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Abstract

In this paper we will study some aspects of convex functions and as applications
prove some interesting inequalities.
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1. Introduction
In [2] Sever S. Dragomir and Nicoleta M. Ionescu have studied some aspects
of convex functions and obtained some interesting inequalities. In this paper
we generalize the above paper to a very general case by introducing a suitable
convex function of a real variable from a given convex function. Studying its
properties leads to some remarkable inequalities in different abstract spaces.
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2. The Main Results
The aim of this section is to study the properties of the functionF defined below
as Theorems2.2and2.5.

First we mention the following simple lemma, which describes the behavior
of a convex function defined on a closed interval of the real line.

Lemma 2.1. LetF be a convex function on the closed interval[a, b]. Then, we
have

(i) F takes its maximum ata or b.

(ii) F is bounded from below.

(iii) F (a+) andF (b−) exist (and are finite).

(iv) If the infimum ofF over[a, b] is less thanF (a+) andF (b−), thenF takes
its minimum at a pointx0 in (a, b).

(v) If a ≤ x0 < b (or a < x0 ≤ b), andF (x0+) (or (F (x0−)) is the infimum
of F over [a, b], thenF is monotone decreasing on[a, x0] (or [a, x0)) and
monotone increasing on(x0, b] (or [x0, b]).

Proof. See [3, 4].

Definition 2.1. Let X be a linear space, andf : C ⊆ X → R be a convex
mapping on a convex subsetC of X. For n given elementsx1, x2, · · · , xn of C,
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we define the following mapping of real variableF : [0, 1] → R by

F (t) =

n∑
i=1

f

(
n∑

j=1

aij(t)xj

)
n

,

whereaij : [0, 1] → R+ (i, j = 1, · · · , n) are affine mappings, i.e.,aij(αt1 +
βt2) = αaij(t1) + βaij(t2) for all α, β ≥ 0 with α + β = 1 andt1, t2 in [0, 1],
and for eachi andj

n∑
i=1

aij(t) = 1,
n∑

j=1

aij(t) = 1 (0 ≤ t ≤ 1).

The next theorem contains some remarkable properties of this mapping.

Theorem 2.2.With the above assumptions, we have:

(i) f

(
x1 + · · ·+ xn

n

)
≤ F (t) ≤ f(x1) + · · ·+ f(xn)

n
(0 ≤ t ≤ 1).

(ii) F is convex on[0, 1].

(iii) f

(
x1 + · · ·+ xn

n

)
≤
∫ 1

0
F (t)dt ≤ f(x1) + · · ·+ f(xn)

n
.

(iv) Let pi ≥ 0 with Pn =
∑n

i=1 pi > 0, and ti are in [0, 1] for all i =
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1, 2, · · · , n. Then, we have the inequality:

f

(
x1 + · · ·+ xn

n

)
≤ F

(
1

Pn

n∑
i=1

piti

)
(2.1)

≤ 1

Pn

n∑
i=1

piF (ti) ≤
f(x1) + · · ·+ f(xn)

n
,

which is a discrete version of Hadamard’s result.

Proof. (i) By the convexity off , for all 0 ≤ t ≤ 1, we have

F (t) ≥ f

(∑n
i=1

∑n
j=1 aij(t)xj

n

)

= f

(∑n
j=1

∑n
i=1 aij(t)xj

n

)

= f

(∑n
j=1 xj

n

)
,

and

F (t) ≤
∑n

i=1

∑n
j=1 aij(t)f(xj)

n

=

∑n
j=1

∑n
i=1 aij(t)f(xj)

n

=

∑n
j=1 f(xj)

n
.
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(ii) Let α, β ≥ 0 with α + β = 1 andt1, t2 be in[0, 1]. Then,

F (αt1 + βt2)(2.2)

=

∑n
i=1 f

(∑n
j=1 aij(αt1 + βt2)xj

)
n

=

∑n
i=1 f

(
α
∑n

j=1 aij(t1)xj + β
∑n

j=1 aij(t2)xj

)
n

≤ α

∑n
i=1 f

(∑n
j=1 aij(t1)xj

)
n

+ β

∑n
i=1 f

(∑n
j=1 aij(t2)xj

)
n

= αF (t1) + βF (t2).

ThusF is convex.

(iii) F being convex on[0, 1], is integrable on[0, 1], and by(i), we get(iii).

