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ABSTRACT. Sharp lower and upper bounds for quasiconvex moments of generalized order sta-
tistics are proven by the use of the rearranged Moriguti’s inequality. Even in the second moment
case, the method yields improvements of known quantile and moment bounds for the expectation
of order and record statistics based on independent identically distributed random variables. The
bounds are attainable providing new characterizations of three-point and two-point distributions.
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1. INTRODUCTION

Let X, X, X,, ... beiid. random variables with a common distribution functidbnDefine
the quantile function/~*(¢t) = inf{s € R;F(s) > t}, ¢t € (0,1). Let X,,, denote the--
th order statistic (OS, for short) from the samplg, . .., X,,, and lety;*) stand for thek-th

record statistics (RS’s, for short) from the sequeAgeXs, ..., according to the definition of
Dziubdziela and Kopoéiski [4], i.e.
}/r(k) :XLk(T),Lk(T)—i—k—l? r= 1727"'7 k= 1727"'7

WhereLk(l) =1, Lk(T + 1) = mll’l{j, XLk(T),Lk(r)%»kfl < Xj,j+k71} forr = 1,2,....
The generalized order statistics are defined by Kamps [8] as follows:
Definition 1.1. Letr,n € N, k,m € R be parameters such that= k+(n—r)(m+1) > 1 for

all » € {1,...,n}. If the random variable§/(r,n,m, k), r = 1,...,n, possess a joint density
function of the form

n—1 n—1
fU(l,n,m,k),...,U(n,n,m,k) (ul, o 7un> —k (H 77]) (H (1 . uﬁ)m) (1 . un)kfl
j=1

i=1
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2 L. GAJEK AND A. OKOLEWSKI

on the cone®) < u; < ... < u, < 1 of R, then they are called uniform generalized order
statistics. The random variables

X(r,n,m, k) =F YU(r,n,m,k)), r=1,...,n,

are called generalized order statistics (g OS’s, for short) based on the distribution furiction

In the case oin = 0 andk = 1 the g OSX(r,n, m, k) reduces to the O, ,, from the
sampleXy, ..., X,,, while for a continuoug”, m = —1 andk € N we obtain the RY, " based
on the sequenc&, X,,....

Let H : R — R be a given measurable function. The generalizechoment (Z-moment,
for short) of X (r, n, m, k) is defined in Kamps [8] as follows

B (X(rmm. ) = [ (F7(0) g, (0

where the density functiop, ,, of U(r,n, m, k) is given by

Ar—1

A0 0, te o)

(1.1) Pra(t) =

with
Ar_1 :Hm, r=1,...,n,
=1
Gm(t) = hp(t) — hyn(0), t€[0,1),

__1 (1 _pym+l _
hn(t) = (L= D)™, m £ =1 te[0,1).
—log(1 —1t), m = —1,

The aim of this paper is to present some new moment and quantile lower and upper bounds
for the H-moment of the generalized order statisti&-, n, m, k) in the cased is quasiconvex.
Recall thatf : R — R is quasiconvex if for every € R the set{z € R; f(z) < t} is convex.

The bounds of Propositign 3.1 are derived by the use of the rearranged Moriguti inequality
(Lemma[2.1) i.e. applying a similar method as in Gajek and Okolewski [6Hfoe id. In

Gajek and Okolewski]5] some bounds for OS’s and RS’s were obtaindd(for= ¢, a = 2s,

s € N, via the Steffensen inequality. Somewhat surprisingly, the present approach, which is
equivalent to applying the Moriguti inequality first and the Steffensen inequality afterwards,
provides better bounds (see Remdrkg 3.8 [anfd 3.9). The bounds are attainable, which gives
a new characterization of some three-point and two-point distributions (see Rémarks]3.5, 3.6
and 3.7). Similar bounds on expectations of order statistics from possibly dependent identically
distributed random variables were obtained by Rychlik [11] and independently by Caraux and
Gascuell[2].

