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ABSTRACT. In this note, we present a generalization of the Ky Fan’s minimax inequality the-
orem by means of a new version of the KKM lemma. Application is then given to establish
existence of solutions for mixed equilibrium problems. Finally, we investigate the relationship
between the latter problems and hemivariational inequalities.
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1. INTRODUCTION

Blum-Oettli [2] understood by the so-called equilibrium problem, the following abstract vari-
ational inequality problem:

(EP) findz € C such thatf(z,y) > 0forally € C,

whereC'is a given set and is a given scalar valued bifunction ¢h Itis well-known that[(EP)

is closely related to Ky Fan’s minimax inequalities [9]. Whers written as a sum of two real
bifunctions, [([EP) will be called a mixed equilibrium problem and we shall denote it by (MEP).
Many interesting and sophisticated problems in nonlinear analysis can be cast into the form of
(ER); say, for instance, optimization, saddle points, Nash equilibrium, fixed points, variational
inequalities and complementarity problems.

The purpose of this paper is two-fold. First, we continuously study the existence problem of
solutions for [(EP) under some more general conditions, using a new version of the Fan KKM
lemma. Then, to show the significance of the treatment of such problems, we investigate the
relationship between hemivariational inequalities and mixed equilibrium problems. More pre-
cisely, the plan of our contribution is as follows. In Sectjion 2, we state most of the material
used in this paper. In Sectipfn 3, we present first a generalized Fan KKM lemma for transfer
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2 EL MOSTAFA KALMOUN

closed-valued maps. This result is then used as a tool for proving a new existence theorem for
(ER). Some special cases are derived from this result; in particular, we give an application to
saddle point problems. In Sectipp 4, we confine ourselves to the study of mixed equilibrium
problems. Indeed, we prove the existence of a mixed equilibrium by relaxing the upper semi-
continuity condition on the nonmonotone part; then we apply this result to solve some mixed
variational inequality problems. Finally, Section 5 indicates how the result of the previous sec-
tion can be used to ensure the existence of solutions to hemivariational inequalities involving
some topological pseudomonotone functionals.

2. DEFINITIONS AND NOTATIONS

Before the formal discussion, we begin with some notations and definitions, which will be
needed in the sequel. L&t be a topological vector space, andlétbe its topological dual. Let
C' be a nonempty convex subsetin Denote byF(C') the set of all nonempty finite subsets of
C. Let

F:C — 2% be aset-valued map,
f:CxC—R and &:C — R two functions, and

S:C — 2% aset-valued operator.

Fis called a KKM map if for any subset € F(C), coA C J,.4 F(z). ¢ is said to be quasi
convex if the strict lower level st € C' : ¢(x) < 0} is convex. Itis quasi concave #¢ is
quasi convex. Fok € R, ¢ is A\-quasi convex (concave) if — ) is quasi convex (concave).

F is said to be transfer closed-valued|[13] if, for any € C withy ¢ F(x), there exists’ €
C such thaty ¢ clcF(x). Itis clear that this definition is equivalent to say that . F(z) =
Nsec cleF(x). We will say thatF is transfer closed-valued on a subsedf C' if the set-valued
mapFp : B — 25, defined byF(z) := F(x) N B for all z € B, is transfer closed-valued.
Related to this concept, let us recall the definition of transfer semicontingity.said to be
transfer lower semicontinuous inif, for eachz,y € C with f(z,y) > 0, there exist’ € C
and a neighborhootl, of y in C' such thatf(z', z) > 0 for all z € U,. f is said to be transfer
upper semicontinuous i f is transfer lower semicontinuous. It's easily seen that a lower
(upper) semicontinuous bifunction inis transfer lower (upper) semicontinuousyinWe will
say thatf is transfer lower semicontinuous éhif the restriction off on B x B is transfer lower
semicontinuous. Fakx € R, fis A-transfer lower (upper) semicontinuousjrif the bifunction
f — Ais transfer lower (upper) semicontinuousyin

® is called upper hemicontinuous if, for eachy € C, the functiont — & (tx + (1 — t)y),
defined fort € [0, 1], is upper semicontinuous. The operatois said to be upper hemicontin-
uous ift — S(tz + (1 — t)y), defined fort € [0, 1], is upper semicontinuous as a set-valued
map.

