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ABSTRACT. We present some new results on the linear and non-linear integral inequalities of
Gronwall-Bellman-Bihari type ton-dimensional integrals with a kernel of the formk(x, t) where
x andt are inS ⊂ Rn.

These inequalities extend and compliment some existing results in the literature on Gronwall-
Bellman-Bihari type inequalities.
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1. I NTRODUCTION

The results obtained in this paper originated from the celebrated Gronwall-Bellman-Bihari
inequality which has been of vital importance in the study of existence, uniqueness, continuous
dependence, comparison, perturbation, boundedness and stability of solutions of differential
and integral equations (see for example [1, 2, 3, 4, 5, 6] and the references cited therein).

In the last three decades, more than one variable generalizations of these inequalities have
been obtained and these results have generated a lot of research interests due to its usefulness
in the theory of differential and integral equations (see for example [1, 3, 6, 7, 8, 9, 10] and the
references cited therein).

The purpose of this paper is to establish some new integral inequalities inn independent
variables which will compliment the existing results in the literature on Gronwall- Bellman-
Bihari type inequalities in several variables.

Throughout this paper, we shall assume thatS is any bounded open set in then dimensional
Euclidean spaceRn and that our integrals are onRn(n ≥ 1), unless otherwise specified.

Forx = (x1, x2, . . . , xn), x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ S, we shall denote the integral∫ x1

x0
1

∫ x2

x0
1

. . .

∫ xn

x0
1

. . . dtn . . . dt1 by
∫ x

x0

. . . dt
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2 J. A. OGUNTUASE

andDi = ∂
∂xi

for i = 1, 2, . . . , n.
Furthermore, forx, t ∈ Rn, we shall writet ≤ x wheneverti ≤ xi, i = 1, 2, . . . , n. Unless

otherwise specified, all functions considered are functions ofn-variables which are nonnegative
and continuous on[x0, x], x ≥ x0 ≥ 0 andx ∈ S.

2. L INEAR I NEQUALITIES

In this section, we shall obtain bounds to the linear Gronwall-Bellman-Bihari type integral
inequalities for a more general kernelk(x, t) and a product kernelk(x, t) = h(x)f(t).

Definition 2.1. A functionk(x, t) of the2n variablesx1, . . . , tn is called a good kernel if

(1) k (·, ·) ≥ 0.
(2) k (·, ·) is a continuous function of its2n variables.
(3) k (·, ·) is monotone non-decreasing in its firstn variables, i.e.k(x, t) ≥ k(y, t) whenever

x ≥ y.

Theorem 2.1.Letk(x, t) be a good kernel,u(x) is a real valued nonnegative continuous func-
tion on S and g(x) be a positive, nondecreasing continuous function onS. Suppose that the
following inequality

(2.1) u(x) ≤ g(x) +

∫ x

x0

k(x, t)u(t)dt

holds for allx ∈ S with x ≥ x0, then

(2.2) u(x) ≤ g(x)

{
1 +

∫ x

x0

k(s, s) exp

(∫ s

x0

k(t, t)dt

)
ds

}
.

Proof. Sinceg(x) is positive and nondecreasing, we can write (2.1) as

u(x)

g(x)
≤ 1 +

∫ x

x0

k(x, t)
u(t)

g(t)
dt.

Settingu(x)
g(x)

= r(x), then we have

r(x) ≤ 1 +

∫ x

x0

k(x, t)r(t)dt.

Let

v(x) = 1 +

∫ x

x0

k(x, t)r(t)dt.

Then
r(x) ≤ v(x)

andv(x0) = 1 or xi = x0
i , i = 1, 2, . . . , n. Hence

(2.3) D1 . . . Dnv(x) = k(x, x)r(x) ≤ k(x, x)v(x).

From (2.3) we obtain
v(x)D1 . . . Dnv(x)

v2(x)
≤ k(x, x).

That is
v(x)D1 . . . Dnv(x)

v2(x)
≤ k(x, x) +

(Dnv(x)) (D1 . . . Dn−1v(x))

v2(x)
.

Hence

Dn

(
D1 . . . Dn−1v(x)

v(x)

)
≤ k(x, x).
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Integrating with respect toxn from x0
n to xn, we have

D1 . . . Dn−1v(x)

v(x)
≤

∫ xn

x0
n

k(x1, x2, . . . , xn−1, tn, x1, x2, . . . , xn−1, tn)dtn.

Thus

v(x)D1 . . . Dn−1v(x)

v2(x)
≤

∫ xn

x0
n

k(x1, x2, . . . , xn−1, tn, x1, x2, . . . , xn−1, tn)dtn

+
(Dn−1v(x)) (D1 . . . Dn−2v(x))

v2(x)
.

