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ABSTRACT. In this note, we present a generalization of the Ky Fan’s minimax inequality the-
orem by means of a new version of the KKM lemma. Application is then given to establish
existence of solutions for mixed equilibrium problems. Finally, we investigate the relationship
between the latter problems and hemivariational inequalities.
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1. I NTRODUCTION

Blum-Oettli [2] understood by the so-called equilibrium problem, the following abstract vari-
ational inequality problem:

(EP) findx̄ ∈ C such thatf(x̄, y) ≥ 0 for all y ∈ C,
whereC is a given set andf is a given scalar valued bifunction onC. It is well-known that (EP)
is closely related to Ky Fan’s minimax inequalities [9]. Whenf is written as a sum of two real
bifunctions, (EP) will be called a mixed equilibrium problem and we shall denote it by (MEP).
Many interesting and sophisticated problems in nonlinear analysis can be cast into the form of
(EP); say, for instance, optimization, saddle points, Nash equilibrium, fixed points, variational
inequalities and complementarity problems.

The purpose of this paper is two-fold. First, we continuously study the existence problem of
solutions for (EP) under some more general conditions, using a new version of the Fan KKM
lemma. Then, to show the significance of the treatment of such problems, we investigate the
relationship between hemivariational inequalities and mixed equilibrium problems. More pre-
cisely, the plan of our contribution is as follows. In Section 2, we state most of the material
used in this paper. In Section 3, we present first a generalized Fan KKM lemma for transfer
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2 EL MOSTAFA KALMOUN

closed-valued maps. This result is then used as a tool for proving a new existence theorem for
(EP). Some special cases are derived from this result; in particular, we give an application to
saddle point problems. In Section 4, we confine ourselves to the study of mixed equilibrium
problems. Indeed, we prove the existence of a mixed equilibrium by relaxing the upper semi-
continuity condition on the nonmonotone part; then we apply this result to solve some mixed
variational inequality problems. Finally, Section 5 indicates how the result of the previous sec-
tion can be used to ensure the existence of solutions to hemivariational inequalities involving
some topological pseudomonotone functionals.

2. DEFINITIONS AND NOTATIONS

Before the formal discussion, we begin with some notations and definitions, which will be
needed in the sequel. LetX be a topological vector space, and letX ′ be its topological dual. Let
C be a nonempty convex subset inX. Denote byF(C) the set of all nonempty finite subsets of
C. Let

F : C → 2C be a set-valued map,

f : C × C → R and Φ : C → R two functions, and

S : C → 2X′
a set-valued operator.

F is called a KKM map if for any subsetA ∈ F(C), coA ⊂
⋃

x∈A F (x). φ is said to be quasi
convex if the strict lower level set{x ∈ C : φ(x) < 0} is convex. It is quasi concave if−φ is
quasi convex. Forλ ∈ R, φ is λ-quasi convex (concave) ifφ− λ is quasi convex (concave).
F is said to be transfer closed-valued [13] if, for anyx, y ∈ C with y /∈ F (x), there existsx′ ∈

C such thaty /∈ clCF (x). It is clear that this definition is equivalent to say that
⋂

x∈C F (x) =⋂
x∈C clCF (x). We will say thatF is transfer closed-valued on a subsetB of C if the set-valued

mapFB : B → 2B, defined byFB(x) := F (x) ∩ B for all x ∈ B, is transfer closed-valued.
Related to this concept, let us recall the definition of transfer semicontinuity.f is said to be
transfer lower semicontinuous iny if, for eachx, y ∈ C with f(x, y) > 0, there existx′ ∈ C
and a neighborhoodUy of y in C such thatf(x′, z) > 0 for all z ∈ Uy. f is said to be transfer
upper semicontinuous if−f is transfer lower semicontinuous. It’s easily seen that a lower
(upper) semicontinuous bifunction iny is transfer lower (upper) semicontinuous iny. We will
say thatf is transfer lower semicontinuous onB if the restriction off onB×B is transfer lower
semicontinuous. Forλ ∈ R, f is λ-transfer lower (upper) semicontinuous iny if the bifunction
f − λ is transfer lower (upper) semicontinuous iny.

