
(4.5) tg(ye,y) + (1 —t)g(y,, ) > 0. El Mostafa Kalmoun
From relation 4.4), one hag1 — t)g(y:,7) — (1 —t) f(T,y:) < 0. Combining
with (4.5), it follows tg(y:,y) + (1 — t)f(Z,y,) > 0. Using the convexity of Title Page
f(z,.), we can \{vrit.eg(yt, y) + (1 — t') f(z, y_) >0 bef:ausgf (z,7) = 0. The Contents
upper hemicontinuity of(., y) make it possible to write
8 B <« 33
9@, y) + f(T,y) 2 0. ) ,
The proof is complete. O
] ) o ) ] Go Back
Remark 4.1. Since the upper semicontinuity 6f., y), for all y € C, implies
that assumptions (5) and (6) are satisfied, the result of Blum-Oettli (Theorem 1 Close
in [2] ) is an immediate consequence of TheorefiwhenC' is supposed to be Quit

compact. On the other hand, fif= 0 then Theorem .1 collapses to a Ky Fan’s
minimax inequality theorem for monotone bifunctions given ]r{Theorem 9,
p 332).
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A consequence of this theorem is the following existence theorem for mixed
variational inequalities. Suppose that the duality paifing betweenX and
X' is continuous.

Theorem 4.2. Leth be a real convex lower semicontinuous function’grand

let S, T be two operators frond' to 2X* such as to satisfy :

(i) S is T-pseudomonotone, upper semicontinuous on finite dimensional sub-
spaces, and has convex weakly* compact values;

(i) T is monotone, upper hemicontinuous, and has convex weakly* compact
values;

(iii) there is a compact subsét of X andx, € C' N B such that

inf (s,y — xo) + sup (t,y — zo) + h(y) — h(xg) > 0 Vy € C\B.

s€SyY teTxg

Then there exists € B solution to the following mixed variational inequality
(4.6) JseSz,JHeTr: 5+t,y—7)+h(y) —h(T>0Vy € C.

Proof. First of all, it has to be observed that inequality) is equivalent to
write
sup inf[(s + 1,y — 7) + h(y) — h(@)] > 0.
)

s € ST
teTx

Let D := ST x Tz andy(d,y) = (s +t,y — T) + h(y) — h(z) for all d =
(s,t) € D and ally € C. It's easily seen thap(.,y) is concave and upper
semicontinuous for every € C, and thaty(d, .) is convex for everyl € D.
Moreover,D is a convex weakly* compact subset &f. It follows, according

On Ky Fan’s Minimax
Inequalities, Mixed Equilibrium
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to the Lopsided minimax theorem (see p 319, Theorem 7]) that

sup inf ¢(d,y) = inf su d,y).
deByGCSO( v) yGCdegso( v)

Hence, if we Sef(l'7 y) = SupsESx<S7 Yy— ZE> andg(xv y) = SuptETa:<t’ y— ZL'> +
h(y) — h(zx), then inequality 4.6) will be now equivalent to

;gg(f(f, y) +9(T,y)) > 0.

Let us now check the assumptions of Theorérh Assumptions (2), (3) and On Ky Fan's Minimax
(4) hold clearly. (iii) implies (8). By definition, the T-pseudomonotonicity of ~ edualites, Mied Squiibrum

S implies that of f; hence (6) holds. On the other hand, the finite dimensional Inequalities
upper semicontinuity ob together with the fact that has weakly* compact
values imply that (5) is satisfied (se@ [p 119, Proposition 21]. For (1), we
have for eachr,y € C,

El Mostafa Kalmoun

Title Page
9(z.9) +9(y7) = sup(t,y —z)+ sup (r,x —y) Contents
= sup (l—ry—x) 4 »
telx < >
refTy
< 0. Go Back
Finally, by virtue of [, p 373, Lemma 11], we have that the function— Close
SUP,cs. (S, ¥y — x) IS upper hemicontinuous sinceis upper hemicontinuous Quit

and has weakly* compact values; thus (7) holds. The conclusion follows the

‘ Page 21 of 31
from the assertion of Theorehl ages-o

]
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Remark 4.2. The coercivity condition (iii) is satisfied if there existg € C
such that

lim inf (s,y — x) + sup (t,y — xo) + h(y) — h(zo) > 0.

llyll — 0o s€Sy
Ve teTxg

Remark 4.3. Whenh = 0 andS = 0, Theorem4.2 collapses to an existence
result of a generalization of the Browder-Hartman-Stampacchia variational in-
equality [5, Theorem 4.1]. Forl’ = 0 and S is a single-valued operator, it
extends §, Application 3]. Finally, under a minor change in the setting of The-
orem4.2, we can recover alsos, Theorem 7].

