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Abstract

In this paper, a new inequality for the weight coefficient W (n,r) of the form

- 1
Wi(n,r) =
(III) Z)/,]+,)+1<m,

m=(
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' (r>1,neNyg=NU{0
sin () 13(n+1)(2n+1)" ! ( 0 {0})
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<

is proved. This is followed by a strengthened version of the more accurate
Hardy-Hilbert inequality.
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fp>1.2+,=10a,b,>0,and0 < 357, \ah < 00,0 <37, (bl < o0
(A =0, 1), then the Hardy-Hilbert inequality is
o\
()
n=1-X\

where the constant/sin(x/p) is best possible (see;,[ Chapter 9]). In-
equality (L.1) is important in analysis and it's applications (seeChapter 5]).
In recent years, Yang and Gaq [/], have given a strengthened version Dflj
for A\ =0as

3=

o0
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wherey = 0.57727, is Euler’s constant. Later, Yang and Debnéeihdroved a
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distinctly strengthened version df.() for A = 0 as

B =

o0

T 1
(1.3) - ab
mz:l;m—l—n ; sin(%) Zn%—f—n_%
0o q
« T 1 ”
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which is not comparable withL(2).
Inequality (L.1) for A = 1 is called the more accurate Hardy-Hilbert’s in-
equality, which has been strengthened as
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by introducing an inequality of the weight coefficight(n, r) in the form (see e T =W o
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[5, equation (2.9)]):

(1.5)

_W - (r>1,neNy).
3 21
sin (7) (2n+1)

In this paper we will give another strengthened versionlof)(for A = 1,

which is not comparable withl(4). We need some preparatory works.
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Lemma 2.1.If f € C%0,00), f@? (z) > 0 (¢=0,1,2,3), fV (00) = 0
(i=1,2,...,6),and)_ >~ f (n) < oo, then we have

o0

1 .

(2.1) Z (=DF (k) > 5/ (2) (see ., equation (4.4))
k=2
(2-2) / f dt + f ( ) / Bl f, (t) dta On a Strengthened
Hardy-Hilbert Inequality
1 [ = :
(2.3) / Buf (t)dt = — /' (0) + 8, Dy = ¢ / Byf" () dt <0,
0 0
whereB; (t) (i = 1,3) are Bernoulli functions (se€>[ equations (1.7)-(1.9)]). Title Page
Setting the weight coefficient’ (n, r) in the form: CaliEs
o <« >
o0 n + 1 =

2.4 = 2 < >
(2:4) Win,r) Zm+n+1<m+l>

=0 2
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= - — >1, ne Ny,
sin (g) (2n + 1)2—; (r " 0) Close
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3=

If we define the functiorf (z) asf (x) = € [0, 00), then we

oy (m) e

havef(O):ﬁ,
Fe) =L ( 1 )i_ 2 ( 1 )Lﬂ
= (Q;—|—n—|—1)2 2¢ + 1 rx+n+1) \2x+1 ’
, _ 1 _ 2

/ S znil)i/olo (y}rl) (i) W

o
(2n+1)7

By (2.2) and @.5), we have
(2.6)

) & (—1)"
6(n,r) = 2(n+1) +;0(1—%+V) (2n+1)""!

N /°° B (1) (2n +1)°

(t4+n+1)7(2t+1)
By Lemma 4 of p, p. 1106] andZ.4), we have

2(2n + 1)
: (2n+1) —"
Tt n+ )2t 1)
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Lemma 2.2. Forr > 1, n € Ny, we have (n,r) > 6 (n,o0), and

(2.7) W(n,r) < — Ww - 9(77/,002)1 (r>1,neNy),
(@) ne 1
where
(2.8)
m 417 & —1)” < 2n + 1)
9(n,oo)=—<n+ )+Z (=1 y1+/ By (t) (2n + )2 dt.
2<n+1) v=0 (1+V) <2n+1) 0 (t+n+1) On a Strengthened

Hardy-Hilbert Inequality

Since by £.3) and @.1),we have

% _ 1 1 R 1 "
/0 Bl(t)(t+n+1)2dt:_1z(n+1)2_5/0 Bs () [(t+n+1>} “
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Lemma 2.3. Forr > 1, n € N,, we have

s 1

2.10 Win,r : —
(2.10) ( ><sm(§) 13(n+1)(2n+ 1)

Proof. Define the functiory(z) as

() = LI S ! z € [0, 00)
=R 6@+ 12 +1)  120e+ 1) » 00
Then by @.8), we have (n, 00) > 2%tLg (n). Sinceg(1) > 0.0787 > £, and

for x € [1, 00),

, 1 1 1 4r? + 2z — 1

g (I) = 2 2 3 — 2 3 > 0,
3(2x+1)" 12(z+1)" 3(Q2z+1) 12(z+1)" 2z +1)

then forn > 1, we haved (n,c0) > %59 (1) > lggjj;rll) Hence by 2.7),
inequality .10 is valid forn > 1. Sinceln2 — v = 0.1159" > then by
(1.5, we find

(2.11)
W(0,r) <

13’

s In2 —~ T 1

. N\ T < — p —
sin () (2x0+1)*  sin(f)  130+1)2x0+1)

It follows that .10 is valid forr > 1,andn € N,. This proves the lemma.[]
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Theorem 3.1.1f p > 1,0+ o = 1, an,0, > 0,0 < 357 ab < oo, and

n=0 ""n

0<> 2, bl <oo,then

(3.1)

_ Ombe _ o
;;m+”+1 ,; sm@) 13(n+1) (2n + 1)»
. 1
X Z L T | b}
= sm(g> 13(n+1)(2n + 1)
p
3.2
(3:2) Z<Z7n—|—n+1
p—1
s > s 1
<

sin (g) = | sin (g) 1B+ D (@n )

Proof. By Holder’s inequality, we have

1
P

3 =

Qe

p
ab.
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Sincesin(w/q) = sin(w/p), by (2.10 for r = p, q, we have 8.1).
By (2.1@, we havell/ (n,p) < 7T/ Sin(ﬂ'/p). Then by Holder’s inequality, J. Ineq. Pure and Appl. Math. 1(2) Art. 22, 2000
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we obtain
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- - p_l
™ = 1 (n + 3 ) oo
= an
_sin(%)_ ;mzz;) (m+n+1) \m+1
- p*l
- || Xwmga
_sin (%)_ n=0
Hence by 2.10 for r = ¢, we have 8.2). The theorem is proved. ]

Remark 3.1. Inequality 3.1) is a definite improvement ovet.() for A = 1.

Remark 3.2. Since form > 2,13 (2 —v) < 2 — -, then

n+1’
&9 In 2 1
.7T7r_ - _ZI -7T7r_ 1-1 (r>1,n22).
sin (7)  (2n+1)>7  sin(Y) 13(n+1)2n+1)r

In view of (2.11) and 3.9, it follows that 3.1) and (L.4) represent two dis-
tinct versions of strengthened inequalities. However, they are not comparable.

Remark 3.3. Inequality 3.2) reduces to

p
an

p o)
s
S E— < |—F al.
m+n+1> sin(ﬂ) Z "
P

(3.4)

n=0

This is an equivalent form of the more accurate Hardy-Hilbert’s inequality
(see B, Chapter 9]).
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