f is said to be monotone if(z,y) + f(y,z) < 0 forallz,y € C. f is pseudomonotone
if, for everyz,y € C, f(x,y) > 0implies f(y,xz) < 0. One can easily see that a monotone
bifunction is pseudomonotones' is said to be monotone if for alt,y € C and for alls €
Sz, r € Sy,onehass —r,z —y) > 0.

f is pseudomonotone in the topological sense (T-pseudomonotone for short), whanéver
is a net onC' converging tor € C such thatliminf f(z,,z) > 0, thenlimsup f(z,,y) <
f(z,y) forally € C. Suppose now thaX is a reflexive Banach space. Lét: C — IR be
a locally Lipschitz function. Denote by" its directional differential in the sense of Clarke.
We know [7] thatJ is upper semicontinuous ant(z, .) is convex for everyr € C. We say
that J € PM(C) if the bifunction f, defined byf(z,y) := J%(z,y — z) forall z,y € C, is
T-pseudomonotone. When this bifunction is only T-quasi pseudomonotone (that is, if for any
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sequencézr,) € C such thatr,, — x in C andlim inf J°(z,,, z — ,,) > 0, thenlim J(z,,, v —
x,) = 0)), we shall say thaf € QPM (C). A function belonging to the clasBM (C) (resp.
QPM(C)) has the property that its Clarke’s subdifferential is pseudomonotone in the sense of
Browder and Hess (resp. quasi-pseudomonotone)i(see [10, Proposition 2.13]). The dperator

is said to be T-pseudomonotoné [6] if so is the bifunctioiven by f(x,y) := sup(s,y — x).
seSz

Suppose now thaf is single-valued. We recall also thétsatisfies thé€.S) . condition, if
x, — xin C andlimsup(Sz,,z, —z) <0 imply z,, — zin C.

¢ is said to be inf compact [1, p 318] if the set lower level get{x € C : ¢(z) < 0} is
compact.¢ is sup compact it-¢ is inf compact. Fo\ € R, ¢ is A-inf (sup) compact itp — A
is inf (sup) compact. We say thatis z-coercive for some, € C if there exists a real-valued
functionc on IR with TEIEOO ¢(r) = +oo such that for alke € C' (Sx,x — o) > c(||z]]) ||z

3. KY FAN’S MINIMAX |INEQUALITY

3.1. AKKM Result. ltis interesting to note that the Fan KKM lemma [8] plays a crucial role
to prove existence results far (EP). [n [3], this result was improved by assuming the closed-
ness condition only upper finite dimensional subspaces, with some topological pseudomono-
tone condition. In([6], Chowdhury and Tan, replacing finite dimensional subspaces by convex
hulls of finite subsets, restated the Brézis-Nirenberg-Stampacchia result under weaker assump-
tions. On the other hand, Tian [13] introduced a new class of closedness conditions, namely the
transfer closedness, and give the KKM conclusion for multifunctions satisfying this weak as-
sumption. Here, using this class, we give another more refined version of the Fan KKM lemma
containing Chowdhury-Tan result as a special case.
Lemma 3.1. Suppose that’ is convex. If
(i) clcF(xg) is compact for some, € C;

(i) F'is a KKM map;

(iii) foreachA € F(C) withz, € A, F'is transfer closed-valued awA;

(iv) for everyA € F(C) with zy € A, we have

[cle( ﬂ F(z))]NecoA =] ﬂ F(x)] N coA,

TECOA TECOA

then (") F(x) # 0.

zeC

Proof. Let A € F(C) with z, € A. Consider a set-valued mdp, : coA — 2%4, defined
by Fu(z) := clo(F(x) N coA) for all x € coA. F4 so defined satisfies the KKM conditions.
Indeed, firstF'y is nonempty and compact-valued sinEds a KKM map ¢ € F(x) for all

r € coA) andcoA is compact; then, for eacB € F(coA), we havecoB C |J, 5 F(x), but
coB C coA, hence

coB C U F(x)NcoA C U clo(F(z) NcoA),
z€EB zeB
thusF4 is a KKM map. It follows that

ﬂ Fy(z) # 0.