From Propositioh 3]1 we can get sha@fpmoment bounds for H(X (r, n, m, k)) (see Propo-
sition[3.13), which generalize the result of Papadatos [10, Theorem 2.1].

In Propositiorj 3.16 quantile bounds fofEX (r, n, m, k)) are given under additional restric-
tions on the underlying distribution function. Some other quantile inequalities for moments of
generalized order statistics from a particular restricted family of distributions were obtained by
Gajek and Okolewsk( [7], via the Steffensen inequality.

A summary of known bounds for g OS’s is presented in Kamps [8]. The results for OS’s and
RS'’s are presented e.g. in David [3] and Arnold and Balakrishnan [1].
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2. AUXILIARY RESULTS

We reformulate Moriguti’s result + [9, Theorem 1] - to the form which we shall use.

Lemma 2.1. Let®, ® and® : [a,b] — R be continuous, nondecreasing functions such that
®(a) = &(a) = P(a), (b) = ®(b) = (b)) and D (t) < &(t) < d(t) for everyt € [a,b]. Then
the following inequalities hold

() [, 2(t)d(t) < [} 2(t)d2 o),

(i) [) 2(t)dd(t) > [} x(t)dD(t)
for any nondecreasing functian : (a,b) — R for which the corresponding integrals exist.
The equality in (i) holds iff either both sides are equaltco (—oo) or both are finite and: is

constant on each connected interval from the{get (a,b); ©(¢) < ®(¢)}. The equality in (ii)
holds iff either both sides are equal #e>o (—oco) or both are finite and: is constant on each

connected interval from the sét € (a,b); ®(t) > ®(¢)}.
Corollary 2.2. If z is nonincreasing then the signs of inequalities (i) and (ii) are opposite.

Remark 2.3. Part (i) of Lemma 2.1 follows from the proof of Moriguti’s result. Replacibg

by & and® by @ in Lemmd 2.1 (i) gives Lemnia 2.1 (ii). Applying LemrhaP.1 to the function
—x instead of tar gives Corollary 2.p.

3. INEQUALITIES FOR GENERALIZED ORDER STATISTICS
Let us introduce the notation:w = (r,n,m, k),

W={weNxNxRxR;1<r<nVign =k+nm—r)(m+1)>1},
Wy={weW;r=1An, =1},
Wy={weW;r=1An, > 1},

Wy={weW;r>2An,>1Am>-1Vm<—-1An, >1)]},
Wy={weW;r>2A[(m>-1An.=1)V(m<—-1An, =1An, > 1)},
Wy={weW;r>2Am<—-1An, =1}

.....

Let .
P, (1) = / @pp(x)dr, te0,1],
0

where the functiorp, ,, is defined byl). In this notation parameterandk are suppressed
for brevity.
Moreover, let us pul], = 0 forw € W7 U Wy, b = 1 forw € W, U W5 and

61 ¥ — {1 —expl—(r — 1)/(n, — 1], for @ € W; such thatn = —1,
" 1—1[(n,—1)/(n, — D]V/+D  forw € Wy such thatm # —1.
Additionally, let us define
(3.2)
RT forw e Wy U Ws, R forw e Wy UW, U Ws,
brn = Crn(ch=), forwe WauWy, ™ |o..(d), forwe W,UWs,

wherec], = 0forw e Wy UWa, ¢, = 1forw € WyU W5, d, = 0forw € Wy, d, = 1 for
w e Wy UW,UWs, andc), andd!,, for w € W3, are the unique zeros [, 0], ] and[b], 1] of the
functions

(3.3) (1= 1), (1) + Prn(t) =1 a@nd i, , (1) = 0 (1),
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respectively. In the notatiobf,, c;,, d;,, 5,,, andy, , the constants: and% are suppressed for
brevity. Note thaf3, ,, is not defined for anyo € W.
Now let us putd = {s € R; Voo H(s —€) > H(s)},

sup A, for A # (),
3.4 =
(3.4) “ {—oo, for A =0,
and
0, fora = —o0,
(3.5) 2 =4 F(a), foraeR,
1, fora = +o00.