(iv) The first and last inequalities in (2.1) are obvious from(i), and the second
inequality follows from Jensen’s inequality applied for the convex function
F .

Lemma 2.3. The general form of an affine mappingg : [0, 1] → R is

g(t) = (1− t)k0 + tk1,

wherek0 andk1 are two arbitrary real numbers.

The proof follows by consideringt = (1− t) · 0 + t · 1.
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Lemma 2.4. If aij : [0, 1] → R+ (i, j = 1, 2, · · · , n) are affine mappings such
that for eacht, i andj,

∑n
i=1 aij(t) = 1 and

∑n
j=1 aij(t) = 1, then there exist

nonnegative numbersbij andcij, such that

(2.3) aij(t) = (1− t)bij + tcij (0 ≤ t ≤ 1; i, j = 1, · · · , n),

and for anyi andj

n∑
i=1

bij =
n∑

i=1

cij = 1, and
n∑

j=1

bij =
n∑

j=1

cij = 1.

Proof. The decomposition of (2.3) is immediate from Lemma2.3, and the rest
of the proof comes from below:

0 ≤ aij(0) = bij, 0 ≤ aij(1) = cij,
n∑

i=1

bij =
n∑

i=1

aij(0) = 1,
n∑

i=1

cij =
n∑

i=1

aij(1) = 1,

n∑
j=1

bij =
n∑

j=1

aij(0) = 1,
n∑

j=1

cij =
n∑

j=1

aij(1) = 1.

Remark 2.1. A lot of simplifications occur if we take

(2.4) bij = δij and cij = δi,n+1−j (i, j = 1, · · · , n),

in Lemma2.4, whereδij is the Kronecker delta.
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Theorem 2.5. With the above assumptions, ifbij andcij are in the form (2.4),
then we have:

(i) For eacht in
[
0, 1

2

]
, F
(

1
2

+ t
)

= F
(

1
2
− t
)
.

(ii) max{F (t) : 0 ≤ t ≤ 1} = F (0) = F (1) = 1
n

(f(x1) + · · ·+ f(xn)).

(iii) min{F (t) : 0 ≤ t ≤ 1} = F
(

1
2

)
=
∑n

i=1 f
(xi+xn+1−i

2

)
�n.

(iv) F is monotone decreasing on
[
0, 1

2

]
and monotone increasing on

[
1
2
, 1
]
.

Proof. (i) Sincebij = δij andcij = δi,n+1−j, we have

(2.5) F (t) =

n∑
i=1

f [(1− t)xi + txn+1−i]

n
,

and therefore, for eacht in
[
0, 1

2

]
,

F

(
1

2
− t

)
=

n∑
i=1

f
[(

1
2

+ t
)
xi +

(
1
2
− t
)
xn+1−i

]
n

=

n∑
i=1

f
[(

1
2

+ t
)
xn+1−i +

(
1
2
− t
)
xi

]
n

= F

(
1

2
+ t

)
.

(ii) It is obvious from (2.5), and(i) of Lemma2.1.

http://jipam.vu.edu.au/
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(iii) If F (1
2
) is not the minimum ofF over[0, 1], then by(i), there is a0 < t ≤

1
2
, such that

F

(
1

2
− t

)
= F

(
1

2
+ t

)
< F

(
1

2

)
.

But, using the convexity ofF over [0, 1], we have

F

(
1

2

)
≤ 1

2
F

(
1

2
− t

)
+

1

2
F

(
1

2
+ t

)
< F

(
1

2

)
,

a contradiction.

(iv) It is obvious from(iii) of Theorem2.5, and(v) of Lemma2.1.
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3. Applications
Application 1. Let x1, x2, · · · , xn be n nonnegative numbers. Then, with the
above notations, we have

(3.1) n
√

x1x2 · · ·xn ≤ n

√√√√ n∏
i=1

n∑
j=1

[(1− t)bij + tcij]xj ≤
x1 + x2 + · · ·+ xn

n
,

(3.2) n
√

x1x2 · · ·xn ≤ n

√√√√ n∏
i=1

[(1− t)xi + txn+1−i] ≤
x1 + x2 + · · ·+ xn

n
,

for all t in [0, 1], and

n
√

x1x2 · · ·xn ≤ e−1 n

√√√√√√√ n∏
i=1


(∑

j cijxj

)∑
j cijxj

(∑
j bijxj

)∑
j bijxj


1

(∑
j cijxj−

∑
j bijxj)

(3.3)

≤ x1 + x2 + · · ·+ xn

n
.