TECOA
Hence by (iii), we obtain

m F(z)NcoA # 0.

TECOA
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Then we follow the same argument in [6, proof of Lemma 2] to get our assertion. O

3.2. General Existence ResultsNow we are in position to give the following generalization
of Ky Fan’s minimax inequality theorem.

Theorem 3.2. Suppose thap and are two scalar valued bifunctions dri such that

(A1) ¢(x,y) < 0implies¢(z,y) < O0forall z,y € C;
(A2) for eachA € F(C), sup Inif{l P(z,y) <0;

yEcoA TE
(A3) for eachA € F(C), ¢ is transfer lower semicontinuous {non coA;
(A4) for eachA € F(C), whenever,y € coA and(y, ) is a net onC' converging tay, then

o(tr + (1 —t)y,ya) <O0VEE[0,1] = ¢(x,y) <0;
(A5) there iszy € C such thatp(z, .) is inf compact.
Then there existg € C such thaty(z,7) < 0forall z € C.

Proof. It's a simple matter to see that all conditions of Lenjma 3.1 are fulfilled if we take
Fz)={yeC:¢(z,y) <0} Vz eC.

Indeed, (i) follows from (A5), and (ii) from (A1) and (A2). It remains to show that (A3) implies
(ii), and (A4) implies (iv). To do the former, fid € F(C) and let(z,y) € coA x coA with

y ¢ F(x); thatis¢(z,y) > 0; hence, there exist’ € coA and a neighborhood, of y in
coA such thatp(z',z) > 0 for all z € Uy; thusz ¢ clo(F(x) N coA). For the latter, fix
alsoA € F(C) and lety € clo|(,ceon F ()] N coA; thatisy € coA and there is a néfy,,)
converging tay such that(z,y,) < 0for all z € coA; it follows thato(tx + (1 — t)y, ya) < 0

for all z € coA and allt € |0, 1]; hence, from (A4), we geb(z,y) < 0 for all z € coA; we
conclude thay € [N F(x)] N coA. The proof is complete. O

Remark 3.3. It has to be observed that assumption (A2) holds provided that

(i) Y(z,z) <Oforallz € C,and

(i) for eachy € C, 9 (.,y) is quasi concave.
Remark 3.4. Assumption (A3) holds clearly whem(z, .) is supposed to be lower semicontin-
uous orcoA, for everyA € F(C') and everyr € coA. Moreover, both of assumptions (A3) and
(A4) are satisfied when the classical assumption of lower semicontinuityxof) is supposed
to be true for every € C.

Remark 3.5. The compactness condition (A5) is satisfied if we suppose that there exists a
compact subseb of C' andz, € B such that(zq,y) > 0forally € C'\ B.

Theoren] 3.2 is now a generalization of [6, Theorem 4]. It also impraves [12, Theorem 1].
Let us single out some particular cases of this theorem. Firgt,det) and make use of Remark
B.3.

Theorem 3.6. Suppose thap : C' — R satisfy

(B1) ¢(z,z) < Oforall x € C;

(B2) for eachy € C, ¢(.,y) is quasi concave;

(B3) for eachA € F(C), ¢ is transfer lower semicontinuous inon coA;

(B4) for eachA € F(C), whenever,y € coA and(y,,) is a net onC' converging tay, then

o(tr + (1 —=1)y,ya) <0VEE€[0,1] = ¢(x,y) <0;
(B5) there iszy € C such thatp(xy, .) is inf compact.

Then there existg € C such thatp(x,7) < 0forall z € C.

We can also derive the following generalization of a Ky Fan’s minimax inequality theorem
due to Yen[[14, Theorem 1].

