Journal of Inequalities in Pure and
I <M Applied Mathematics

0 hittp://jipam.vu.edu.au

Volume 1, Issue 1, Article 4, 2000

GENERALIZED ABSTRACTED MEAN VALUES
FENG QI

DEPARTMENT OFMATHEMATICS, JAOZUO INSTITUTE OF TECHNOLOGY, JAozuUoO CITY, HENAN 454000,
THE PEOPLE S REPUBLIC OF CHINA
gifeng@jzit.edu.cn
URL: http://rgmia.vu.edu.au/qi.htmi

Received 4 November, 1999; accepted 6 December, 1999
Communicated by L. Debnath

ABSTRACT. In this article, the author introduces the generalized abstracted mean values which
extend the concepts of most means with two variables, and researches their basic properties and
monotonicities.
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1. INTRODUCTION

The simplest and classical means are the arithmetic mean, the geometric mean, and the har-

monic mean. For a positive sequence: (a4, ..., a,), they are defined respectively by
1 n

1.1 Apla) = = : =

(L1) @)= > e Gula)

For a positive functiorf defined onz, 3], the integral analogues @ 1) are given by

A(f _I/f t) dt,

(1.2) Wﬂﬁmgﬁ/mﬂ>)
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2 FENG QI

It is well-known that

(1.3) An(a) = Gula) = Hu(a), A(f) = G(f) = H(f)

are called the arithmetic mean—geometric mean—harmonic mean inequalities.

These classical means have been generalized, extended and refined in many different direc-
tions. The study of various means has arich literature, for details, please referltol[1, 2], [4]-[8]
and [19], especially ta [9], and so on.

Some mean values also have applications in medicine [3, 18].

Recently, the author [9] introduced the generalized weighted mean valyes:, s; , y)
with two parameters ands, which are defined by

fy w)du (s=)
(1.4) M, (r,s;x,y) = (fy du> (r—s)(x —y) #0;
(1.5) M, ¢(r,rx,y) = (f fy W f;u) ) , x—y#0;
M, ¢(r, s;2,2) = f(z),

wherez,y, 7, s € R, p(u) # 0 is a nonnegative and integrable function gfid) a positive and
integrable function on the interval betweem@andy.

It was shown in[[9] 17] thadl/, ;(r, s; z,y) increases with botlh ands and has the same
monotonicities ag in bothx andy. Sufficient conditions in order that

(16) Mplaf(r7 SQ‘Tay) > Mp27f(7“,8;1',y),
(1.7) Mp,fl(ras;x7y) > Mp,fz(rv s;x,y)

were also given in [9].

Itis clear thatM,, ;(r,0; z,y) = MU(f;p; x,y). For the definition of\/11(f; p; z, ), please
see[6].
Remark 1.1. As concrete applications of the monotonicities and properties of the generalized
weighted mean value¥,, ((r, s; z, y), some monotonicity results and inequalities of the gamma
and incomplete gamma functions are presented in [10].

Moreover, an inequality between the extended mean valess; x, y) and the generalized
weighted mean value¥, ((r, s; =, y) for a convex functiory is given in [14], which generalizes
the well-known Hermite-Hadamard inequality.

The main purposes of this paper are to establish the definitions of the generalized abstracted
mean values, to research their basic properties, and to prove their monotonicities. In[Section 2,
we introduce some definitions of mean values and study their basic properties. In Section 3, the
monotonicities of the generalized abstracted mean values, and the like, are proved.

2. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1. Let p be a defined, positive and integrable function|ony] for z,y € R, f
a real-valued and monotonic function én 3. If g is a function valued o, 3] and f o g
integrable orjz, y], the quasi-arithmetic non-symmetrical mearyd$ defined by

(2.1) My (g;piz,y) = <f Tt dt>,

wheref~1 is the inverse function of.
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Forg(t) =t, f(t) = t"*, p(t) = 1, the meanV/;(g; p; , y) reduces to the extended logarith-
mic meansS, (z,y); for p(t) = t"71, g(t) = f(t) = t, to the one-parameter medp(z, y); for
p(t) = f'(t), g(t) = t, to the abstracted meadi;(z, y); for g(t) = t, p(t) = t"7 %, f(t) = t*7",
to the extended mean valuégr, s; x,y); for f(t) = ¢", to the weighted mean of orderof
the functiong with weightp on [z, y]. If we replacep(t) by p(t)f"(t), f(t) by t*=", g(t) by
f(t) in (2.1), then we get the generalized weighted mean valligs(r, s; z,y). Hence, from
M¢(g; p; x,y) we can deduce most of the two variable means.