Φ is called upper hemicontinuous if, for eachx, y ∈ C, the functiont 7→ Φ(tx + (1 − t)y),
defined fort ∈ [0, 1], is upper semicontinuous. The operatorS is said to be upper hemicontin-
uous if t 7→ S(tx + (1 − t)y), defined fort ∈ [0, 1], is upper semicontinuous as a set-valued
map.
f is said to be monotone iff(x, y) + f(y, x) ≤ 0 for all x, y ∈ C. f is pseudomonotone

if, for everyx, y ∈ C, f(x, y) ≥ 0 impliesf(y, x) ≤ 0. One can easily see that a monotone
bifunction is pseudomonotone.S is said to be monotone if for allx, y ∈ C and for alls ∈
Sx , r ∈ Sy, one has〈s− r, x− y〉 ≥ 0.
f is pseudomonotone in the topological sense (T-pseudomonotone for short), whenever(xα)

is a net onC converging tox ∈ C such thatlim inf f(xα, x) ≥ 0, then lim sup f(xα, y) ≤
f(x, y) for all y ∈ C. Suppose now thatX is a reflexive Banach space. LetJ : C → IR be
a locally Lipschitz function. Denote byJ0 its directional differential in the sense of Clarke.
We know [7] thatJ0 is upper semicontinuous andJ0(x, .) is convex for everyx ∈ C. We say
thatJ ∈ PM(C) if the bifunctionf , defined byf(x, y) := J0(x, y − x) for all x, y ∈ C, is
T-pseudomonotone. When this bifunction is only T-quasi pseudomonotone (that is, if for any

J. Inequal. Pure and Appl. Math., 2(1) Art. 12, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON KY FAN ’ S M INIMAX INEQUALITIES, (MEP) AND (HI) 3

sequence(xn) ∈ C such thatxn ⇀ x in C andlim inf J0(xn, x− xn) ≥ 0, thenlim J0(xn, x−
xn) = 0)), we shall say thatJ ∈ QPM(C). A function belonging to the classPM(C) (resp.
QPM(C)) has the property that its Clarke’s subdifferential is pseudomonotone in the sense of
Browder and Hess (resp. quasi-pseudomonotone) (see [10, Proposition 2.13]). The operatorS
is said to be T-pseudomonotone [6] if so is the bifunctionf , given byf(x, y) := sup

s∈Sx
〈s, y− x〉.

Suppose now thatS is single-valued. We recall also thatS satisfies the(S)+ condition, if

xn ⇀ x in C and lim sup〈Sxn, xn − x〉 ≤ 0 imply xn → x in C.

φ is said to be inf compact [1, p 318] if the set lower level setclC{x ∈ C : φ(x) ≤ 0} is
compact.φ is sup compact if−φ is inf compact. Forλ ∈ R, φ is λ-inf (sup) compact ifφ − λ
is inf (sup) compact. We say thatS is x0-coercive for somex0 ∈ C if there exists a real-valued
functionc on IR+ with lim

r→+∞
c(r) = +∞ such that for allx ∈ C 〈Sx, x− x0〉 ≥ c(‖x‖)‖x‖.

3. K Y FAN ’ S M INIMAX I NEQUALITY

3.1. A KKM Result. It is interesting to note that the Fan KKM lemma [8] plays a crucial role
to prove existence results for (EP). In [3], this result was improved by assuming the closed-
ness condition only upper finite dimensional subspaces, with some topological pseudomono-
tone condition. In [6], Chowdhury and Tan, replacing finite dimensional subspaces by convex
hulls of finite subsets, restated the Brézis-Nirenberg-Stampacchia result under weaker assump-
tions. On the other hand, Tian [13] introduced a new class of closedness conditions, namely the
transfer closedness, and give the KKM conclusion for multifunctions satisfying this weak as-
sumption. Here, using this class, we give another more refined version of the Fan KKM lemma
containing Chowdhury-Tan result as a special case.
Lemma 3.1. Suppose thatC is convex. If

(i) clCF (x0) is compact for somex0 ∈ C;
(ii) F is a KKM map;

(iii) for eachA ∈ F(C) with x0 ∈ A, F is transfer closed-valued oncoA;
(iv) for everyA ∈ F (C) with x0 ∈ A, we have

[clC(
⋂

x∈coA

F (x))] ∩ coA = [
⋂

x∈coA

F (x)] ∩ coA,

then
⋂
x∈C

F (x) 6= ∅.

Proof. Let A ∈ F(C) with x0 ∈ A. Consider a set-valued mapFA : coA → 2coA, defined
by FA(x) := clC(F (x) ∩ coA) for all x ∈ coA. FA so defined satisfies the KKM conditions.
Indeed, firstFA is nonempty and compact-valued sinceF is a KKM map (x ∈ F (x) for all
x ∈ coA) andcoA is compact; then, for eachB ∈ F(coA), we havecoB ⊂

⋃
x∈B F (x), but

coB ⊂ coA, hence

coB ⊂
⋃
x∈B

F (x) ∩ coA ⊂
⋃
x∈B

clC(F (x) ∩ coA),

thusFA is a KKM map. It follows that ⋂
x∈coA

FA(x) 6= ∅.