TECOA
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Theorem 3.7.Let f, g : C' — R. Suppose that = sup g(z, z) < oo, and
zeC

(C1) f(z,y) < g(z,y)forall z,y € C;

(C2) for eachy € C, ¢(.,y) is A-quasi concave;

(C3) for eachA € F(C), f is A-transfer lower semicontinuous inon coA;

(C4) for eachA € F(C), whenever, y € coA and(y,) is a net onC' converging tay, then

fltz+ (1 =t)y,ya) < AVEE[0,1] = fla,y) <\
(C5) there exist a compact subgeof C andz, € B such thatf(zq,y) > Aforall y € C\ B.
Then we have the following minimax inequality

inf sup f(J:? y) < Supg(x7 l’)
yeB zeC zeC

Proof. Seto(z,y) = f(x,y) — X andy(z,y) = g(x,y) — Aforall x,y € C. By virtue of Theo-
rem[3.2 and taking into account assumption (C5), there exist®3 such thatup, . f(z,7) <
sup,cc g(x, ), which is our assertion. O

The following another particular case will be needed in the next section.
Theorem 3.8.Let C' be closed convex iX. Suppose that
(D1) ¢(x,y) < 0implies¢(z,y) < 0forall z,y € C;
(D2) ¢(z,z) <0 forall z € C,
(D3) for every fixedy € C, ¢(.,y) is quasi concave.
(DA4) for every fixedr € C, ¢(x,.) is lower semicontinuous on the intersection of finite
dimensional subspaces &f with C;
(D5) whenever:, y € C and(y, ) is a net onC' converging tay, then

o(tr+ (1 —t)y,ya) <0VEE[0,1] = ¢(x,y) < 0;
(D6) there exist a compact subsBtof X andz, € C' N B such thatp(zq,y) > 0 for all
yeC\B.
Then there existg € C' N B such thaty(z,7) < 0forall z € C.

Proof. According to Theorem 3|2, there exigts C such thai(z,7) < 0 for allz € C. The
element is in the compacB due to condition (D6). O

If we set¢ = v, we recover([3, Theorem 1].
We balance now the continuity requirements by assuming the algebraic pseudomonotonicity
on the criterion bifuncion, and we get from Theorem| 3.2 the following existence theorem for

ER).
Theorem 3.9.Let f : C' x C' — R be a bifunction such as to satisfy

(E1) fis pseudomonotone,

(E2) f(x,z) > 0forall z € C,

(E3) for eachzx € C, f(x,.) is convex,

(E4) for eachA € F(C), f is transfer lower semicontinuous inon coA,

(E5) for eachA € F(C), whenever, y € coA and(y, ) is a net onC' converging tay, then

fltz+ (1 —t)y,ya) <0Vt € [0,1] = f(x,y) <0;

(E6) for eachy € C, f(.,y) is upper hemicontinuous,
(E7) there exist a compact subsef C' andz, € B such thai(xy,y) > 0forall y € C'\ B.

Then [EP) has at least one solution, which isHn
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Proof. Setp(x,y) = f(z,y), ¥(z,y) = —f(y,z) forall z,y € C. Allassumptions of Theorem
are clearly satisfied; hence there exists B such thatf(y,z) < 0forally € C. The
conclusion holds if we show the following assertion: for every C, one has

fly,x) <0 VyeC = f(r,y) >0 Vyel
To do this, letz € C such that
(3.1) fly,z) <0 VyeC

Fixy € C, and sety, = ty + (1 — t)z for t €]0, 1[. Sincef(y:,.) is convex andf(y:, y:) > 0,
thentf(y:,y) + (1 — ) f(y, z) > 0. It follows clearly from [3.1) that f(y:,y) > 0; hence
f(yt,y) > 0. The upper hemicontinuity of (., y) allow us to conclude thaf(x,y) > 0. This
completes our proof. O

3.3. Saddle Points.Let F': C' x C' — R. A (strategy) pailz, ) is a saddle point of" if one
has

This equivalent to writing

inf sup F'(z,y) = sup inf F(x,y) = F(7,7).
zeC yeC yeC Z€

By making use of Theoren 3.6, we can formulate the following existence theorem for saddle
points.
Theorem 3.10. Assume that

(i) F(xz,z)=0forall xz € C,
(i) F is quasi convex (resp. concave) with respect {eesp.y),
(iii) for eachA € F(C), F is transfer upper (resp. lower) semicontinuougifresp.z) on
coA,
(iv) foreachA € F(C), whenever,y € coAand(y,) (resp.(z,)) is a net onC' converging
toy (resp.z), then

Fltxr+ (1 —1t)y,yo) >0Vt €[0,1] = F(z,y) >0
(resp.
F(zo,tz+ (1 —t)y) <0Vte[0,1] = ¢(z,y) <0);
(v) there existry (resp.yo) € C such thatF'(z, .) (resp. F'(., yo)) is sup (resp. inf) compact.
ThenF has at least one saddle poifit, 7) in C, which satisfied’(z,7) = 0.