That is

Dn−1

(
D1 . . . Dn−2v(x)

v(x)

)
≤

∫ xn

x0
n

k(x1, x2, . . . , xn−1, tn, x1, x2, . . . , xn−1, tn)dtn.

Integrating with respect toxn−1 from x0
n−1 to xn−1, we have

D1 . . . Dn−2v(x)

v(x)
≤

∫ xn−1

x0
n−1

∫ xn

x0
n

k(x1, x2, . . . , xn−2, tn−1, tn, x1, x2, . . . , xn−2, tn−1, tn)dtndtn−1.

Continuing this process, we obtain

D1D2v(x)

v(x)
≤

∫ x3

x0
3

. . .

∫ xn

x0
n

k(x1, x2, t3, . . . , tn, x1, x2, t3, . . . , tn)dtn . . . dt3.

From this we obtain

D2

(
D1v(x)

v(x)

)
≤

∫ x3

x0
3

. . .

∫ xn

x0
n

k(x1, x2, t3, . . . , tn, x1, x2, t3, . . . , tn)dtn . . . dt3.

Integrating with respect to thex2 component fromx0
2 to x2, we have

D1v(x)

v(x)
≤

∫ x2

x0
2

. . .

∫ xn

x0
n

k(x1, t2, t3, . . . , tn, x1, t2, t3, . . . , tn)dtn . . . dt2.

Integrating with respect to thex1 component fromx0
1 to x1, we obtain

log
v(x)

v(x0
1, x2, . . . , xn)

≤
∫ x

x0

k(t, t)dt.

That is

(2.4) v(x) ≤ exp

(∫ x

x0

k(t, t)dt

)
.

Substituting (2.4) into (2.3) we have

D1 . . . Dnr(x) ≤ k(x, x)v(x) ≤ k(x, x) exp

(∫ x

x0

k(t, t)dt

)
.

Integrating this inequality with respect to thexn component fromx0
n to xn, then with respect to

thex0
n−1 to xn−1, and continuing until finallyx0

1 to x1, and noting thatr(x) = 1 atxi = x0
i , we

have

r(x) ≤ 1 +

∫ x

x0

k(s, s) exp

(∫ s

x0

k(t, t)dt

)
ds.

Sinceu(x)
g(x)

= r(x), then we obtain

u(x) ≤ g(x)

{
1 +

∫ x

x0

k(s, s) exp

(∫ s

x0

k(t, t)dt

)
ds

}
.
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This completes the proof of our result. �

Next, we shall consider the case in whichk(x, t) = h(x)f(t). Then we have the following
result.

Theorem 2.2. Let h(x), f(t), u(x) be real valued nonnegative continuous functions onS and
g(x) be a positive, nondecreasing continuous function onS. If h′(x) = 0, where the prime
denote ∂n

∂x1 ...∂xn
and the following inequality

(2.5) u(x) ≤ g(x) + h(x)

∫ x

x0

f(t)u(t)dt

holds for allx ∈ S with x ≥ x0, then

(2.6) u(x) ≤ g(x)

{
1 +

∫ x

x0

h(s)f(s) exp

(∫ s

x0

h(t)f(t)dt

)
ds

}
.

Proof. Similar to the proof of Theorem 2.1 and so the details are omitted. �

Remark 2.3. If we setk(x, t) = f(t) in Theorem 2.2, then our estimate reduces to

u(x) ≤ g(x)

{
1 +

∫ x

x0

f(s) exp

(∫ s

x0

f(t)dt

)
ds

}
.

3. NON-LINEAR I NEQUALITIES

Definition 3.1. A functionφ : R+ → R+ is said to belong to the classF if it satisfies the
following conditions:

(1) φ is nondecreasing and continuous inR+ andφ(u) > 0 for u > 0;
(2) 1

α
φ(u) ≤ φ

(
u
α

)
, u ≥ 0, α ≥ 1.

We observe from the above definition thatF has the following properties:

(1) φ ∈ F if and only if φ(u)
u

is nonincreasing foru > 0;
(2) φ ∈ F implies thatφ is subadditive;
(3) If φ satisfies (1) of Definition 3.1 and is concave inR+, thenφ ∈ F .

