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Abstract

In this paper we will study some aspects of convex functions and as applications
prove some interesting inequalities.
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In [2] Sever S. Dragomir and Nicoleta M. lonescu have studied some aspects
of convex functions and obtained some interesting inequalities. In this paper
we generalize the above paper to a very general case by introducing a suitable
convex function of a real variable from a given convex function. Studying its
properties leads to some remarkable inequalities in different abstract spaces.
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The aim of this section is to study the properties of the functiatefined below
as Theorem&.2and2.5.

First we mention the following simple lemma, which describes the behavior

of a convex function defined on a closed interval of the real line.

Lemma 2.1. Let F' be a convex function on the closed interisalb]. Then, we
have

(1) F takes its maximum ator b.

(iid

)

(#7) F is bounded from below.
) F(a+) and F'(b—) exist (and are finite).
)

(1) If the infimum ofF’ over|a, ] is less thanF'(a+) and F'(b—), thenF’ takes
its minimum at a poink, in (a, b).

(v) Ifa <zg<b(ora< xzy <b),and F(xy+) (or (F(zo—)) is the infimum
of F' over|a, b, thenF’ is monotone decreasing dam, ) (or [a, z()) and
monotone increasing ofx, b] (or [z, b]).

Proof. See [, 4]. O

Definition 2.1. Let X be a linear space, and : C C X — R be a convex
mapping on a convex subsétof X. For n given elements;, s, - -- , z, of C,
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we define the following mapping of real variatfie: [0, 1] — R by

g:l f <Z @z’j(f)%')

F(t) = 7

n

wherea;; : [0,1] — R* (i,j = 1,--- ,n) are affine mappings, i.eq,;;(at; +
ﬂtg) = Oéaij<t1) + ﬁ@ij(tg) for all Oé,ﬂ >0 with o + 6 =1 andtl,tg in [O, 1],
and for eachi and j

zn:aij(t) =1, zn:a,-j(t) =1 (0<t<1).

The next theorem contains some remarkable properties of this mapping.

Theorem 2.2. With the above assumptions, we have:

Q) f (&) cpp < fE) e S

n n

(i1) F'is convex ono, 1].

(i) f( ) < [} F(t)dt <

(iv) Letp; > O with P, = > p; > 0, andt; are in [0,1] for all i =

T4t
n

flw) + -+ fla)

n
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1,2,

,n. Then, we have the inequality:

@y f("EIE) < ( sz)

<

—Zp < 1’1 + -

which is a discrete version of Hadamard'’s result.

Proof.

and

F(t)

>

f

(1) By the convexity off, forall0 <t < 1, we have

n

Dict Z?:l aij@)“"i)

n

D i1 i az’j@)%‘)

n

Z?:l xj)
7

D i1 2 @i (1) f ()

Do Do @i(t) f ()

n

Yy Sas)

n

n
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(i) Leta, 3 > 0 with o + 3 = 1 andty, t, be in[0, 1]. Then,
(2.2)F(aty + Pts)
D=y (Z?:l aj(aty + 5?52)%‘)

n
B i f (a > aij(t)z + 670 az’j(t2)xj>
n

. > f (Z?:1 az’j@l)%‘) p > f (Z?:1 @ij(t2)$j>

:ozF(tl)—i-ﬁF(Z) b

ThusF is convex.
(i7i) F being convex ono, 1], is integrable o0, 1], and by(i), we get(iii).

(1v) The first and last inequalities i (1) are obvious fron{i), and the second
inequality follows from Jensen’s inequality applied for the convex function
F.
0

Lemma 2.3. The general form of an affine mapping [0, 1] — R is
g9(t) = (1 = t)ko + thy,
wherek, andk; are two arbitrary real numbers.