Proof. We apply Theorerp 3|6, first faf = —F', we get the existence gfe C which satisfies
F(x,y) > 0forall z € C; then for¢(z,y) = F(y,x) forall x,y € C, there exist& € C
such thatF'(z,y) < 0 for all y € C. We conclude thatz,y) is a saddle point fof', with
F(z,7) = 0. O

We can deduce easily the von Neumann’s minimax thedrém [1, p 319, Theorem 8] when the
sets of strategies are the same.
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4. MIXED EQUILIBRIUM PROBLEMS

Here we focus our attention on the existence of solutions for equilibrium problems. The
criterion mapping is composed of two parts, a monotone bifunction and a nonmonotone pertur-
bation. Our aim is to establish the existence of equilibria by relaxing the upper semicontinuity
condition on the nonmonotone part.

From this point on(' is supposed to be closed and conveXin

Theorem 4.1.Considerf, g : C' x C — R such that

(1) g is monotone;

(2) f(z,x2) = g(z,z) =0forall z € C,

(3) for every fixedr € C, f(z,.) andg(z, .) are convex;

(4) for every fixedr € C, g(z, .) is lower semicontinuous;

(5) for every fixedy € C, f(.,y) is upper semicontinuous atl N F, while F' is a finite
dimensional subspace iK;

(6) fis T-pseudomonotone;

(7) for every fixedy € C, ¢(., y) is upper hemicontinuous;

(8) there is a compact subsgtof X andx, € C'N B such that

9(xo,y) — f(y,20) > 0, forally € C\B.
Then there exists at least one solution to (MEP) associatedatiad g.

Proof. In order to apply Theorefn 3.8, setr,y) = g(z,y) — f(y,z) andy(z,y) = —g(y, z) —
f(y,z)forallz,y € C.

Let us show that the assumptions of Theofem 3.8 are satisfied.

(D1), (D2) and (D6) are easily checked from (1), (2) and (8) respectively. For (DB)yif z €
C then for anyt €]0, 1] one has

gy te+ (1 —t)z) + f(y, te + (1 = t)2) < t[g(y, =) + f(y, )] + (L = )[g(y, 2) + f(y, 2)].
In this way, the set

{zeC: flz,y) +g(z,y) <0}
is convex for ally € C.
Moreover, sincey(z, .) is lower semicontinuous anfl ., z) is upper semicontinuous on every
finite dimensional subspace for alle C, g(z,.) — f(., x) is lower semicontinuous on every
finite dimensional subspace @for all x € C'. This means that (D4) holds.
To check (D5). Letr,y € C and(y,) a net onC' which converges tg such that, for every
t €10,1],

(4.1) g(tr + (1 =)y, ¥a) = f(Yar tz + (1 = t)y) < 0.
Fort = 0, one has
(4.2) 9 Ya) = f(Wary) < 0.

Sinceg(y,.) is lower semicontinuous, it follows thaty,y) < liminf f(y.,y). Combining
with (2), one can writé < liminf f(y,,y). Therefore

(4.3) limsup f(ya, z) < f(y, z)

sincef is T-pseudomonotone.
Recall [4.1) and take= 1, it follows thatg(z, y,) — f(ya, z) < 0. By virtue of assumption (4)
and relation[(4]3), we get

g(x,y) - f(ywr) S 0.
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Thus (D5) is satisfied.
We deduce that there exists= C such that

(4.4) 9(y,7) — f(T,y) <0 forally € C,

Lety € C be afixed point and set = ty + (1 — ¢)z for t €]0, 1[. Sinceg(y;, .) is convex and
g(yta yt) = 07 then

(4.5) tg(ye,y) + (1L —t)g(ys, ) > 0.