Observe that ik, = 0 or z, = 1, then the functiord |;,., wherelr = Jr U (inf Jp, sup Jr)
with Jr denoting the image df), 1) underF !, is monotone and corresponding bounds follow
from Proposition 1 of Gajek and Okolewski [6]. Therefore, we shall present the inequalities for
EH (X (r,n,m,k)) whenH is quasiconvex and, € (0,1).

Let us define

(3.6) 2 en(za), forw e Wy U Wy,
. Frn = gOnn(E;;), forwe W3 UW, U Wi,

and

(3 7) - Sor,n(d_;>7 forw e Wi UWyuU Wg,
' T (= 20) M = @pn(z,)), fOrm e Wy U W,

wherez, € (0,1), & = z, forw € W, UWs, d’, = 2, forw € W, UW,, andé’, andd’, for
w € W3, are the unique zeros of the function

(38) (I)r,n(za) - (br,n(t) - Spr,n(t)(za - t)

in the intervalg0, b;,] and[b},, 1], respectively. In the notatiom, ,, andv,.,, the constants: and
k are suppressed for brevity. It is easily seen #jat= 2, andd’, = z, for thesew € W for
which z, € (0,b]] andz, € [0}, 1), respectively.

Further, let us define

(3.9) A = Zal(0,a5)(20) + (Vr) ™ Prn(20) Liag, 1) (2a),

(3.10) k= (Brn) (1 = Ppn(2a) ) L0,er) (20) + (1 — 2a)er 1) (2a),
(3.11) X = (Hn) " @ (20),

(3.12) U= (Vrn) (1= @pp(za)),

with c;, andd;, such as in[(3]2)3, ., ¥,.ns 1., @NAY,, defined by@z),@@ and (3.7). In the
notation\, x, xy andy the constants, n, m, k andz, are suppressed for brevity.

Throughout the paper we shall assume that the integrals appearing in the propositions exist
and are finite.

Proposition 3.1. Let z,, A, x, x and ¢ be defined by (35)[ (3.9), (3110), (311) ahd (8.12),
respectively. Let! : R — R be an arbitrary quasiconvex function such thate (0, 1).

() If w € W\ W5, then
1—®,,(2)

K

EH (X(r,n,m,k)) < Prnlza) /AH (F~(t)) dt +

3 /1_5 H(F~'(t)) dt.
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(ii) If @ € W, then

Za Za+Y
EH (X(r,n,m,k)) > q)"—(z)/ H(F'(t)) dt + L”<'z)/ H(F~(t)) dt.
X Jax (G 2

Proof. Itis easy to check thatt € W, = ¢, ,, = 10n[0,1);
weW, =, <00n(0,1), ¢,,(0) < +00, ¢,,(1-) = 0;
w e W3 = Sor,n/ >0on (07 b:z)7 Sor,nl <0on (b:N 1)7 Sor,n(o) = 07 Spr,n(]'_) = 07
weWy=¢,., >00n(0,1),0,,0)=0,¢,,(1-) < +oo;
w e W5 = (pr,n/ > 0on (07 1)7 (pr,n(o) = 07 @r,n(1_> = +00.
Forw € Wi, (i)-(ii) are obvious identities. So let us consider the other cases. From Kamps
[8] we have

(3.13) EH (X(r,n,m,k)) = /OZE H (F’l(t)) d®, (1) —|—/ H (F’l(t)) do, (1),

wherez, is given by [3.5). We shall apply Corollajy 2.2 and Lemimg 2.1 with the functions
r=HoF 1, &=, ¢=7%, andd =" ;P andd!, are defined off, z,] and[z,, 1],
respectively, as follows