The proof follows by considering= (1 —¢)-0+¢- 1.
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Lemma 2.4.1f a;; : [0,1] — R* (2,7 = 1,2,--- ,n) are affine mappings such
that for eacht,i andj, Y i, a;;(t) = 1and} 7, a;(t) = 1, then there exist
nonnegative numbets; andc;;, such that

(23) aij(t) = (1 — f})b” +tCij (O <t< 1; Z;j = 1; e 7”)7

and for anyi and j

Z bij = Z ¢ =1, and Z bij = Z cij = 1. Some Aspects of Convex

i=1 j=1 Functions and Their
Applications
Proof. The decomposition ofZ 3) is immediate from Lemma.3, and the rest P
of the proof comes from below:
0 S aij<0) = bij7 0 S Clz'j<1) = Cij, Title Page
& = = = Contents
Yoby o= D ay(0)=1, Z%‘ = Z%‘(l) =1,
i=1 i=1 J J « dd
St = Las0 =1 Yo =Lalh i
J=1 J=1 j=1 Go Back
] Close
Remark 2.1. A lot of simplifications occur if we take Quit
(2.4) bij =0y and ¢ = bins1—; (4,7 =1,---,n), Page 8 of 18
in Lemma2.4, wherey,; is the Kronecker delta. < IET TS EIASTE, R, 26 &S00
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Theorem 2.5. With the above assumptionspjf andc;; are in the form g.4),

then we have:
(i) Foreachtin [0,1], F (3 +1t) =
(i) max{F(t): 0 <t <1} = F(0) = F(1) = & (f(z1) + -+ f(wn)).
) (

F(1
=SS () 0
an

(iv) F is monotone decreasing q %}

(i79) min{F(t): 0 <t <1} =F
d monotone increasing dg, 1].

Proof. (i) Sinceb;; = ¢;; andc;; = 6, 41—, We have

n

Z f[(l - t)l’i + tanfi]
(2.5) F(t)="=1

e

(7) Itis obvious from @.5), and(i) of Lemma2.1
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(#7) If F(3)is notthe minimum off’ over|0, 1], then by(i), there is & < t <

£, such that
1 1 1
Fl-—-t)=F|-+t Fl=-].
()= <r ()
But, using the convexity of over |0, 1], we have
1 1 1 1 1 1
Flz)<zF(=—t|+=F(=+4t])<F(-=
(2) =27 (2 rar(a+0) <7 2),

a contradiction.

(1) Itis obvious from(iii) of Theorem2.5, and(v) of Lemma2.1
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Application 1. Letxy, xo, - --
above notations, we have

, , ben nonnegative numbers. Then, with the

. - n
=1 j=1

T1+2Tog+ -+,

Jrixe - x, < H 1=tz +trpp—i] < ,

n
=1

(3.2)

forall tin [0, 1], and

1

e 22560323 ) (55 eig25 -5 0573
j Cijj

(3.3) /w129 - 1,

AN
o
L
3
—

> bijz;
i=1 <Zj biﬂ?j)
Ty +ZTo+ -+ Xy
— n .
In particular
3.4 Moo e L < 671" Lll " L
( ) 142 n X H xa;z
i=1 g
Ty +Te+ -+
S 1 2 n7
n
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and

1
1\ Zi—=g
(35) /_Il.rg < 671 <w—i2> 17%2 < 5] +$27
Ty 2
2 2 1\" 1 1\"
(3.6) PS4 s) e/ (142)
2n+1 n n n
Proof. If we takef : (0,00) — R, f(x) = — Inz, then we have OIS e O L
Applications
= —— Z In <Z 1 — t)bz] + tCij]ZEj> , Jamal Rooin
7j=1
and Title Page
1 1 1 Contents
/o F(t)dt = - Z_;/O In (Z )b + teijlx > dt <« >
N n POMEETES 25— cij le ij %5 ¢ >
1 I (ZJ 1 c”x]> 1 Go Back
n n Z?=1 bijx; ’
i=1 (Zj:l bl]x]) Close
. . . uit
which proves §.1) and @.3). In particular, if we takeb;; = d,; andc¢;; = =
Sint1-j(i,7=1,---,n), we obtain 8.2) and @.4) from (3.1) and @3.3) respec- Page 12 of 18
tively. The result 8.5) is immediate from§.4). If we takex; =n, zo =n+1
|n (35)’ we get 66) D J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001
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Application 2. If X is a Lebesgue measurable subsetR¥f p > 1, and
fi, f2,+++, fn belong toL? = LP(X), then we have

b el S bl

Jit+ fa
(3.7) ’ n . n(p+1)
< H.f1‘|£+"'+‘|fn’|£7
n
and

fit++ fllf oy [1fil s [ frrail]