From relation[(4.4), one had — t)g(y, =) — (1 — ¢)f(Z, %) < 0. Combining with [4.5), it
follows tg(y:, y) + (1 — t) f(Z,y:) > 0. Using the convexity of (z, .), we can writeg(y;, y) +
(1 —1t)f(z,y) > 0 because (z,7) = 0. The upper hemicontinuity of(., y) make it possible
to write

9(,y) + f(T,y) = 0.
The proof is complete. O

Remark 4.2. Since the upper semicontinuity ¢f., y), for all y € C, implies that assumptions
(5) and (6) are satisfied, the result of Blum-Oettli (Theorem L1in [2] ) is an immediate conse-
quence of Theorein 4.1 whefiis supposed to be compact. On the other hand,= 0 then
Theoreni 4.]L collapses to a Ky Fan’s minimax inequality theorem for monotone bifunctions
given in [1] (Theorem 9, p 332).

A consequence of this theorem is the following existence theorem for mixed variational in-
equalities. Suppose that the duality pairing) betweenX and X’ is continuous.
Theorem 4.3. Let h be a real convex lower semicontinuous function‘grand letS, T" be two
operators fromC' to 2%’ such as to satisfy :
(i) S is T-pseudomonotone, upper semicontinuous on finite dimensional subspaces, and has
convex weakly* compact values;
(i) T is monotone, upper hemicontinuous, and has convex weakly* compact values;
(iii) there is a compact subsét of X andx, € C' N B such that

inf (s,y — zo) + sup (t,y — xo) + h(y) — h(zo) > 0 Vy € C\B.
seSy teTxo

Then there exist8 € B solution to the following mixed variational inequality
(4.6) JseSz, HeTzt: (5+t,y—7)+h(y)—h(T>0Vy e C.
Proof. First of all, it has to be observed that inequalfty {4.6) is equivalent to write

sup inf[(s +t,y —7) + h(y) — h(z)] = 0.

s € ST
teTx
Let D := SZ x Tz andp(d,y) := (s +t,y — %) + h(y) — h(z) foralld = (s,t) € D and all
y € C. It's easily seen thap(.,y) is concave and upper semicontinuous for ewery C, and
thaty(d, .) is convex for everyl € D. Moreover,D is a convex weakly* compact subset®f.
It follows, according to the Lopsided minimax theorem (see [1, p 319, Theorem 7]) that
inf ¢(d,y) = inf d,y).
sup inf #(d,y) = inf Sup e(d,y)
Hence, if we seff(z, y) = sup,cq,(s,y — z) andg(z, y) = sup,er, (t,y — 2) + h(y) — h(z),
then inequality[(4)6) will be now equivalent to

inf(f(z.y) +9(T,y)) 2 0.

Let us now check the assumptions of Theofem 4.1. Assumptions (2), (3) and (4) hold clearly.
(i) implies (8). By definition, the T-pseudomonotonicity 8fimplies that of f; hence (6) holds.

inf
yel
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On the other hand, the finite dimensional upper semicontinuity twigether with the fact that
S has weakly* compact values imply that (5) is satisfied (see [1, p 119, Proposition 21]. For
(1), we have for each,y € C,

9(z,y) +g(y,x) = sup(t,y —z) + sup(r,r —y)
teTx reTy
= sup (t—r,y—x)
teTx
refly
< 0.

Finally, by virtue of [1, p 373, Lemma 11], we have that the functios> sup, g, (s,y — ) is
upper hemicontinuous sinc¢eis upper hemicontinuous and has weakly* compact values; thus
(7) holds. The conclusion follows the from the assertion of Thedrem 4.1.

O

Remark 4.4. The coercivity condition (iii) is satisfied if there exists € C' such that

lim  inf (s,y — 20) + sup (,y — zo) + h(y) — h(zo) > 0.
llyll — oo s€SY teTzg
yeC
Remark 4.5. Whenh = 0 andS = 0, Theoren] 43 collapses to an existence result of a
generalization of the Browder-Hartman-Stampacchia variational inequality [5, Theorem 4.1].
ForT = 0 andS is a single-valued operator, it extends [3, Application 3]. Finally, under a
minor change in the setting of Theorém|4.3, we can recover|dlso [6, Theorem 7].