B (1) = 2710, (20t if 2, € (0,d"],
o 7r,ntﬂ[0,k] (t) + (Dr,n(za)]l(x\,za}(t)> if z, € (d),,1),

and

u (t) _ {(IDT,TL(Za)]I[Za,l—n] (t) + (6T,n(t - 1) + 1>H(1—H,1}(t>7 if Za € (07 62]7
- (1—2)7 1 = ®pp(z0)](E— 1)+ 1, if 2, € (¢, 1),

whereg, , andv, , are given by[(3]2). Moreover, let us observe that

t t
(3.14) 5:;(15) = / Prn(s)ds and @7 (t) = & (z,) +/ gjn(s)ds,
0 Za ’
where
(3.15) St (s) = Za ' Ppn(24), if 2, € (0,d0],
nr Yoo (), if 24 € (d}, 1),
and
ﬂ ]1(1,,{ 1](5)7 if Zq € (OacTL
3.16 U (s) = q o "
(3.16) CANC) {[1 D (20)] (1= 20)7Y, if 2 € (7, 1).

By Corollary[2.2, Lemma 2]1] (3.14), (3]15) and (3.16) we get

EH (X (r,n,m,k)) < / - H(F7(t)) d®,,(t) + / 1 H(F(t)) d®y, (t)

A 1
=5%,(0) /0 H(F'(1)) dt + ¢ (1) /1 i H(F~'(1))dt,

R

which leads to (i).
In order to prove (ii) we shall use Corollajy 2.2 and Lemmg 2.1 with the functioss

HoF 1, &=9,,%o=>0 andd = [ o, and@lm are defined or0, z,| and [z, 1],

n?
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respectively, as follows

ol (1) = {z;lcbm(za)t, forf € Wy,
(@rn(@)(t = 2a) + Prn(2a)) (zg—x,2a) (), forw € Wy U Wy U W,
and
& (0= {(1 —2a) (L= @y (za))(E— 1) + 1, for e Wy U W,
’ (o (@) = 22) + Pz (0) + L (0), fOr W € Wa U W,

wherec’, andd’, are such as i} (3.6) and (8.7).
Let us note that

t t
@17 el (0= [ ¢ ()ds and B0 =T+ [ wh(s)ds
0 Za
where
—lq) for w
(3.18) & (s) = %y Prn(za), Orf € W,
—n cpr,n(dz)ﬂ(za*)(,za](s)’ for w e W3 U W4 U W5a
and
1—2,)"'(1—® for w
(3.19) o (5= d (17 (= 2na()), form € Wi U WS,
Sorn(d )]I[Za Za+7ﬂ( ) forw € Wy U Ws.

By Corollary[2.2, Lemma 2]1] (3.17), (3]18) and (3.19) we have
EH (X(r,n,m,k)) > / CH (F7'(1)) d®L,, (1) + / 1 H (F~'(t)) c@iﬂ(t)

Za Za+
:gi’n(za)/ H(F'(1)) dt+@i’n(za)/ H(F~'(1)) dt,

a—X

which gives (ii). This completes the proof of Proposition 1.

Remark 3.2. Observe that the bounds of Proposition 3.1 work under quite weak assumptions.
In the case of the lower bounds we even do not neEd_E) to be finite — see Examp|e 3.1
below.
Example 3.1.Let
(2+ %), fort <0,
F(t)y=q¢(2-t*)"!, forte|0,1),
1, else.

It is easy to check thatE7; = 3.5, EX* = +o0 and the lower bound for E3 ; in Proposi-
tion[3.7 (i) is meaningful (and equa[0588)

Remark 3.3. If EX?(r,n,m,k) < +oo and H(t) = (t — EX(r,n,m,k))* t € R, then
Propositior} 3.1 provides lower and upper bounds for variation of g @%isn, m, k).

Remark 3.4. Note that right-hand sides of the inequalities (i) and (ii) of Proposition 3.1 depend
on the parent distribution not only through a simple functional of the quantile function as the
bounds of Proposition 1 of Gajek and OkolewskKi [6], but also through a value of distribution
function at a single point determined Y. The reason of this drawback lays on difficulties
which occur while quasiconvex functidi is not monotone.

