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Abstract

An extension of the Bojanic-Stanojevic type inequality [1] is made by consid-

ering the r-th derivate of the Dirichlet kernel Dé‘,") instead of Dj,. Namely, the
following inequality is proved

n

z o D[A‘:,r:] (z)

k=1

] 0 1/p
< My (n Z aﬂ’) :
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k=1

where | - |1 is the L'-norm, {ay} is a sequence of real numbers, 1 < p < 2,
r =0,1,2,... and )M, is an absolute constant dependent only on p. As an
application of this inequality, it is shown that the class F,, is a subclass of
BY nC,, where F,, is the extension of the Fomin's class, C, is the extension
of the Garrett—Stanojevic class [8] and BV is the class of all null sequences of
bounded variation.
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In 1939, Sidon §] proved his namesake inequality, which is an upper estimate

for the integral norm of a linear combination of trigonometric Dirichlet kernels

expressed in terms of the coefficients. Since the estimate has many applica-
tions, for instance in.!-convergence problems and summation methods with
respect to trigonometric series, newer and newer improvements of the original

inequality have been proved by several authors.
Fomin [Z], by applying the linear method for summing of Fourier series,

gave another proof of the inequality and thus it is known as Sidon-Fomin’s

inequality. In addition, S. A. Telyakovskii in/] has given an elegant proof of
Sidon-Fomin’s inequality.

Lemma 1.1. (Sidon-Fomin). Le{«,}}_, be a sequence of real numbers such
that || < 1 for all k. Then there exists a positive constadtsuch that for
anyn > 0,

(1.1) < M(n+1).

Z Oéka (l’)
k=0 1

In [9] we extended this result and we gave two different proofs of the fol-
lowing lemma.

Lemma 1.2.[9]. Let {a;}¥_, be a sequence of real numbers such that < 1
for all k. Then there exists a positive constaiit such that for any: > 0,

(1.2) i &kD,(CT)(x)
k=0

< M(n+1)*.
1
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However, Bojani and Stanojevi [1] proved the following more general in-
equality of (L.12).

Lemma 1.3.[1]. Let {o;}, be a sequence of real numbers. Then for any

l<p<2andn >0

(1.3)

n n l/p
1
oapDp(x)|| < M,(n+1)| —— ag|P ,
kz:;kzk()l_ o )<n+1§|k|>

where the constant/, depends only op.

We note that this estimate is essentially contained (gase) in Fomin [].
Sidon-Fomin’s inequality is a special case of the BdjaBtanojewt inequality,
i.e., it can easily be deduced from Lemma.

It is easy to see that the Boj@nStanojevt inequality is not valid fop = 1.
Indeed, ifor, = 1 anday, = 0 (k # n, k € N) then the left side is of order
log n/n while the right side is of order/n asn — .

In order to prove our new results we need the following lemma.

Lemma 1.4.[10). If T,,(x) is a trigonometrical polynomial of ordet, then
1T < 27| Tl

This is S. Bernstein's inequality in th&'(0, 7)-metric (see [0, Vol. 2,
p.11]).
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Now we will prove a counterpart of inequality.Q) in the case where theth
derivate of the Dirichlet’s kerneiD,(f) is used instead ab(z).

Theorem 2.1. Let {a4 }}_, be a sequence of real numbers. Then for any
p<2andr=0,1,2,...,n € Nthe following inequality holds:

1 1/p
< Mpnr-i-l (_ Z |a,€|p> 7
n
k=1

where the constant/, depends only op.

(2.1)

> D (z)
k=1

1

Proof. Applying first the Bernstein inequality and then the BofaBtanojewt
inequality, we have

<n"

n n 1/p
T T 1
,;_1 a, D (2)| < Myn'! (5 ,;_1 ]ak|p> :

It is easy to see that the inequality.?) is a special case of the inequali/. ),
i.e. it can easily be deduced from Theor&rh. ]

> D (x)
k=1
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The problem off.*-convergence via Fourier coefficients consists of finding the
properties of Fourier coefficients such that the necessary and sufficient condition
for ||S, — f|| = o(1), n — oo is given in the forma, lgn = o(1), n — .
HereS,, denotes the partial sums of the cosine series

o0

Qo

B + E @, COSNT .
n=1

The Sidon-Telyakovskii clasS [7] is a classical example for which the con-
dition a,, 1lgn = o(1), n — oo is equivalent td|S,, — f|| = o(1), n — oo. Zivorad Tomovski
Later Fomin {] extended the Sidon-Telyakovskii class by defining a class
p > 1 of Fourier coefficients as follows: a sequerieg} belongs taF,, p > 1
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The classC was defined by Garrett and Stanofeyil] as follows: a null
sequence of real numbers satisfy the conditiahfor every e > 0 there exists
d(e) > 0 independent of, such that

/(S i Aay Dy ()

k=n
On the other hand, Stanojévic] proved the following inclusion between the
classesF,, C andBV.

Lemma3.1.[6]. Forall 1 < p < 2the following inclusion holds#, C BYNC.

drx < e, foreveryn.

In [8] we defined an extensiafy., r = 0, 1,2, ..., of the Garrett-Stanoje@i
class. Namely, a null sequen¢e; } belongs to the class,, » = 0,1,2,... if
for everye > ( there is & > 0 such that

01 oo
/ Z AakD
0

k=n
Whenr = 0, we denote&, = C.
Denote byI,, the dyadic interval2™~! 2™), for m > 1. A null sequence
{a,} belongs to the clask,,., p > 1,r =0,1,2,...If

1/p
1 1
Z gm(t/a+r) <Z |Aak|p> < oo, where -~ +=-=1.

k€lm p q

<eg, foralln.

It is obvious thatF,, C F,. Forr = 0, we obtain the Fomin’s class,.
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Theorem 3.2.Forall 1 < p < 2andr = 0,1,2,... the following inclusion
holdsF,, C BV N C,.

Proof. By Lemma3.1, it is clear thatF),, C BV. It suffices to show that

Since On a Bojani ¢-Stanojevi ¢ Type

Inequality and its Applications
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