Lemma 2.1([13]). Suppose thaf and g are integrable, and; is non-negative, offu, b], and
that the ratio f(¢)/¢(t) has finitely many removable discontinuity points. Then there exists at
least one point € (a,b) such that

= 11m .
[Pg(tydt =0 g(t)
We call Lemma 2]1 the revised Cauchy’s mean value theorem in integral form.

2 [ fwde_f)

Proof. Since f(t)/g(t) has finitely many removable discontinuity points, without loss of gen-
erality, suppose it is continuous ¢am b|. Furthermore, using(t) > 0, from the mean value
theorem for integrals, there exists at least one piat(a, b) satisfying

2.3) / F(t)dt = / (%) g(t)dt:% / g(t)dt.
LemmaZ.1 follows. O

Theorem 2.2. The meanV/;(g; p; , y) has the following properties:
o < Mi(gipsx,y) < B,

My (g;p;x,y) = Ms(g;p5y, ),

wherea = inf ¢(t) andfs = sup g(t).

(2.4)

te[z,y] te(z,y]
Proof. This follows from Lemma 2]1 and standard arguments. O
Definition 2.2. For a sequence of positive numbers= (ay,...,a,) and positive weights

p = (p1,--.,pPn), the generalized weighted mean values of numbesgth two parameters
ands is defined as

n 1/(r—s)
Zpiai“
(25) Mn(pa a;r, S) = ZTLl 9 r—=s 7é O;
Zpiaf
i=1
> piallna;
(2.6) M, (p;a;r,r) = exp lzln—
> piaj
i=1

For s = 0 we obtain the weighted medm[f](a;p) of orderr which is defined in([2, 5,16,/ 7]
and introduced above; for= 0, r = —1, the weighted harmonic mean; fer= 0, r = 0, the
weighted geometric mean; and for= 0, » = 1, the weighted arithmetic mean.

The meanl,(p; a;r, s) has some basic properties similar to those\gf,(r, s; z,y), for
instance
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Theorem 2.3. The mean M,(p;a;r,s) is a continuous function with respect to
(r, s) € R? and has the following properties:

m < M, (p;a;r,s) < M,
(2.7) M, (p;a;r,s) = My(p; a;s,r),
M " (p;a;r,s) = M (p; a;t, s) - My " (p; a;r, ),

wherem = 121%171{%}, M = fg%}%{a‘}

Proof. For an arbitrary sequende= (b, ..., b,) and a positive sequenee= (cy,...,c,), the
following elementary inequalitie5|[6, p. 204] are well-known
bi

b;
< max { — } .
) 1<i§n Ci

i

(2.8) min {E} <

1<i<n C;

o

N
Il
fa

This implies the inequality property.
The other properties follow from standard arguments. O

Definition 2.3. Let f; and f, be real-valued functions such that the rafj@ f, is monotone on
the closed intervalo, 5]. If a = (a4, ...,a,) is a sequence of real numbers from 5] and
p = (p1,...,pn) @ Sequence of positive numbers, the generalized abstracted mean values of
numbers: with respect to functiong, and f,, with weightsp, is defined by
i -1 ;pifl(az)
(2.9) My (p; a; f1, fo) = (f—> |
2 2]%‘]02(%)

where(f,/f2) ! is the inverse function of, / f-.

The integral analogue of Definitign 2.3 is given by
Definition 2.4. Let p be a positive integrable function defined pny|, =,y € R, fi and f;
real-valued functions and the ratfo/ f, monotone on the intervady, 5]. In addition, letg be
defined orjz, y] and valued oty 3], andf; o g integrable orjx, y] fori = 1, 2. The generalized
abstracted mean values of functignvith respect to functiong; and f, and with weightp is
defined as

(2.10) M(p; g; fr, fos,y) = (

é)_l (ffp(t)fl(g@)) dt)
f2) \[Ipt)falg() dt)
where(f1/ f»)~" is the inverse function of, / f,.

Remark 2.1. Setf, = 1 in Definition[2.4, then we can obtain Definitipn P.1 easily. Replacing

f by fi/f2, p(t) by p(t) f2(g(t)) in Definition[2.1, we arrive at Definition 2.4 directly. Anal-
ogously, formula[(Z]9) is equivalent t/;(a; p), see([6, p. 77]. Definitiop 2}1 and Definition

[2.4 are equivalent to each other. Similarly, so are Defin[tioh 2.3 and the quasi-arithmetic non-
symmetrical meai/;(a; p) of numbers: = (ay, . . ., a,) with weightsp = (p1, ..., pn).