On Ky Fan’s Minimax
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When studying generalized mechanical problems that involve nonconvex en-
ergy functionals, Panagiotopoulos!] introduced the hemivariational inequali-

ties as a mathematical formulation. Since then, this theory has been proved very
efficient for the treatment of certain as yet unsolved or partially solved problems
in mechanic, engineering and economics.

The aim of this section is to show how that (MEP) can be an efficient tool
for studying hemivariational inequalities that involve topological pseudomono- on Ky Ean's Minimax
tone functionals. More precisely, we shall use an existence result for (MEP) Inequalities, Mixed Equilibrium
(Theorem.1) to get the existence of solutions to these inequalities without the ~ PrePems e Hetanatona
hypothesis of quasi or strong quasi boundedness asjn [

First, to illustrate the idea of hemivariational inequalities, we discuss an ex-
ample concerning a body contact, which its variational formulation leads to a

El Mostafa Kalmoun

hemivariational inequality. Title Page
Contents

44 4 2

Assume we are given a linear elastic body referred to a Cartesian orthogonal < >

coordinate syster®x,z,x3. This body is identified to an open bounded subset
Q) of R3. We denote by’ the boundary of?, which is supposed to be appro-
priately smooth. We denote also by= (u;);<;<3 the displacement vector and Close
by S = (S;)1<i<s the stress vector ovdt. We recall thatS; = o;;n;, where .
L= . . Quit
o = (oy;) is the stress tensor and= (n;) is the outward unit normal vector
onT. The vectorS (resp.,u) may be decomposed into a normal comporfént Page 23 of 31
(resp.,uy) and a tangential ongr (resp.,ur) with respect td".

Go Back
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We begin first with the treatment of the case of monotone boundary con-
ditions, which leads to variational inequalities as a formulation. %.ete a
maximal monotone operator frofato 2. Then we may consider the following
boundary condition in the normal direction:

(5.1) —Sn € Bn(uy),

Similar conditions may be considered in the tangential directii € Gr(ur),
or generally—S € 3(u).

; ; : On Ky Fan’s Minimax
One can formul_ate r_elatloné.(l) ot_herW|se by ca_llmg upon some proper convex mequa"ﬁe‘s" Mixed Equilibrium
and lower semicontinuous functional; that satisfiesiy = 9.Jy. Henceforth Problems and Hemivariational

one can write Inequalities
—Sy € &]N(uN). El Mostafa Kalmoun
This law is multivalued and monotone. It includes many classical unilateral
boundary conditions (e.g.y = 0 or Sy = 0). This kind of conditions have as Title Page
variational formulation the following variational inequality: Contents
JN<UN) — JN(UN) Z —SN(UN — UN), \V/UN € R. 44 44
< >

However there are many other problems concerning the contact on an elastic
body that may be expressed with multivalued boundary conditions which are Go Back
nonmonotone. Consider an example which describes an adhesive contact with

a rubber support. It may take the following form Close
~ Quit
—SN c ﬁ(UN) if uy < a
~ Page 24 of 31
(5.2) Bla) < —Sy < 400 if uy=a age o
Sy =10 if uy>a
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wherej is defined as follows. Giving a functioh: R — R in L7 R, consider
two associated functions, and3, defined forp > 0 by

Bp(t) = esssup f(t1), VteR

[t1—t|<p

and
B,(t) == essinf B(t;), VteR.

[t1—t|<p

They are respectively decreasing and increasing with respectiience their
limits, whenp — 0., exist. We note

B(t) == lim B,(t), VteR

and B
B(t) == lim B,(t), VieR.

At this stage, we defing by

B(t) = [B(t), B(1)], VteR.

In general,? so defined is not necessarily monotone.
Let us turn to $.2). We have alwaysiy < a; while the caseuy > a is
impossible. Thus, fotiy = a, the relation my become infinite5@) can be

written as

(5.3) —Sy € B(un) + Ne(uy).

On Ky Fan’s Minimax
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HereC' =] — oo, a] and N is the normal cone of’. Moreover, Chang stated in
[4] that, if 5(to) exist for allt € R, then we can determine a locally Lipschitz
function J by

J(t) = /Otﬂ(s)ds7 VteR

so that

0J(t) = p(t), VteR.
Here 0 stands for the generalized gradient of Clarke (sgg [Clearly (5.3

On Ky Fan’s Minimax

becomes Inequalities, Mixed Equilibrium
JO(UN, UN — UN) > _SN (UN . UN)7 VUN cC. Problems Iz?]nec(ilﬂjir{ilévsananonal
This is a simple hemivariational inequality. Panagiotopoulos called it so to point El Mostafa Kalmoun
out its difference to the classical variational inequalities.l3
This example was summarized from], which is a comprehensive refer- Title Page
ence for the interested reader in the theory and applications of hemivariational
inequalities. Contents
We shall now turn our attention to the mathematical concepts of the theory by <« b
considering a general form.
< >
Go Back
Let X be a reflexive Banach space afiche a nonempty convex closed subset Close
of X. LetJ : C — IR be alocally Lipschitz function. Let alsé be an operator Quit
from C' to X', ¢ be a real lower semicontinuous convex function@rand Page 26 of 31

le X',
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We are concerned with the following hemivariational inequality :
Findz € C such that

(H) (Az,y—7)+ J°(T,y—T) +oy) — @) > (Ly—1), VyeCl.