5. HEMIVARIATIONAL |NEQUALITIES

When studying generalized mechanical problems that involve nonconvex energy functionals,
Panagiotopoulos [11] introduced the hemivariational inequalities as a mathematical formula-
tion. Since then, this theory has been proved very efficient for the treatment of certain as yet
unsolved or partially solved problems in mechanic, engineering and economics.

The aim of this section is to show how that (MEP) can be an efficient tool for studying hemi-
variational inequalities that involve topological pseudomonotone functionals. More precisely,
we shall use an existence result for (MEP) (Theofem 4.1) to get the existence of solutions to
these inequalities without the hypothesis of quasi or strong quasi boundedness as in [10].

First, to illustrate the idea of hemivariational inequalities, we discuss an example concerning
a body contact, which its variational formulation leads to a hemivariational inequality.

5.1. An example. Assume we are given a linear elastic body referred to a Cartesian orthogonal
coordinate systemx,z,x5. This body is identified to an open bounded suli3etf R3. We
denote byl" the boundary of2, which is supposed to be appropriately smooth. We denote also
by v = (u;)1<i<3 the displacement vector and By= (5;),<;<3 the stress vector ovét. We
recall thatS; = o;;n;, whereo = (oy;) is the stress tensor and= (n;) is the outward unit
normal vector or’. The vectorS (resp.,u) may be decomposed into a normal comporent
(resp.,uy) and a tangential on&; (resp.,ur) with respect td".

We begin first with the treatment of the case of monotone boundary conditions, which leads
to variational inequalities as a formulation. L#&¢ be a maximal monotone operator frdto
2". Then we may consider the following boundary condition in the normal direction:

(5.1) —Sy € Bn(un),
Similar conditions may be considered in the tangential directiéh € (7 (ur), or generally

—S € B(u).
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One can formulate relation§ (5.1) otherwise by calling upon some proper convex and lower
semicontinuous functionaly that satisfies’y = 0.Jy. Henceforth one can write
—Sy € 8JN(uN)

This law is multivalued and monotone. It includes many classical unilateral boundary conditions
(e.g.uny = 0 or Sy = 0). This kind of conditions have as variational formulation the following
variational inequality:

JN(’UN) — JN<UN) > —SN(UN — UN), Yoy € R.

However there are many other problems concerning the contact on an elastic body that may be
expressed with multivalued boundary conditions which are nonmonotone. Consider an example
which describes an adhesive contact with a rubber support. It may take the following form

—Sn € g(u]\;) if uy<a
(52) ﬁ(a) < —SN < +oo if Uy = a
SN = @ if un > a

wherej is defined as follows. Giving a functioh: R — R in L°R, consider two associated

— loc
functionsj, and3, defined forp > 0 by
Bp(t) = esssup f((t;), VteR

[t1—t|<p

and

Bp(t) = essinf f((t;), VteR.

[t1—t|<p
They are respectively decreasing and increasing with respegt hence their limits, when
p — 04, exist. We note _ _
B(t) == lim B,(t), VteR

p—04
and _
B(t) :== lim G,(t), VteR.

At this stage, we defing by
B(t) = [B(1).B(t)], VteR.

In general,g so defined is not necessarily monotone.

Let us turn to[(5.R). We have always, < «; while the case:y > a is impossible. Thus, for
un = a, the relation my become infinitd. ($.2) can be written as

(5.3) —Sn € Bluy) + No(uy).

HereC' =] — oo, a] and N¢ is the normal cone of’. Moreover, Chang stated inl[4] that, if
B(tyo) exist for allt € R, then we can determine a locally Lipschitz functidiy

J(t):/otﬁ(s)ds, W ER

so that

aJ(t) = p(t), VteR.
Hered stands for the generalized gradient of Clarke (see [7]). Cldarly (5.3) becomes
JO(UN7UN—UN) Z —SN(UN—UN), \V/UN EC.

This is a simple hemivariational inequality. Panagiotopoulos called it so to point out its differ-
ence to the classical variational inequalities.
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This example was summarized from [10], which is a comprehensive reference for the inter-
ested reader in the theory and applications of hemivariational inequalities.
We shall now turn our attention to the mathematical concepts of the theory by considering a
general form.