Hence by (iii), we obtain ⋂
x∈coA

F (x) ∩ coA 6= ∅.
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4 EL MOSTAFA KALMOUN

Then we follow the same argument in [6, proof of Lemma 2] to get our assertion. �

3.2. General Existence Results.Now we are in position to give the following generalization
of Ky Fan’s minimax inequality theorem.
Theorem 3.2.Suppose thatφ andψ are two scalar valued bifunctions onC such that

(A1) ψ(x, y) ≤ 0 impliesφ(x, y) ≤ 0 for all x, y ∈ C;
(A2) for eachA ∈ F(C), sup

y∈coA
min
x∈A

ψ(x, y) ≤ 0;

(A3) for eachA ∈ F(C), φ is transfer lower semicontinuous iny on coA;
(A4) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converging toy, then

φ(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0 ;

(A5) there isx0 ∈ C such thatφ(x0, .) is inf compact.
Then there existsy ∈ C such thatφ(x, y) ≤ 0 for all x ∈ C.
Proof. It’s a simple matter to see that all conditions of Lemma 3.1 are fulfilled if we take

F (x) = {y ∈ C : φ(x, y) ≤ 0} ∀x ∈ C.
Indeed, (i) follows from (A5), and (ii) from (A1) and (A2). It remains to show that (A3) implies
(iii), and (A4) implies (iv). To do the former, fixA ∈ F (C) and let(x, y) ∈ coA × coA with
y /∈ F (x); that isφ(x, y) > 0; hence, there existx′ ∈ coA and a neighborhoodUy of y in
coA such thatφ(x′, z) > 0 for all z ∈ Uy; thusx /∈ clC(F (x) ∩ coA). For the latter, fix
alsoA ∈ F (C) and lety ∈ clC [

⋂
x∈coA F (x)] ∩ coA; that isy ∈ coA and there is a net(yα)

converging toy such thatφ(x, yα) ≤ 0 for all x ∈ coA; it follows thatφ(tx+ (1− t)y, yα) ≤ 0
for all x ∈ coA and allt ∈ [0, 1]; hence, from (A4), we getφ(x, y) ≤ 0 for all x ∈ coA; we
conclude thaty ∈ [

⋂
x∈coA F (x)] ∩ coA. The proof is complete. �

Remark 3.3. It has to be observed that assumption (A2) holds provided that
(i) ψ(x, x) ≤ 0 for all x ∈ C, and

(ii) for eachy ∈ C, ψ(., y) is quasi concave.
Remark 3.4. Assumption (A3) holds clearly whenφ(x, .) is supposed to be lower semicontin-
uous oncoA, for everyA ∈ F(C) and everyx ∈ coA. Moreover, both of assumptions (A3) and
(A4) are satisfied when the classical assumption of lower semicontinuity ofφ(x, .) is supposed
to be true for everyx ∈ C.
Remark 3.5. The compactness condition (A5) is satisfied if we suppose that there exists a
compact subsetB of C andx0 ∈ B such thatφ(x0, y) > 0 for all y ∈ C \B.

Theorem 3.2 is now a generalization of [6, Theorem 4]. It also improves [12, Theorem 1].
Let us single out some particular cases of this theorem. First, letφ = ψ and make use of Remark
3.3.
Theorem 3.6.Suppose thatφ : C → R satisfy

(B1) φ(x, x) ≤ 0 for all x ∈ C;
(B2) for eachy ∈ C, φ(., y) is quasi concave;
(B3) for eachA ∈ F(C), φ is transfer lower semicontinuous iny on coA;
(B4) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converging toy, then

φ(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0 ;

(B5) there isx0 ∈ C such thatφ(x0, .) is inf compact.
Then there existsy ∈ C such thatφ(x, y) ≤ 0 for all x ∈ C.

We can also derive the following generalization of a Ky Fan’s minimax inequality theorem
due to Yen [14, Theorem 1].
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Theorem 3.7.Letf, g : C → R. Suppose thatλ = sup
x∈C

g(x, x) <∞, and

(C1) f(x, y) ≤ g(x, y) for all x, y ∈ C;
(C2) for eachy ∈ C, g(., y) is λ-quasi concave;
(C3) for eachA ∈ F(C), f is λ-transfer lower semicontinuous iny on coA;
(C4) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converging toy, then

f(tx+ (1− t)y, yα) ≤ λ ∀t ∈ [0, 1] ⇒ f(x, y) ≤ λ;

(C5) there exist a compact subsetB ofC andx0 ∈ B such thatf(x0, y) > λ for all y ∈ C\B.
Then we have the following minimax inequality

inf
y∈B

sup
x∈C

f(x, y) ≤ sup
x∈C

g(x, x).

