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ABSTRACT. Various weighted.,, (p > 1)—nhorm inequalities in convolutions were derived by
using Holder’s inequality. Therefore, by using reverse Holder inequalities one can obtain reverse
weightedL,—norm inequalities. These inequalities are important in studying stability of some
inverse problems.
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1. INTRODUCTION

For the Fourier convolution
(Fra)e) = [ o=l de

the Young’s inequality

@.1) I =glle < 1flpllglle, [ € Lp(R), 9 € Ly(R),r " =p~" +¢ " =1 (p,q,r>0),

is fundamental. Note, however, that for the typical cas¢,gf € L,(R"), the inequality[(1]1)
does not hold. In a series of papers [[4] 5|6, 7] (see also [1]) the first author obtained the
following weightedL, (p > 1) inequality for convolution.
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Proposition 1.1. ([7]). For two nonvanishing functions; € L;(R) (j = 1,2) the following
L, (p > 1) weighted convolution inequality

(1.2) | By (B or # p2)2 | < Iy oy 1Pl 51

holds forF; € L,(R,|p;]) (j = 1,2). Equality holds if and only if
(13) Fj<£ll'> = Cjeo‘x,
wherea is a constant such that” € L,(R, |p;|) (j =1,2).

Here

Hmmmm:{[mwuwm@@}?

[e.9]

Unlike the Young’s inequality, the inequality (1.2) holds also in gase?2.
In many cases of interest, the convolution is given in the form

whereG(z — £) is some Green'’s function. Then the inequaljty [1.2) takes the form

1—-1
(1.5) 1 (Ep) =G|, < el " 1G], [ Fl1,

R,|pl)

wherep, F', andG are such that the right hand side [of (1.5) is finite.

The inequality[(1.p) enables us to estimate the output function

(L.6) JARAGIGLERL

in terms of the input functio’. In this paper we are interested in the reverse type inequality for
(1.5), namely, we wish to estimate the input functiéiy means of the output (1.6). This kind

of estimate is important in inverse problems. Our estimate is based on the following version of
the reverse Hdélder inequality

Proposition 1.2. ([2], see als¢3], pages 125-126). For two positive functighandg satisfying

a.7) O<m<=<M<o

Q |

on the sefX, and forp,q > 0, p™' + ¢! =1,

(1.8) (/deuy (/ngu>é < Apg (%)/Xf;’gédu,

if the right hand side integral converges. Here

[

1

Ay (t) =p rg at (1 — t)(l - t%>_; (1 - ﬁ)_q.
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2. A GENERAL REVERSE WEIGHTED Lp CONVOLUTION INEQUALITY

Our main result is the following
Theorem 2.1. Let F; and F5 be positive functions satisfying

(21) 0<m! < Fi(z) <M <oo, 0<mi<Fz)<M] <oco, p>1, xcR.

Then for any positive functions andp, we have the reverse,—weighted convolution inequal-
ity

(2.2) H ((Fip1) * (F2p2)) (p1 * p2>%_1

-1
Tn11Mo
2L (G2 )} WAl 1l

Inequality [2.2) and others should be understood in the sense that if the left hand side is finite,
then so is the right hand side, and in this case the inequality holds.

Proof. Let
f(&) = F(F(z = pi(§pa(z =€), 9(§) = p(&)pa( — &)
Then condition[(Z2]1) implies
/&)

AN UD) S —_— S M1M27 £ < R

9(8)
Hence, one can apply the reverse Holder inequality (1.8) fandg to get

A (32 [ RO te — Ot — 1

1

> {/oo FP(E)FP(x — &)py(€)pal — f)df}; {/_oo . %}l_p |

(e 9]

Hence,

@3 { [ Fn©RE-Ont- o df}p ] niomta- odg}l_p

—00 —0o0

> L ()L ™ F©R e - Om@nmts - o)t

— 00

Taking integration of both sides ¢f (2.3) with respecitivom —oo to oo we obtain the inequal-
ity

0 e’} p e’} 1-p
e [ Aem©Re-on@ -9 { [ n@ne-oif @

mimes

—-p o] [ee)
> L (G [ mron@as [~ B
Raising both sides of the inequali.4) to poweyields the inequalit2). O

Inequality [I1.8) reverses the signif< p < 1. Hence, inequality (2]2) reverses the sign if
0<p<l.
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In formula [2.3) replacing, by 1, and F»(z — &) by G(z — £), and taking integration with
respect tac from ¢ to d we arrive at the following inequality

s [ ([ renoce-gu) @

> ()} ([ o)™ [ miemeae | e,

valid if positive continuous functiong, F', andG satisfy
(2.6) 0<mr <FE)G(x—€& <Mr, z€led, R

Inequality [2.5) is especially important whéf{z — €) is a Green'’s function. See examples in
the next section.

e}

3. EXAMPLES

3.1. The first order differential equation. The solutiony(x) of the first order differential
equation

y'(z) + Ay(x) = F(z), y(0)=0,
is represented in the form

y(x) = /Oz F(t)e X@0qt.