Particular cases of this inequality arise, e.g in the variational formulation of the
problem of a linear elastic body subjected to two- or three-dimensional friction
law and also in the theory of laminated von Karman plates.

Remark 5.1. Due to the presence of the monotone part corresponding, to On Ky Fan's Minimax
(H1) was called in [.(] variational-hemivariational inequality. The particular e ey s S e

. ok i o roblems and Hemivariational
case of hemivariational inequalities of (] corresponds to (HI) whep = 0. Inequalities

El Mostafa Kalmoun

As an application of Theorerh 1, we get the existence of solutions to the (HI) IiE [PEEE
problem. Contents
Theorem 5.1. Assume that <44 4 4
(i) Aispseudomonotone and locally bounded on finite dimensional subspaces; 4 >
(ii) eitherJ € PM(C), or J € QPM(C') and A satisfies thé.S), condition; Go Back
(iii) there exists:, € C such that4 is x,-coercive and Clless
Quit

5.4 J(y, 20 —y) < k(1 + forally e C, k= t.
G4 P y) <KL+ [yl) forally cons e 7ot

Then the hemivariational inequality (HI) has at least one solution.
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Proof. Assumption (i) implies thatl is continuous from each finite dimensional
subspace oK to the weak topology oX” (see [.5, Proposition 27.7, (b)]). If
we takeX equipped with the weak topologf(z,y) = (Az,y — )+ J°(x,y —
x)andg(z,y) = p(y) —p(x) —(l,y — x), then it suffices according to Theorem
4.1 to prove two assertions: First thitis pseudomonotone, and second that
assumption (8) of Theorerh 1is satisfied.

Let us begin with the proof of the first one. Suppose that PM(C') then
f is pseudomonotone as a sum of two pseudomonotone mappingsl{see [

Proposition 27.6, (e)]); the same proof can be used here). On Ky Fan's Minimax
Suppose on the other hand thiae QPM(C) and A has the (S) property. Let e ey s S e
(x,) be a sequence ifi converging weakly ta: € C' such that Inequalities
(5.5) liminf[(Az,, z — 2,) + J(2,,x — 2,)] > 0. El Mostafa Kalmoun
It suffices to show that Title Page
(5.6) liminf(Ax,,z — z,) > 0. Contents
Indeed, if £.6) holds then, by pseudomonotonicity 4f we can write b dd
(5.7) limsup(Az,,y — x,) < (Az,y —x) forally € C. S 4

. . . . Go Back
The (S). condition of A implies thatr,, — = in C. Therefore

Close

(5.8) limsup J%(2p,y — 2,) < J%x,y — ) forally € C Quit
sinceJ’ is upper semicontinuous. Hence, combiniBg) with (5.8), it follows Page 28 of 31

lim sup[{ Az, y—2,)+J°(2,, y—2,)] < (Az, y—2)+J(z,y—2) forall y € C.
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Now, let us show thaty.6) holds. Suppose on the contrary that there exist0
and a subsequence ©f,,), which we note alsdz,), such thatim(Ax,,,x —
x,) = r. Hence, due toH.5) we can write

(5.9) liminf J°(z,, z — 2,) > —7 > 0.
SinceJ € QPM(C), it follows
lim J%(2,, 7 — x,) = 0,

which contradictsg.9).

To show the second result, it suffices, sigce, .) is weakly lower semicontin-
uous for everyr € C' and following a remark of Blum and Oettli{] p. 131]),
to prove that

({(Ay, 0 —y) + T°(y, 20 — y))/Ily — xol| — —oo @s|ly — wo|| — +oo.
This is ensured by assumption (iii). O
Remark 5.2.

1. Estimation 6.4) is given in [L(] with another form more relaxed. It can
be omitted when the multivalued operatbr+ 0.J is xy-coercive.

2. Observe that we have got here a solution of the variational-hemivariational
inequalities problem without recourse to a condition of quasi or strong
quasi boundedness ohor dy as it was made in10].

3. It is also interesting to note that we cannot make use of Theorem?] in [
to solve (HI) with the same conditions since the functidn ,y) is not
necessarily weakly upper semicontinuous which is the assumptich of [
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