Theorem 3.1. Let k(x, t) be a good kernel andu(x) be a real valued nonnegative continuous
function onS. If g(x) be a positive, nondecreasing continuous function onS andφ belong to
classF for which the following inequality

(3.1) u(x) ≤ g(x) +

∫ x

x0

k(x, t)φ(u(t))dt

holds for allx ∈ S with x ≥ x0, then forx0 ≤ x ≤ x∗,

(3.2) u(x) ≤ g(x)G−1

(
G(1) +

∫ x

x0

k(t, t)dt

)
,

where

G(z) =

∫ z

z0

ds

φ(s)
, z ≥ z0 > 0,

G−1 is the inverse ofG andx∗ is chosen so that

G(1) +

∫ x

x0

k(t, t)dt ∈ Dom(G−1).
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Proof. Sinceg(x) is positive and nondecreasing, we can write (3.1) as

u(x)

g(x)
≤ 1 +

∫ x

x0

k(x, t)
φ(u(t))

g(t)
dt ≤ 1 +

∫ x

x0

k(x, t)φ

(
u(t)

g(t)

)
dt.

Settingu(x)
g(x)

= v(x), then we have

v(x) ≤ 1 +

∫ x

x0

k(x, t)φ(v(t))dt.

Let

r(x) = 1 +

∫ x

x0

k(x, t)φ(v(t))dt.

Then
v(x) ≤ r(x)

andv(x0) = 1 or xi = x0
i , i = 1, 2, . . . , n and

D1 . . . Dnr(x) = k(x, x)φ(r(x)).

That is
D1 . . . Dnr(x)

φ(r(x))
≤ k(x, x).

Since

Dn

(
D1 . . . Dn−1r(x)

φ(v(x))

)
=

D1 . . . Dnr(x)

φ(r(x))
− Dnφ(r(x))D1 . . . Dn−1r(x)

φ2(r(x))

and
Dnφ(r(x)) = φ′(r(x))Dnr(x) ≥ 0, D1 . . . Dn−1r(x) ≥ 0.

The above inequality implies

Dn

(
D1 . . . Dn−1r(x)

φ(r(x))

)
≤ k(x, x)

providedφ′(r(x)) ≥ 0 for r(x) ≥ 0.
Integrating with respect toxn fromx0

n toxn and taking into account the fact thatD1 . . . Dn−1r(x) =
0 for xn = x0

n, we have

D1 . . . Dn−1r(x)

φ(v(x))
≤

∫ xn

x0
n

k(x1, x2, . . . , xn−1, tn, x1, x2, . . . , xn−1, tn)dtn.

Repeating this, we find (aftern− 1 steps) that

D1r(x)

φ(r(x))
≤

∫ x1

x0
1

. . .

(∫ xn

x0
n

k(x1, . . . , xn−1, tn, x1, . . . , xn−1, tn)dtn

)
. . . dt2.

We note that for

G(s) =

∫ s

s0

dz

φ(z)
, s ≥ s0 > 0.

It thus follows that

D1G(r(x)) =
D1r(x)

φ(r(x))
,

so that

D1G(r(x)) ≤
∫ x2

x0
2

k(x1, t2, . . . , tn, x1, t2, . . . , tn)dtn . . . dt2.
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Integrating both sides of the above inequality with respect to the component

G(r(x1, . . . , xn))−G(r(t1, x2, . . . , xn)) ≤
∫ x

x0

k(t, t)dt.

Sincer(t1, x2, . . . , xn) = 1 we have

r(x)) ≤ G−1

(
G(1) +

∫ x

x0

k(t, t)dt

)
.

From this we obtain

v(x) ≤ r(x)) ≤ G−1

(
G(1) +

∫ x

x0

k(t, t)dt

)
.

Using the fact thatu(x)
g(x)

= v(x), we have

u(x) ≤ g(x)G−1

(
G(1) +

∫ x

x0

k(t, t)dt

)
which is required and the proof is complete. �

If we setk(x, t) = h(x)f(t), then we shall obtain the following result

Theorem 3.2. Let h(x), f(t), u(x) be real valued nonnegative continuous functions onS and
g(x) be a positive, nondecreasing continuous function onS, andφ belong to classF .If h′(x) =
0 and the following inequality

(3.3) u(x) ≤ g(x) + h(x)

∫ x

x0

f(t)φ(u(t))dt

holds for allx ∈ S with x ≥ x0, then forx0 ≤ x ≤ x∗, then

(3.4) u(x) ≤ g(x)G−1

(
G(1) + h(x)

∫ x

x0

f(t)dt

)
,

where

G(z) =

∫ z

z0

ds

φ(s)
, z ≥ z0 > 0,

G−1 is the inverse ofG andx∗ is chosen so that

G(1) + h(x)

∫ x

x0

f(t)dt ∈ Dom(G−1).

Proof. Similar to the proof of Theorem 3.1 and so the details are omitted. �

Remark 3.3. If we setk(x, t) = f(t) in Theorem 3.2, then our estimate reduces to

u(x) ≤ g(x)G−1

(
G(1) +

∫ x

x0

f(t)dt

)
.
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