Proof. Setφ(x, y) = f(x, y)−λ andψ(x, y) = g(x, y)−λ for all x, y ∈ C. By virtue of Theo-
rem 3.2 and taking into account assumption (C5), there existsy ∈ B such thatsupx∈C f(x, y) ≤
supx∈C g(x, x), which is our assertion. �

The following another particular case will be needed in the next section.

Theorem 3.8.LetC be closed convex inX. Suppose that

(D1) ψ(x, y) ≤ 0 impliesφ(x, y) ≤ 0 for all x, y ∈ C;
(D2) ψ(x, x) ≤ 0 for all x ∈ C,
(D3) for every fixedy ∈ C, ψ(., y) is quasi concave.
(D4) for every fixedx ∈ C, φ(x, .) is lower semicontinuous on the intersection of finite

dimensional subspaces ofX withC;
(D5) wheneverx, y ∈ C and(yα) is a net onC converging toy, then

φ(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0 ;

(D6) there exist a compact subsetB of X andx0 ∈ C ∩ B such thatφ(x0, y) > 0 for all
y ∈ C \B.

Then there existsy ∈ C ∩B such thatφ(x, y) ≤ 0 for all x ∈ C.

Proof. According to Theorem 3.2, there existsy ∈ C such thatφ(x, y) ≤ 0 for all x ∈ C. The
elementy is in the compactB due to condition (D6). �

If we setφ = ψ, we recover [3, Theorem 1].
We balance now the continuity requirements by assuming the algebraic pseudomonotonicity

on the criterion bifuncion, and we get from Theorem 3.2 the following existence theorem for
(EP).

Theorem 3.9.Letf : C × C → R be a bifunction such as to satisfy

(E1) f is pseudomonotone,
(E2) f(x, x) ≥ 0 for all x ∈ C,
(E3) for eachx ∈ C, f(x, .) is convex,
(E4) for eachA ∈ F(C), f is transfer lower semicontinuous iny on coA,
(E5) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) is a net onC converging toy, then

f(tx+ (1− t)y, yα) ≤ 0 ∀t ∈ [0, 1] ⇒ f(x, y) ≤ 0 ;

(E6) for eachy ∈ C, f(., y) is upper hemicontinuous,
(E7) there exist a compact subsetB ofC andx0 ∈ B such thatφ(x0, y) > 0 for all y ∈ C\B.

Then (EP) has at least one solution, which is inB.
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Proof. Setϕ(x, y) = f(x, y),ψ(x, y) = −f(y, x) for all x, y ∈ C. All assumptions of Theorem
3.2 are clearly satisfied; hence there existsx ∈ B such thatf(y, x) ≤ 0 for all y ∈ C. The
conclusion holds if we show the following assertion: for everyx ∈ C, one has

f(y, x) ≤ 0 ∀y ∈ C =⇒ f(x, y) ≥ 0 ∀y ∈ C

To do this, letx ∈ C such that

(3.1) f(y, x) ≤ 0 ∀y ∈ C

Fix y ∈ C, and setyt = ty + (1 − t)x for t ∈]0, 1[. Sincef(yt, .) is convex andf(yt, yt) ≥ 0,
thentf(yt, y) + (1 − t)f(yt, x) ≥ 0. It follows clearly from (3.1) thattf(yt, y) ≥ 0; hence
f(yt, y) ≥ 0. The upper hemicontinuity off(., y) allow us to conclude thatf(x, y) ≥ 0. This
completes our proof. �

3.3. Saddle Points.Let F : C × C → R. A (strategy) pair(x, y) is a saddle point ofF if one
has

F (x, y) ≤ F (x, y) ≤ F (x, y) ∀x, y ∈ C.

This equivalent to writing

inf
x∈C

sup
y∈C

F (x, y) = sup
y∈C

inf
x∈C

F (x, y) = F (x, y).

By making use of Theorem 3.6, we can formulate the following existence theorem for saddle
points.

Theorem 3.10.Assume that

(i) F (x, x) = 0 for all x ∈ C,
(ii) F is quasi convex (resp. concave) with respect tox (resp.y),

(iii) for eachA ∈ F(C), F is transfer upper (resp. lower) semicontinuous iny (resp.x) on
coA,

(iv) for eachA ∈ F(C), wheneverx, y ∈ coA and(yα) (resp.(xα)) is a net onC converging
to y (resp.x), then

F (tx+ (1− t)y, yα) ≥ 0 ∀t ∈ [0, 1] ⇒ F (x, y) ≥ 0

(resp.