Remark 3.5. Equality in Propositiof 3]1 (i) holds ifi € 17/, or one of the following conditions
is satisfied:
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(a) F has exactly one atom;

(b) for z, € (0,c},), F has at most three atoms with the probability magsgs’ — z,, 1 —
cr)or (za, 1 —z,)or(c,1—ch), respectively;

(c) for z, € [c], d;;] F has exactly two atoms with the probability masges 1 — z,),
respectively;

(d) forz, € (d},, 1), F' has at most three atoms with the probability magggs:, —d.,, 1 —

24) OF (24,1 — z,) Or (di, 1 — dI), respectively.

Remark 3.6. Equality in Propositiof 3]1 (ii) holds iy € W, or one of the following conditions
is satisfied:

(@) F has exactly one atom;

(b) for z, € (0,87), F has at most three atoms with the probability magsgsi, — z,,1 —
d))or(z,1—z,)o0r(d,1—d,), respectively;

(c) for z, = b, F has exactly two atoms with the probability masses1 — z,), respec-
tively;

(d) for z, € (b],1), F has at most three atoms with the probability masggs:, — ¢, 1 —
24) OF (24,1 — z) Or (¢, 1 — €. ), respectively.

Remark 3.7. Under the additional assumptions thdf;,. is left-hand continuous and is not
constant on any nonempty open interval, the conditions given in Reafks 3.5 and 3.6 are also
sufficient. Indeed, denoting = {t € (0, z,); ®,,,(t) > ®,.(1)}, S = {t € (24, 1); ¥, () <

®,,(t)} observe thaS = (0, z,) andS = (z,,1) for w € W, U W, and theseo € W for

which z, € [, d"]; S = (0, 2,) andS = (24, ") U (ch, 1) for w € W; such that, € (0,c%);

S =(0,d) U (dr, 2,) andS = (z,, 1) for w € W3 such that,, € (d7, 1). Combining this with

the fact thatH o F~! is left-hand continuous and that, by Lemmal 2.1 and Coroflary 2.2, the
equality in the inequality (i) of Propositidn 3.1 is attained/iffo F~! (or equivalentlyF—') is
constant on each connected interval from thessets, proves Rema5. A similar reasoning
applies to Remark 3,6.

Remark 3.8. The proof of Proposition 3] 1 (i) relies on applying Lemmg 2.1 and Cordllajy 2.2 to
the integralsf;a H (F~!(t)) d®,,(t)and [;* H (F~*(t)) d®,,(t). The question arises whether

one can use in Lem A (CoroII2 2) a minorant (a majorant) dlfferentcﬁhgr(@m,
respectively) in order to alter the parameter corresponding ¢&) and further improve the
resulting bound. In the class of absolutely continuous nondecreasing minorants (majorants) of
®,.,, which have the same values &s,, at the both ends of the intervéd,, 1] ([0, z,]) and

which Radon-Nikodym derivatives are essentially finite, the answer to the question is negative.
Indeed, the form of the bound (i) implies that it is most precise when the minorant and the
majorant provide the Radon-Nikodym derivatives with the least possible essential supremums.
Sincey" as well asp;, satisfy this condition, Proposm 3.1 (i) provides in some sense

optimal bounds A similar remark refers to the case of the bound (ii) of Propositipn 3.1.

Remark 3.9. Obviously, @, ,, is its own minorant (majorant, respectively) on any subinterval
of (O 1) andy, ,|(z.,1) (¢r,00,20)) has a greater essential supremum than (¢,,,) whenever

o, u (@, )is notidentical WIth®,. .| (... 1) (Prn](0,24))- According to Remar8, the bounds of
Proposmor@l for order and record statistics from a continuous parent distribution are more
precise than (are the same as) their analogues from Proposition 1 of Gajek and Okaolewski [5]
except for (in the case of) the lower bounds,if# 0, (if z, = b)).
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Now, assuming that some additional conditions are satisfied we shall compare in Corol-

lary[3.12 the upper bounds following from Propositjon| 3.1 (Corolfary]3.11) with their coun-
terparts following from easy to obtain modification of Proposition 1 of Gajek and Okolewski
[6] (Corollary[3.10).
Corollary 3.10. Letw € W \ W5, H : R — R be quasiconvex and, ,,, a, z, be defined by
(3.2), [3.4).[(3.b), respectively. Suppose th&X > a) =1, z, € (0,1), H(a) = 0 and H is
not constant on any nonempty open interval.