In particular

n
√

x1x2 · · ·xn ≤ e−1 n

√√√√ n∏
i=1

[
x

xn+1−i

n+1−i

xxi
i

] 1

(xn+1−i−xi)

(3.4)

≤ x1 + x2 + · · ·+ xn

n
,

http://jipam.vu.edu.au/
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and

(3.5)
√

x1x2 ≤ e−1

(
xx1

1

xx2
2

) 1
x1−x2

≤ x1 + x2

2
,

(3.6)
2n + 2

2n + 1

(
1 +

1

n

)n

≤ e ≤
√

n + 1

n

(
1 +

1

n

)n

.

Proof. If we takef : (0,∞) → R, f(x) = − ln x, then we have

F (t) = − 1

n

n∑
i=1

ln

(
n∑

j=1

[(1− t)bij + tcij]xj

)
,

and∫ 1

0

F (t)dt = − 1

n

n∑
i=1

∫ 1

0

ln

(
n∑

j=1

[(1− t)bij + tcij]xj

)
dt

= − 1

n
ln

n∏
i=1


(∑n

j=1 cijxj

)∑n
j=1 cijxj

(∑n
j=1 bijxj

)∑n
j=1 bijxj


1∑n

j=1
cijxj−

∑n
j=1

bijxj

+ 1,

which proves (3.1) and (3.3). In particular, if we takebij = δij and cij =
δi,n+1−j(i, j = 1, · · · , n), we obtain (3.2) and (3.4) from (3.1) and (3.3) respec-
tively. The result (3.5) is immediate from (3.4). If we takex1 = n, x2 = n + 1
in (3.5), we get (3.6).
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Application 2. If X is a Lebesgue measurable subset ofRk, p ≥ 1, and
f1, f2, · · · , fn belong toLp = Lp(X), then we have

∥∥∥∥f1 + · · ·+ fn

n

∥∥∥∥p

p

≤

∑n
i=1

[∑n
j=1 cij|fj|;

∑n
j=1 bij|fj|

]
n(p + 1)

(3.7)

≤
‖f1‖p

p + · · ·+ ‖fn‖p
p

n
,

and ∥∥∥∥f1 + · · ·+ fn

n

∥∥∥∥p

p

≤
∑n

i=1 [|fi| ; |fn+1−i|]
n(p + 1)

(3.8)

≤
‖f1‖p

p + · · ·+ ‖fn‖p
p

n
,

where for each Lebesgue measurable functiong ≥ 0 andh ≥ 0 onX,

[g; h] =

∥∥∥∥gp+1 − hp+1

g − h

∥∥∥∥
1

=

∫
X

gp+1 − hp+1

g − h
dx,

wheng(x) = h(x), the integrand is understood to be(p + 1)gp(x).
In particular, if p is an integer then,

(3.9)

∥∥∥∥f1 + · · ·+ fn

n

∥∥∥∥p

p

≤

n∑
i=1

p∑
k=0

∥∥∥fk
i .fp−k

n+1−i

∥∥∥
1

n(p + 1)
≤
‖f1‖p

p + · · ·+ ‖fn‖p
p

n
,
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and

(3.10)

∥∥∥∥f1 + f2

2

∥∥∥∥p

p

≤

p∑
k=0

∥∥∥fk
1 .fp−k

2

∥∥∥
1

p + 1
≤
‖f1‖p

p + ‖f2‖p
p

2
,

Proof. Since ∥∥∥∥(f1 + · · ·+ fn)

n

∥∥∥∥
p

≤
∥∥∥∥(|f1|+ · · ·+ |fn|)

n

∥∥∥∥
p

and theLp−norms offi and |fi| are equal(i = 1, · · · , n), it is sufficient to
assumefi ≥ 0 (i = 1, · · · , n). If we takeϕ → ‖ϕ‖p for the convex function
Lp → R, then using Fubini’s theorem we get∫ 1

0

F (t)dt =
1

n

n∑
i=1

∫ 1

0

∥∥∥∥∥
n∑

j=1

[(1− t)bij + tcij]fj

∥∥∥∥∥
p

p

dt

=
1

n

n∑
i=1

∫ 1

0

∫
X

(
n∑

j=1

[(1− t)bij + tcij]fj(x)