F (xα, tx+ (1− t)y) ≤ 0 ∀t ∈ [0, 1] ⇒ φ(x, y) ≤ 0);

(v) there existx0 (resp.y0)∈ C such thatF (x0, .) (resp.F (., y0)) is sup (resp. inf) compact.

ThenF has at least one saddle point(x, y) in C, which satisfiesF (x, y) = 0.

Proof. We apply Theorem 3.6, first forφ = −F , we get the existence ofy ∈ C which satisfies
F (x, y) ≥ 0 for all x ∈ C; then forφ(x, y) = F (y, x) for all x, y ∈ C, there existsx ∈ C
such thatF (x, y) ≤ 0 for all y ∈ C. We conclude that(x, y) is a saddle point forF , with
F (x, y) = 0. �

We can deduce easily the von Neumann’s minimax theorem [1, p 319, Theorem 8] when the
sets of strategies are the same.
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4. M IXED EQUILIBRIUM PROBLEMS

Here we focus our attention on the existence of solutions for equilibrium problems. The
criterion mapping is composed of two parts, a monotone bifunction and a nonmonotone pertur-
bation. Our aim is to establish the existence of equilibria by relaxing the upper semicontinuity
condition on the nonmonotone part.
From this point on,C is supposed to be closed and convex inX.

Theorem 4.1.Considerf, g : C × C → R such that

(1) g is monotone;
(2) f(x, x) = g(x, x) = 0 for all x ∈ C;
(3) for every fixedx ∈ C, f(x, .) andg(x, .) are convex;
(4) for every fixedx ∈ C, g(x, .) is lower semicontinuous;
(5) for every fixedy ∈ C, f(., y) is upper semicontinuous onC ∩ F , while F is a finite

dimensional subspace inX;
(6) f is T-pseudomonotone;
(7) for every fixedy ∈ C, g(., y) is upper hemicontinuous;
(8) there is a compact subsetB ofX andx0 ∈ C ∩B such that

g(x0, y)− f(y, x0) > 0, for all y ∈ C\B.

Then there exists at least one solution to (MEP) associated tof andg.

Proof. In order to apply Theorem 3.8, setφ(x, y) = g(x, y)−f(y, x) andψ(x, y) = −g(y, x)−
f(y, x) for all x, y ∈ C.
Let us show that the assumptions of Theorem 3.8 are satisfied.
(D1), (D2) and (D6) are easily checked from (1), (2) and (8) respectively. For (D3), ifx, y, z ∈
C then for anyt ∈]0, 1[ one has

g(y, tx+ (1− t)z) + f(y, tx+ (1− t)z) ≤ t[g(y, x) + f(y, x)] + (1− t)[g(y, z) + f(y, z)].

In this way, the set
{x ∈ C : f(x, y) + g(x, y) < 0}

is convex for ally ∈ C.
Moreover, sinceg(x, .) is lower semicontinuous andf(., x) is upper semicontinuous on every
finite dimensional subspace for allx ∈ C, g(x, .) − f(., x) is lower semicontinuous on every
finite dimensional subspace inC for all x ∈ C. This means that (D4) holds.
To check (D5). Letx, y ∈ C and(yα) a net onC which converges toy such that, for every
t ∈ [0, 1],

(4.1) g(tx+ (1− t)y, yα)− f(yα, tx+ (1− t)y) ≤ 0.

For t = 0, one has

(4.2) g(y, yα)− f(yα, y) ≤ 0.

Sinceg(y, .) is lower semicontinuous, it follows thatg(y, y) ≤ lim inf f(yα, y). Combining
with (2), one can write0 ≤ lim inf f(yα, y). Therefore

(4.3) lim sup f(yα, x) ≤ f(y, x)

sincef is T-pseudomonotone.
Recall (4.1) and taket = 1, it follows thatg(x, yα)− f(yα, x) ≤ 0. By virtue of assumption (4)
and relation (4.3), we get

g(x, y)− f(y, x) ≤ 0.
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Thus (D5) is satisfied.
We deduce that there existsx ∈ C such that

(4.4) g(y, x)− f(x, y) ≤ 0 for all y ∈ C,
Let y ∈ C be a fixed point and setyt = ty + (1− t)x for t ∈]0, 1[. Sinceg(yt, .) is convex and
g(yt, yt) = 0, then

(4.5) tg(yt, y) + (1− t)g(yt, x) ≥ 0.

From relation (4.4), one has(1 − t)g(yt, x) − (1 − t)f(x, yt) ≤ 0. Combining with (4.5), it
follows tg(yt, y) + (1− t)f(x, yt) ≥ 0. Using the convexity off(x, .), we can writeg(yt, y) +
(1 − t)f(x, y) ≥ 0 becausef(x, x) = 0. The upper hemicontinuity ofg(., y) make it possible
to write

g(x, y) + f(x, y) ≥ 0.