Then

1
EH (X (r,n,m, k) < B, H(F7'(t)) dt.
max{za,lfl/ﬁhn}
Proof. On account of Propositidn 3.1 (i) of Gajek and Okolewski [6] it suffices to show that,
under the assumptions of Corollary 3.1,0 F~! is nondecreasing anfl o F~(¢) = 0 for
t € (0, z,). To this end observe thdf o F~1(t) = H(a) = 0fort € (0,2,), H o F7(z,) =
H (F~Y(F(a))) > H(a) = 0 and that, by definition, the functioH o F~! is nondecreasing on
(2a,1). 1

Corollary 3.11. Let the assumptions of Corolldry 3]10 be satisfied. Then
1

EH (X (r,n,m, k) < 51 (1 — By (20) / H (F(t)) dt,

1

—K

wherex is defined by (3.70).

Proof. Combination of Propositioh 3.1 and the fact tiiat o F~!)(t) = H(a) = 0 for each
t € (0, z,) gives the resulty

Corollary 3.12. Letc], be such as irf (3]2). Suppose that the assumptions of Corpllary 3.10 are
satisfied.

(i) If z, € (0,1) \ {¢;}, then the bounds of Corollafy 3./11 are better than the bounds of
Corollary[3.10,
(ii) If z, = c;,, then Corollary 3.1D and Corollary 3.11 provide the identical bounds.

Proof. Let us denote by, and B, the right-hand sides of the inequalities in Corollary 8.11
and Corollary 3.10, respectively.
If 2, € (0,1 —-1/8,,], then
1 1
Ay, =B, H(F~'(t))dt > 8,, H(F~'(t)) dt = B,
1_1/Br,n 1_1/ﬁr,n+¢'mn(2a)/ﬁr,n
asH (F~'(t)) > H(a) = 0fort > z,.
If 2, € (1 —1/B,,,¢c,], then
1 1
Av=0., | H(F'(t)dt>3,, H (F~'(t)) dt = B,.
Za 1_(1_¢7‘,n(2a))//8r,n
Indeed, since the functiofi : (0,1) — R defined by(1—®,.,,(¢))/(1 —t) obtains its maximum
equal to3, ,, at the unique point = ¢, z, < 1 — (1 — ®,.,(2,))/3,,, for z, € (0,1) and the
equality is attained only fot, = c].
If z, € (¢, 1), then
! 1-— (I)rn a !
A, =08, | H(F'())dt> ﬂ/ H(F~'(t)) dt = B,

1—2,

and the proof is completaq.
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Now, we present som&-moment bounds on B (X (r,n,m, k)) provided thatH is qua-
siconvex and nonnegative. The special cases- 0 andz, = 1 follow from Proposition 3
of Gajek and Okolewski_ 6], so, we shall formulate the result #brquasiconvex such that
2, € (0,1).

Proposition 3.13. Suppose thatv € W \ W;5. Then for an arbitrary quasiconvex function
H :R — R, U{0} such thatz, € (0,1), it holds that

EH (X(r,n,m,k)) < M, ,(z,)EH(X) < max{ﬁm,ym}EH(X),

whereM, ., (z,) = max{\7'®,,(z,), k[l — ®,,(2)]} and z, A\« are given by[(3}5)] (3]9),
(3.10), respectively.

Proof. Forw € WW; we have the obvious identity. So, let us consider the other cases. Estimating
the right-hand side of Propositipn B.1 (i) we get

EH (X (r,n,m, k) < maxA" D (z0), 5 1 — By ()] /O H (F(t)) dt

+ /1 H (F~'(t)) dt}.