Lemma 2.4. Suppose the ratig, / f» is monotonic on a given interval. Then

() -(2))

where(f,/ f,)~! is the inverse function of;/ f».
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Proof. This is a direct consequence of the definition of an inverse function. O
Theorem 2.5. The means\/,,(p; a; f1, f2) and M (p; g; f1, f2; x, y) have the following proper-
ties:

(i) Under the conditions of Definitign 2.3, we have
m < My(p;a; fi, f2) < M,
Mi(p; a; f, f2) = Ma(ps as f2, 1),

wherem = 1r£11n {a;}, M = max {a;};

(if) Under the conditions of Definitidn 2.4, we have

« S M(pvgaflyf%xvy) S ﬁa
M(pmg?fl)f?vxay) = M(p’ga f27f1;xay)7

(2.12)

wherea = inf g(t)andg = sup g(t).
t€lw,y] te(z,y]

Proof. These follow from inequality[ (2]8), Lemnja 2.1, Lemma] 2.4, and standard arguments.
O

3. MONOTONICITIES

Lemma 3.1([16]). Assume that the derivative of second ordéft) exists onR. If f(¢) is an
increasing (or convex) function dR, then the arithmetic mean of functigitt),

(3.1) o, s {/f d, r7 5

=S5,

is also increasing (or convex, respectively) with bo#ind s onR.

Proof. Direct calculation yields

(3.2) 9o(ris) _ 1 (s—r) /f dt

0s (s — r)2
Po(r,s)  (s— r)2f(s) —2(s—7r)f(s) + ZfT f@ydt  o(r,s)
(3:3) 0s2 (s — T)3 T (s—1)¥
o U,

In the case off’(t) > 0, we havedo(r, s)/ds > 0, thus¢(r, s) increases in both ands,
sinceg(r, s) = ¢(s,r).

Inthe case of”(t) > 0, p(r, s) increases with. Sincep(r,r) = 0, we haved?¢(r, s)/0s* >
0. Therefore¢(r, s) is convex with respect to eitheror s, since¢(r,s) = ¢(s,r). This
completes the proof. O

Theorem 3.2.The mean\/,,(p; a; r, s) of numbers = (a4, ..., a,) withweightp = (p1, ..., p,)
and two parameters ands is increasing in both- andss.
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Proof. SetN,, = In M,,, then we have

(3.5) N, (p;a;r,s) = L / — dt, r—s#0;
TS pal
i=1
ipiag Ina;
(3.6) N, (p;a;r,r) = lzln—
leiaz

By Cauchy'’s inequality, direct calculation arrives at

n n n n 2
> piatIna; ST piat(Ina;)? . pial — < > piatin ai>
' _ =l i=1 i=1

(3.7) = _ a > 0.
> pia; ( > pﬂf)
i=1 ¢ i=1
Combination of[(3.]7) with Lemma 3.1 yields the statement of Thegrem 3.2. O

Theorem 3.3. For a monotonic sequence of positive numhliers a; < a, < --- and positive
weightsp = (p1, pe, ... ), if m < n, then

(3.8) My, (p; a;r, s) < My(p; a;r, s).
Equality holds ifa; = as = - - -.

Proof. Forr > s, inequality [3.8) reduces to

Zilpia;“ iilpia;f

i_i‘lpiaf - i_ilpiaf'

Sinced < a; <ay <---,p; > 0,i > 1, the sequencefyp;a] } - and{p;ai} - are positive

and monotonic.
By mathematical induction and the elementary inequalifieg (2.8), we can easily obtain the

(3.9)

inequality [3.9). The proof of Theorem 8.3 is completed. O
Lemma 3.4.1f A = (4,...,A,) andB = (By,..., B,) are two nondecreasing (or nonin-
creasing) sequences aiitl= (P, ..., P,) is a nonnegative sequence, then

(3.10) znjpizn:PiAiBi > zn:PiAizn:PiBz‘,
=1 =1 i—1 i—1

with equality if and only if at least one of the sequendes B is constant.

If one of the sequence$ or B is nonincreasing and the other nondecreasing, then the in-
equality in(3.10)is reversed.

The inequality[(3.110) is known in the literature as Tchebycheff'sJeby3ev’s) inequality in
discrete form([7, p. 240].
Theorem 3.5.Letp = (p1,...,p,) @ndg = (qi, - . ., ¢,) be positive weightg, = (a4, ...,a,)a
sequence of positive numbers. If the sequefg€s;, . . ., p./¢,) anda are both nonincreasing
or both nondecreasing, then

(3.11) M, (p;a;r,s) > M,(q; a;r,s).