The proof is complete. �

Remark 4.2. Since the upper semicontinuity off(., y), for all y ∈ C, implies that assumptions
(5) and (6) are satisfied, the result of Blum-Oettli (Theorem 1 in [2] ) is an immediate conse-
quence of Theorem 4.1 whenC is supposed to be compact. On the other hand, iff = 0 then
Theorem 4.1 collapses to a Ky Fan’s minimax inequality theorem for monotone bifunctions
given in [1] (Theorem 9, p 332).

A consequence of this theorem is the following existence theorem for mixed variational in-
equalities. Suppose that the duality pairing〈., .〉 betweenX andX ′ is continuous.
Theorem 4.3. Leth be a real convex lower semicontinuous function onC, and letS, T be two
operators fromC to 2X′

such as to satisfy :
(i) S is T-pseudomonotone, upper semicontinuous on finite dimensional subspaces, and has
convex weakly* compact values;
(ii) T is monotone, upper hemicontinuous, and has convex weakly* compact values;
(iii) there is a compact subsetB ofX andx0 ∈ C ∩B such that

inf
s∈Sy

〈s, y − x0〉+ sup
t∈Tx0

〈t, y − x0〉+ h(y)− h(x0) > 0 ∀y ∈ C\B.

Then there existsx ∈ B solution to the following mixed variational inequality

(4.6) ∃s ∈ Sx , ∃t ∈ Tx : 〈s+ t, y − x〉+ h(y)− h(x ≥ 0 ∀y ∈ C.
Proof. First of all, it has to be observed that inequality (4.6) is equivalent to write

sup
s ∈ Sx

t ∈ Tx

inf
y∈C

[〈s+ t, y − x〉+ h(y)− h(x)] ≥ 0.

LetD := Sx× Tx andϕ(d, y) := 〈s + t, y − x〉 + h(y)− h(x) for all d = (s, t) ∈ D and all
y ∈ C. It’s easily seen thatϕ(., y) is concave and upper semicontinuous for everyy ∈ C, and
thatϕ(d, .) is convex for everyd ∈ D. Moreover,D is a convex weakly* compact subset ofX ′.
It follows, according to the Lopsided minimax theorem (see [1, p 319, Theorem 7]) that

sup
d∈D

inf
y∈C

ϕ(d, y) = inf
y∈C

sup
d∈D

ϕ(d, y).

Hence, if we setf(x, y) = sups∈Sx〈s, y − x〉 andg(x, y) = supt∈Tx〈t, y − x〉 + h(y) − h(x),
then inequality (4.6) will be now equivalent to

inf
y∈C

(f(x, y) + g(x, y)) ≥ 0.

Let us now check the assumptions of Theorem 4.1. Assumptions (2), (3) and (4) hold clearly.
(iii) implies (8). By definition, the T-pseudomonotonicity ofS implies that of f; hence (6) holds.
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On the other hand, the finite dimensional upper semicontinuity ofS together with the fact that
S has weakly* compact values imply that (5) is satisfied (see [1, p 119, Proposition 21]. For
(1), we have for eachx, y ∈ C,

g(x, y) + g(y, x) = sup
t∈Tx

〈t, y − x〉+ sup
r∈Ty

〈r, x− y〉

= sup
t ∈ Tx
r ∈ Ty

〈t− r, y − x〉

≤ 0.

Finally, by virtue of [1, p 373, Lemma 11], we have that the functionx 7→ sups∈Sx〈s, y − x〉 is
upper hemicontinuous sinceS is upper hemicontinuous and has weakly* compact values; thus
(7) holds. The conclusion follows the from the assertion of Theorem 4.1.

�

Remark 4.4. The coercivity condition (iii) is satisfied if there existsx0 ∈ C such that

lim
‖y‖ → ∞

y ∈ C

inf
s∈Sy

〈s, y − x0〉+ sup
t∈Tx0

〈t, y − x0〉+ h(y)− h(x0) > 0.

Remark 4.5. Whenh = 0 andS = 0, Theorem 4.3 collapses to an existence result of a
generalization of the Browder-Hartman-Stampacchia variational inequality [5, Theorem 4.1].
For T = 0 andS is a single-valued operator, it extends [3, Application 3]. Finally, under a
minor change in the setting of Theorem 4.3, we can recover also [6, Theorem 7].