So we shall consider the integral transform

f(z) = /Z F(t) p(t)e M= Ddt, A > 0.
0
Take

-z
G(x):{e , x>0,

0, x < 0.
The condition[(2.6) reads

(3.1) 0<mr < F(t)e ™0 < Mo,

It will be satisfied for) < t < 2 < d < oo, if we have

1 1 M
(3.2) 0<mreMM<F)<Mr, 0<d<—log—.
PA m
Notice that
d—¢ e~ APe_e—Apd Ap€ <
/ Gp<33) dx = 176)\P>%p*>\pd c ’ 5 67
c—¢ oy c < f < d.

Thus the inequality (2]5) yields

(3.3) / ' 2(x) ( /0 " o(t) dt)l_p dz

> {0 (5)} 755 [ = e [ Promeeas

d
" / FP©)p(€)(1 — e e ) de | |

Here we assume thatis a positive continuous function df, d], andF satisfies[(3.2).
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3.2. Picard transform. Note that%e"“"—t| is the Green'’s function for the boundary value prob-
lem
y —y =0, lim y(x) = 0.

r—+00

So, we shall consider the Picard transform
1 o0
fo) =5 [ Pt

TakeG(z) = e71*l. Since

el < et < eteltl |z < a,
we see that the conditiop (2.6)
(3.4) 0<mr < F(t)e ™ < Mo,
holds if
2 a i 2 —a | 1 M
(3.5) 0 <mre®e < F(t) < Mre %", teR, 0<a< —log—.
2p m
We have
d—t d—t %t [e_pc - e_pd} ) t<ec,
/ GP(z) dx = / e7Plel gy = %ft [ePd —ere] t>d,
ot et L(2—epept —ept=pd) - c<t<d
p ! '

Thus, for—a < ¢, d < a the inequality[(2.5) yields

(e}

(3.6) /Cd fP(x)dx > Q%p {AW (%) }w (/oo

[(e‘pc — e_pd) /c FP(t)p(t)er'dt + (6pd — epc) /doo FP(t)p(t)e Pdt

—00

p(t)dt) "

d
+ / FP(t)p(t) (2 — ePe P — ePt=P0) qt| |
if p is positive continuous, an# satisfies[(3.5).

3.3. Poisson integrals. Consider the Poisson integral

1 [ Y
(3.7) u(z,y) = ;/_OO FO) e 2%
Take y
G(:C) = > +y2'
Let
¢ €lab], z€]ed.
Denote
a =max{|a—¢|,|a—d|,|b—¢|,|b—d|}.
We have
Y < Yy < 1
a?+y? T (=P +yr Ty
Thus,

d—¢ d—¢ y P y P
p — >(d—c) | —— | .
/c—s GP(z) dx /c—g <x2—|—y2> de > (d—c¢) (a2+y2)
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Hence, for a functioF’ satisfying
a? + 92

Yy
and for a positive continuous functigron [a, b] we obtain

09 [t 920 (Y (a3}

( / () d€>p

m» < F(&) <y M,

—1

b
/ Fr(€)p(¢)de.

Consider now the conjugate Poisson integral

(3.9) v(z,y) = %/_w F(f)ﬂ(@ﬁd@
Take T
G(r) = 22 442
For
€ €la,b], x€led], (b<c),
we have
c—0b < x—E& < d—a
(d=—a)+y> = (=& +y* ~ (c=b)?*+y*
Thus,

d—¢ d—¢ x p c—b P
o= [ (i) 200 (o)
Hence, for a functiorF satisfying

—q)2 2 1 AV 2 L
a2V i < Fe < C 0,
c—b d—a

and for a positive continuous functigron [a, b] we obtain
d p
(d—rc) c—b my\ ) P
. P > —
(3.10) / oo y)de 2 oS {44 (37)}

( / () d&)p

3.4. Heat equation. We consider the Weierstrass transform

311) o) = [P e (-7 ae

which gives the formal solution(z, t) of the heat equation

—1

/ Fr(€)p(€)de.

ug=Au on R, xR,

subject to the initial condition

Take
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Let
S [—CL,CL], 56 [_bvb]v a+b< ﬁlogM
P m
rem (z - & (a+ by
€x — a+
< — 2 )< Sl
1—6Xp< At )—eXp( At )
we have )
0<mr < F(&)exp (—%) < M%,
if
1 2 1
(3.12) m exp ((“ o ) <FE) <M}, ccl-bil

It is easy to see that

[ [ () (259

where

2 T
erf (x) = ﬁ/ e dt
0

is the error function. Therefore, fera < ¢ < d < a, the inequality[(2.5) yields

(3.13) /Cd w(z, t)Pdz > 2p(7rt)(p1—1)/2\/z_9 {AM <%>}7p (/bb p(g)dg)p_l

[ oo (2479) o (B

wherep is a positive continuous function dr-b, b], andF satisfies|(3.1]2).
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