)p

dxdt

=
1

n

n∑
i=1

∫
X

∫ 1

0

(
n∑

j=1

[(1− t)bij + tcij]fj(x)

)p

dtdx

=
1

n(p + 1)

n∑
i=1

∫
X

(∑n
j=1 cijfj

)p+1

−
(∑n

j=1 bijfj

)p+1∑n
j=1 cijfj −

∑n
j=1 bijfj

dx

http://jipam.vu.edu.au/
mailto:adedayo@unaab.edu.ng
http://jipam.vu.edu.au/


Some Aspects of Convex
Functions and Their

Applications

Jamal Rooin

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

=

∑n
i=1

[∑n
j=1 cijfj;

∑n
j=1 bijfj

]
n(p + 1)

,

which yields (3.7). In particular, if we setbij = δij andcij = δi,n+1−j(i, j =
1, · · · , n), (3.8) follows from (3.7). Finally, (3.9) and (3.10) are immediate from
(3.8).

Remark 3.1. LetX be a Lebesgue measurable subset ofRk with finite measure,
andM be the vector space of all Lebesgue measurable functions onX with
pointwise operations [1]. The setC, consisting of all nonnegative measurable
functions onX, is a convex subset ofM. Since the functiont → t

1+t
(t ≥ 0) is

concave, the mappingϕ : C → R with

ϕ(f) =

∫
X

f

1 + f
dx (f ∈ C)

is concave.

Application 3. With the above notations, iff1, · · · , fn belong toM, then

1

n

n∑
i=1

∫
X

|fi|
1 + |fi|

dx(3.11)

≤ m(X)− 1

n

n∑
i=1

∫
X

1∑n
j=1(cij − bij)|fj|

ln
1 +

∑n
j=1 cij|fj|

1 +
∑n

j=1 bij|fj|
dx

≤
∫

X

1
n

∑n
i=1 |fi|

1 + 1
n

∑n
i=1 |fi|

dx,
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1

n

n∑
i=1

∫
X

|fi|
1 + |fi|

dx(3.12)

≤ m(X)− 1

n

n∑
i=1

∫
X

1

|fn+1−i| − |fi|
ln

1 + |fn+1−i|
1 + |fi|

dx

≤
∫

X

1
n

∑n
i=1 |fi|

1 + 1
n

∑n
i=1 |fi|

dx,

1

2

2∑
i=1

∫
X

|fi|
1 + |fi|

dx ≤ m(X)−
∫

X

1

|f2| − |f1|
ln

1 + |f2|
1 + |f1|

dx(3.13)

≤
∫

X

1
2

∑2
i=1 |fi|

1 + 1
2

∑2
i=1 |fi|

dx,

in which, generally, whena = b > 0, the ratio(ln b−ln a)�(b−a) is understood
as1�a.

Proof. We can suppose thatfi ≥ 0 (1 ≤ i ≤ n). Sinceϕ is concave, takingϕ
andφ instead off andF in Theorem2.2respectively, we get

ϕ(f1) + · · ·+ ϕ(fn)

n
≤

∫ 1

0

φ(t)dt(3.14)

≤ ϕ

(
f1 + · · ·+ fn

n

)
.
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However, by Fubini’s theorem and applying the change of variables

u =
n∑

j=1

[(1− t)bij + tcij]fj(x),

in the following integrals, we have,∫ 1

0

φ(t)dt =
1

n

n∑
i=1

∫ 1

0

∫
X

∑n
j=1[(1− t)bij + tcij]fj(x)

1 +
∑n

j=1[(1− t)bij + tcij]fj(x)
dxdt

=
1

n

n∑
i=1

∫
X

∫ 1

0

∑n
j=1[(1− t)bij + tcij]fj(x)

1 +
∑n

j=1[(1− t)bij + tcij]fj(x)
dtdx

=
1

n

n∑
i=1

∫
X

1∑n
j=1(cij − bij)fj(x)

∫ ∑n
j=1 cijfj(x)

∑n
j=1 bijfj(x)

(
1− 1

1 + u

)
dudx

= m(X)− 1

n

n∑
i=1

∫
X

1∑n
j=1(cij − bij)fj

ln
1 +

∑n
j=1 cijfj

1 +
∑n

j=1 bijfj

dx,

and after substituting this in (3.14), we obtain (3.11). The inequalities (3.12)
and (3.13) are special cases of (3.11), takingbij = δij andcij = δi,n+1−j.
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