5. HEMIVARIATIONAL I NEQUALITIES

When studying generalized mechanical problems that involve nonconvex energy functionals,
Panagiotopoulos [11] introduced the hemivariational inequalities as a mathematical formula-
tion. Since then, this theory has been proved very efficient for the treatment of certain as yet
unsolved or partially solved problems in mechanic, engineering and economics.

The aim of this section is to show how that (MEP) can be an efficient tool for studying hemi-
variational inequalities that involve topological pseudomonotone functionals. More precisely,
we shall use an existence result for (MEP) (Theorem 4.1) to get the existence of solutions to
these inequalities without the hypothesis of quasi or strong quasi boundedness as in [10].

First, to illustrate the idea of hemivariational inequalities, we discuss an example concerning
a body contact, which its variational formulation leads to a hemivariational inequality.

5.1. An example. Assume we are given a linear elastic body referred to a Cartesian orthogonal
coordinate systemOx1x2x3. This body is identified to an open bounded subsetΩ of R3. We
denote byΓ the boundary ofΩ, which is supposed to be appropriately smooth. We denote also
by u = (ui)1≤i≤3 the displacement vector and byS = (Si)1≤i≤3 the stress vector overΓ. We
recall thatSi = σijnj, whereσ = (σij) is the stress tensor andn = (ni) is the outward unit
normal vector onΓ. The vectorS (resp.,u) may be decomposed into a normal componentSN

(resp.,uN ) and a tangential oneST (resp.,uT ) with respect toΓ.
We begin first with the treatment of the case of monotone boundary conditions, which leads

to variational inequalities as a formulation. LetβN be a maximal monotone operator fromR to
2

R
. Then we may consider the following boundary condition in the normal direction:

(5.1) −SN ∈ βN(uN),

Similar conditions may be considered in the tangential direction−ST ∈ βT (uT ), or generally
−S ∈ β(u).
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One can formulate relations (5.1) otherwise by calling upon some proper convex and lower
semicontinuous functionalJN that satisfiesβN = ∂JN . Henceforth one can write

−SN ∈ ∂JN(uN).

This law is multivalued and monotone. It includes many classical unilateral boundary conditions
(e.g.uN = 0 or SN = 0). This kind of conditions have as variational formulation the following
variational inequality:

JN(vN)− JN(uN) ≥ −SN(vN − uN), ∀vN ∈ R.
However there are many other problems concerning the contact on an elastic body that may be
expressed with multivalued boundary conditions which are nonmonotone. Consider an example
which describes an adhesive contact with a rubber support. It may take the following form

(5.2)

 −SN ∈ β̃(uN) if uN < a

β̃(a) ≤ −SN < +∞ if uN = a
SN = ∅ if uN > a

whereβ̃ is defined as follows. Giving a functionβ : R → R in L∞locR, consider two associated

functionsβρ andβρ defined forρ > 0 by

βρ(t) := ess sup
|t1−t|<ρ

β(t1), ∀t ∈ R

and
βρ(t) := ess inf

|t1−t|<ρ
β(t1), ∀t ∈ R.

They are respectively decreasing and increasing with respect toρ; hence their limits, when
ρ→ 0+, exist. We note

β(t) := lim
ρ→0+

βρ(t), ∀t ∈ R

and
β(t) := lim

ρ→0+

βρ(t), ∀t ∈ R.

At this stage, we definẽβ by

β̃(t) := [β(t), β(t)], ∀t ∈ R.

In general,̃β so defined is not necessarily monotone.
Let us turn to (5.2). We have alwaysuN ≤ a; while the caseuN > a is impossible. Thus, for
uN = a, the relation my become infinite. (5.2) can be written as

(5.3) −SN ∈ β̃(uN) +NC(uN).

HereC =] − ∞, a] andNC is the normal cone ofC. Moreover, Chang stated in [4] that, if
β(t±0) exist for allt ∈ R, then we can determine a locally Lipschitz functionJ by

J(t) =

∫ t

0

β(s)ds, ∀t ∈ R

so that
∂J(t) = β̃(t), ∀t ∈ R.

Here∂ stands for the generalized gradient of Clarke (see [7]). Clearly (5.3) becomes

J0(uN , vN − uN) ≥ −SN(vN − uN), ∀vN ∈ C.
This is a simple hemivariational inequality. Panagiotopoulos called it so to point out its differ-
ence to the classical variational inequalities.
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This example was summarized from [10], which is a comprehensive reference for the inter-
ested reader in the theory and applications of hemivariational inequalities.
We shall now turn our attention to the mathematical concepts of the theory by considering a
general form.