J. Ineq. Pure and Appl. Math1(1) Art. 4, 2000 http://jipam.vu.edu.au/
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If one of the sequences@f, /¢, - . ., pn/q,) O ais nonincreasing and the other nondecreasing,
the inequality(3.11)is reversed.

Proof. Substitution of P = (qiaf,...,qna’), A = (ai%...,a, %) and

B = (p1/q1,--.,pn/q,) into inequality [3.1D) and the standard arguments produce inequal-
ity (8.11)). This completes the proof of Theorgm|3.5. O

Theorem 3.6.Letp = (py,...,p,) be positive weights; = (ay,...,a,) andb = (by,...,by,)
two sequences of positive numbers. If the sequeiagés,, . . ., a,,/b,) andb are both increas-
ing or both decreasing, then

(3.12) M, (p;a;r,s) > M,(p; b;r,s)

holds fora;/b; > 1,n > i > 1,andr,s > 0 orr > 0 > s. The inequality(3.12)is reversed for
a;/b; <1,n>i>1,andr,s <0o0rs>02>r.

If one of the sequences(af, /b4, . . ., a,/b,) Or bis nonincreasing and the other nondecreas-
ing, then inequality(3.12)is valid fora;/b; > 1,n > i > 1l andr,s > 0ors > 0 > r; the
inequality(3.12)reverses forn; /b; < 1,n >i>1,andr,s >00rr >0 > s,.

Proof. The inequality[(3.10) applied to

(3.13) P=pti, A=(3), Bi=ti7, 1<i<n
bi
and the standard arguments yield Theofem 3.6. O

Theorem 3.7. Suppose and g are defined oR. If f; o g has constant sign and (ff;/f>) o g
is increasing (or decreasing, respectively), thep; g; f1, f2; z,y) have the inverse (or same)
monotonicities ag; / f» with bothz andy.

Proof. Without loss of generality, suppo$é; / f2) o g increases. By straightforward computa-
tion and using Lemmfa 2.1, we obtain

L2 p(t) falg(t)dt
(3.14) _(fy O f dt)
_ fy (fy ))dt fz(g(y))) <0
( fy )dt) IO At filew)) =
From Definitior] 2.4 and its suitable basic properties, The 3.7 follows. O

Lemma 3.8. LetG, H : [a,b] — R be integrable functions, both increasing or both decreasing.
Furthermore, let) : [a, b] — [0, 4+00) be an integrable function. Then

b b b b
(3.15) / Q(u)G(u) du/ Q(u)H (u) duﬁ/ Q(u) du/ Q(u)G(u)H (u) du.

If one of the functions off or H is nonincreasing and the other nondecreasing, then the in-
equality(3.15)reverses.
Inequality [3.1I5) is called Tchebycheff's integral inequality, please refér to [1]land [4]-[7].

Remark 3.1. Using Tchebycheff’s integral inequality, some inequalities of the complete elliptic
integrals are established in [15], many inequalities concerning the probability function, the error
function, and so on, are improved in[12].
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Theorem 3.9.Suppose; o g has constant sign ojx, y]. Wheng(t) increases o, y|, if p1 /p2
is increasing, we have

(3.16) M(p1; g5 f1, fo; ,y) > M(p2; g5 f1, fo; 7, 9);
if p1/ps is decreasing, inequalit{B.16)reverses.

Wheng(t) decreases of, y|, if p;/ps is increasing, then inequalit{8.18) is reversed; if
p1/p2 is decreasing, inequalit{B.16)holds.

Proof. Substitution ofQ(t) = f2(g(¢))p2(t), G(t) = (f1/f2) o g(t) and H(t) = pi(t)/pa(t)
into Lemmd 3.B and the standard arguments produce ineqyality (3.16). The proof of Theorem
[3.9 is completed. O

Theorem 3.10.Suppos€; o g does not change its sign éon, y|.
(i) Whenf; o (g1/92) and(f1/ f2) o g2 are both increasing or both decreasing, inequality

(3.17) M(p; g1; f1, f2;2,y) > M(p; g2; fr, far x,y)

holds for f, / f> being increasing, or reverses fgr/ f, being decreasing.

(i) When one of the functions o (g1/g2) or (fi/f2) o g2 is decreasing and the other
increasing, inequality(3.17) holds for f,/ f, being decreasing, or reverses f@r/ fo
being increasing.

Proof. The inequality [(3.15) applied t@(t) = p(t)(f2 o g2)(t), G(t) = f2 0 (@)(t) and

92
H(t) = <é> o g»(t), and standard arguments yield Theorem _3.10. O

fa
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