59 ‘T TS
< ||f1||,’§+"'+||fn||£’

n

where for each Lebesgue measurable function0 andh > 0 on X,

p+l _ pptl
[,
1 X g — h
wheng(z) = h(z), the integrand is understood to g+ 1)g?(z).
In particular, if p is an integer then,

gp+1 — hptl

g h] = T—h

n

p
fh R
k(W [ e 11

n(p+1) - n

fit ot
n

’

(3.9) ‘

p
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and

= k rp—k
o X |
<k:0

fi+ fo T o 1Y 4
(3.10) ‘ 5 ) | < P . 2
Proof. Since
"(f1+"'+fn) <H(’f1‘+"'+\fn’)
n p B n p

and theL?—norms of f; and|f;| are equali = 1,--- ,n), it is sufficient to
assumef; > 0 (i = 1,--- ,n). If we takeyp — ||¢||? for the convex function
L? — R, then using Fubini’'s theorem we get

/OIF(t)dt _
— _Z/ /( (1 = t)bij + tey] fi(x ))pdxdt
— _Z// ( (1 = t)bij + tey] fi(x )>pdtd:zc

] 1CZJfJ)p+1 - (Z?:l bijfj>p+1
N p+1 Z/

_] 1 Gy — Z;'L:1 bij [

p

[(1 = )by + tey f5]| dt

dz
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> i Z; 1CszJaZJ 1 03j [
n(p+1)
which erIdS (37) In partiCU|ar, if we Sebij = 5ij andcl-j = 5i,n+1fj(iaj =
1,--+,n), (3.9 follows from (3.7). Finally, (3.9 and @3.10 are immediate from
(3.9). O

Remark 3.1. Let X be a Lebesgue measurable subsé'ofvith finite measure,
and M be the vector space of all Lebesgue measurable functions enth
pointwise operationsl]. The setC’, consisting of all nonnegative measurable
functions onX, is a convex subset ¢é1. Since the function— X (t > 0)is

concave, the mapping : C' — R with

e(f) —/Xlifdm

Y

(feC)

is concave.

Application 3. With the above notations, ff, - - - , f,, belong toM, then

(3.11) %Z/ 1J|rf”||fi dx

1+Z] ICZ]|f.7|

! In da
Z/ ZJ 1(eij = big) £ 1+E] 1 bijl f]
Sy | fil
da,
</1+ S
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IRS |fi]
(3.12) ﬁ;/xlﬂfﬂd

1 - 1 1+ |fn+1—i|
- 1 d
n;/x |fn+1—i’_‘fi‘ ! 1+|fz’| !
Ly I
</, S ST
1 AL 1+ |f
(319 Z/ TAe < O [ T

/ 2 Zz 1 ‘fl‘ dz

X 1 + Zz 1 |fl| ’

in which, generally, whea = b > 0, the ratio(In b—In a) /(b—a) is understood
asl “a.

Proof. We can suppose thgt > 0 (1 < i < n). Sinceyp is concave, taking
ando instead off and £’ in Theorem2.2 respectively, we get

< g0(f1+~7~1-+ﬁ¢>‘
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However, by Fubini’s theorem and applying the change of variables

n

u=Y [(1—t)bi; + teij fi(x),

Jj=1

in the following integrals, we have,

1 bii + tc; z
/W)dt:_z// >l >g y]fg()ddt
0 1+ Z 1 )bij + tCU] ](1') Some Aspects of Convex
I= Functions and Their
>l )bu + teig) fi() Applications
_ / / = dtdz
1+ Z] 1 )b,] + tc,]]fj (CI?) Jamal Rooin
Z/ /Zj_l cij fi(x) ( 1 )
= — 1-— dudx ;
Z] 1 CZ] Z]) (.T) Z;L 1bijf]‘( ) ]' + u Tide Page
_ 1 Z/ N 1+ Z] ) wa]d Contents
Z] (e =big)f; 1 +ZJ 1 0ij 1 « dd
< >
and after substituting this ir8(14), we obtain 8.11). The inequalities3.12
and @.13 are special cases di.(L1), takingb;; = d;; andc;; = 0; +1—;- O Go Back
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