5.2. Problem Formulation. LetX be a reflexive Banach space andC be a nonempty convex
closed subset ofX. Let J : C → IR be a locally Lipschitz function. Let alsoA be an operator
fromC toX ′, ϕ be a real lower semicontinuous convex function onC andl ∈ X ′

.
We are concerned with the following hemivariational inequality :

Findx ∈ C such that

(HI) 〈Ax, y − x〉+ J0(x, y − x) + ϕ(y)− ϕ(x) ≥ 〈l, y − x〉, ∀y ∈ C.

Particular cases of this inequality arise, e.g in the variational formulation of the problem of a
linear elastic body subjected to two- or three-dimensional friction law and also in the theory of
laminated von Kármán plates.

Remark 5.1. Due to the presence of the monotone part corresponding toϕ, (HI) was called in
[10] variational-hemivariational inequality. The particular case of hemivariational inequalities
of [10] corresponds to (HI) whenϕ = 0.

5.3. Existence Theorem.As an application of Theorem 4.1, we get the existence of solutions
to the (HI) problem.

Theorem 5.2.Assume that

(i) A is pseudomonotone and locally bounded on finite dimensional subspaces;
(ii) eitherJ ∈ PM(C), or J ∈ QPM(C) andA satisfies the(S)+ condition;

(iii) there existsx0 ∈ C such thatA is x0-coercive and

(5.4) J0(y, x0 − y) ≤ k(1 + ‖y‖) for all y ∈ C, k = const.

Then the hemivariational inequality (HI) has at least one solution.

Proof. Assumption (i) implies thatA is continuous from each finite dimensional subspace ofX
to the weak topology onX

′
(see [15, Proposition 27.7, (b)]). If we takeX equipped with the

weak topology,f(x, y) = 〈Ax, y−x〉+J0(x, y−x) andg(x, y) = ϕ(y)−ϕ(x)−〈l, y−x〉, then
it suffices according to Theorem 4.1 to prove two assertions: First thatf is pseudomonotone,
and second that assumption (8) of Theorem 4.1 is satisfied.

Let us begin with the proof of the first one. Suppose thatJ ∈ PM(C) thenf is pseudomono-
tone as a sum of two pseudomonotone mappings (see [15, Proposition 27.6, (e)]); the same
proof can be used here).
Suppose on the other hand thatJ ∈ QPM(C) andA has the (S)+ property. Let(xn) be a
sequence inC converging weakly tox ∈ C such that

(5.5) lim inf[〈Axn, x− xn〉+ J0(xn, x− xn)] ≥ 0.

It suffices to show that

(5.6) lim inf〈Axn, x− xn〉 ≥ 0.

Indeed, if (5.6) holds then, by pseudomonotonicity ofA, we can write

(5.7) lim sup〈Axn, y − xn〉 ≤ 〈Ax, y − x〉 for all y ∈ C.

The (S)+ condition ofA implies thatxn → x in C. Therefore

(5.8) lim sup J0(xn, y − xn) ≤ J0(x, y − x) for all y ∈ C

J. Inequal. Pure and Appl. Math., 2(1) Art. 12, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 EL MOSTAFA KALMOUN

sinceJ0 is upper semicontinuous. Hence, combining (5.7) with (5.8), it follows

lim sup[〈Axn, y − xn〉+ J0(xn, y − xn)] ≤ 〈Ax, y − x〉+ J0(x, y − x) for all y ∈ C.

Now, let us show that (5.6) holds. Suppose on the contrary that there existr < 0 and a subse-
quence of(xn), which we note also(xn), such thatlim〈Axn, x− xn〉 = r. Hence, due to (5.5)
we can write

(5.9) lim inf J0(xn, x− xn) ≥ −r > 0.

SinceJ ∈ QPM(C), it follows

lim J0(xn, x− xn) = 0,

which contradicts (5.9).
To show the second result, it suffices, sinceg(x, .) is weakly lower semicontinuous for every
x ∈ C and following a remark of Blum and Oettli ([2, p. 131]), to prove that

(〈Ay, x0 − y〉+ J0(y, x0 − y))/‖y − x0‖ −→ −∞ as‖y − x0‖ → +∞.

This is ensured by assumption (iii). �

Remark 5.3.

(1) Estimation (5.4) is given in [10] with another form more relaxed. It can be omitted when
the multivalued operatorA+ ∂J is x0-coercive.

(2) Observe that we have got here a solution of the variational-hemivariational inequalities
problem without recourse to a condition of quasi or strong quasi boundedness onA or
∂ϕ as it was made in [10].

(3) It is also interesting to note that we cannot make use of Theorem 1 in [2] to solve (HI)
with the same conditions since the functionJ0(, , y) is not necessarily weakly upper
semicontinuous which is the assumption of [2].
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