5.2. Problem Formulation. Let X be a reflexive Banach space afidbe a nonempty convex
closed subset oK. LetJ : C' — IR be a locally Lipschitz function. Let alsd be an operator
from C'to X', ¢ be a real lower semicontinuous convex functiontvand! € X'.

We are concerned with the following hemivariational inequality :
Findz € C such that

(HI) (AZ,y =)+ J° @,y — ) + ¢(y) — (@) > (l,y —T), VyeCl.

Particular cases of this inequality arise, e.g in the variational formulation of the problem of a
linear elastic body subjected to two- or three-dimensional friction law and also in the theory of
laminated von Karman plates.

Remark 5.1. Due to the presence of the monotone part corresponding @idl) was called in
[10] variational-hemivariational inequality. The particular case of hemivariational inequalities
of [10] corresponds to (HI) whep = 0.

5.3. Existence Theorem.As an application of Theorefn 4.1, we get the existence of solutions
to the (HI) problem.

Theorem 5.2. Assume that

(i) Ais pseudomonotone and locally bounded on finite dimensional subspaces;
(i) eitherJ € PM(C), or J € QPM(C) and A satisfies théS), condition;
(i) there exists, € C such thatA is x,-coercive and

(5.4) Ty, 20 —y) < k(14 ||y||) forally € C, k = const.
Then the hemivariational inequality (HI) has at least one solution.

Proof. Assumption (i) implies thatl is continuous from each finite dimensional subspac¥ of
to the weak topology oX’ (see [15, Proposition 27.7, (b)]). If we také equipped with the
weak topologyf (z,y) = (Az,y—x)+J°(z,y—z) andg(x,y) = o(y) —p(x)—(l,y—z), then
it suffices according to Theoreim 4.1 to prove two assertions: Firstftipseudomonotone,
and second that assumption (8) of Theofen 4.1 is satisfied.
Let us begin with the proof of the first one. Suppose that PM(C') then f is pseudomono-
tone as a sum of two pseudomonotone mappings (see [15, Proposition 27.6, (e)]); the same
proof can be used here).
Suppose on the other hand thate QPM(C) and A has the (S) property. Let(z,) be a
sequence i’ converging weakly ta: € C' such that

(5.5) liminf[(Ax,, 2 — z,) + J (@, 2 — 2,)] > 0.

It suffices to show that

(5.6) liminf(Ax,,z — z,) > 0.

Indeed, if (5.6) holds then, by pseudomonotonicityofive can write
(5.7) limsup(Az,,y — z,) < (Az,y —z) forally € C.
The (S). condition of A implies thatr,, — = in C. Therefore

(5.8) limsup J(2,,y — z,) < J(z,y — ) forally € C
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since.J* is upper semicontinuous. Hence, combining|(5.7) With|(5.8), it follows

lim sup[{Az,, y — 2,) + J* (20, y — 7)) < (Az,y — 2) + J°(z,y — x) forall y € C.

Now, let us show thaf (56) holds. Suppose on the contrary that thererexistand a subse-
quence ofz,,), which we note alsdz,,), such thatim(Az,,z — z,) = r. Hence, due td (5]5)

we

can write

(5.9) liminf J*(z,, 2 — 2,) > —r > 0.
SinceJ € QPM(C), it follows

lim J°(z,, 2 — 2,) = 0,

which contradictg (5]9).
To show the second result, it suffices, sinde, .) is weakly lower semicontinuous for every
x € C and following a remark of Blum and Oettli([2, p. 131]), to prove that

((Ay, 20 —y) + J°(y, 20 — )/ |ly — @ol| — —o0 @s|ly — zo|| — +oo.

This is ensured by assumption (iii). O

Remark 5.3.

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

(1) Estimation[(5.4) is given in [10] with another form more relaxed. It can be omitted when
the multivalued operatod + 0.J is xy-coercive.

(2) Observe that we have got here a solution of the variational-hemivariational inequalities
problem without recourse to a condition of quasi or strong quasi boundednession
Oy as it was made in [10].

(3) Itis also interesting to note that we cannot make use of Theoreni 1 in [2] to solve (HI)
with the same conditions since the functidh(,,y) is not necessarily weakly upper
semicontinuous which is the assumption(of [2].
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