Putting z, instead of\ and1 — « gives the first inequality. The second inequality follows from
the first one as a consequence of the following facts:

(i) if z, € (0,¢}), then
Mrl,n(za> E)‘_lq)r,n(za> = Zgl(br,n('za) < @r,n(za) < @r,n(cz> = By
Mf’n(za) E“_l[l =@, ,(24)] = Brons
SO, M, (2,) = max{ M}, (z4), M2, (%)} = 0
(i) if z, € (d),1), then
M, 1 (20) =Vrns
M7, (20) =(1 = 20) "1 = @n(20)] < @rn(2a) < @rnldh) = Vo
0, Mr.n(Za) = Vs
(iii) if z, € [¢},d!], then
Mrl,n(za) = Z_lq)r,n(za) < Vrmo

a

ME,TL<Z(1) =(1- Za)_l[l - q)r,n(za)] < ﬁr,nv

SO’MTW(ZG) S maX{ﬁr,n?V?‘,n}'
The proof is completeg

Remark 3.14. Equality in the first inequality of Propositign 3]13 holdsiife W, or F' has
only one atom a#/~'(0) (provided that there exists a poifatfrom the image of0, 1) under
F~! such thatf (t,) = 0) or z, = ®,.,,(2,) and one of the following conditions is satisfied:

(a) F has exactly one atom;
(b) F' has exactly two atoms with the probability masges1 — z,), respectively.

Under the additional assumptions tlfais left-hand continuous and it is not constant on any
nonempty open interval, the above conditions are also sufficient. Indeed,do¥; we have
the obvious identity. Ift € W5 andz, € (0,c,) U (d),1),orw € Wo UW,, then\ < 1— &
and the equality is attained iff o F~'(¢t) = 0 fort € (0,1). If w € W5 andz, € [¢},d"], then
A = 24, k = 1 — 2,, SO, the equality is attained i ' ®,,,(z,) = x7![1 — @, ,(2,)] (i.e. iff
zo = ¥,.,(2,)) and one of the conditions (a) or (c) of Remprk 3.5 is satisfied.

r,n?
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Remark 3.15. Equality in the second inequality of Propositjon 3.13 holdifE W, or I’ has
only one atom af7 ~'(0) (provided that there exists a poiftfrom the image of0, 1) under
F~! such thatf (ty) = 0).

Under some additional restrictions on the functiér F'—! we can formulate another conse-
quence of Propositidn 3.1.

Proposition 3.16. Let a, z,, A, x, x and ¢ be defined by[ (3/4)[ (3.5), (3.9), (3/10), (3.11)
and (3.12), respectively. Suppose titat: R — R is a given quasiconvex function such that
2, € (0,1).

(i) If w € W and the functiorH o F'~! is convex on the intervat, — x, z, + ], then
EH (X(r,n,m,k)) > ®,,(2,)(H o F ™Yz —x/2) + (1 — D, (%)) (H o F Y (2 +4/2).

(i) If w e W\ W;s and the functiorf o F'~! is concave on the intervalg, \| and[1 — &, 1],
then

EH (X(r,n,m, k) < ®ppn(20)(Ho FTHY(A/2) + (1 — @,,,(2,))(H o F71) (1 — 5/2).
Proof. Applying Jensen’s inequality to the bound (ii) of Proposifiorj 3.1 we have

EH (X(r,n,m, k) = " ®yn(za) / X H(F7\(t)) dt
(1= () [ w H (P(0)) dt
> @, (2,) (Ho F7Y) (x‘l / X tdt)
+ (1= Ppn(za)) (Ho F7Y) (w—l / :M tdt)

=, ,(2,)(H o F ") (24 — x/2)
+ (1 = @,,(20))(H o F7Y) (24 + 1/2).
The proof of (i) is complete. The case (ii) can be proven in a similar way.
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